16.02.2014 Views

Spintronics

Spintronics

Spintronics

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Spintronics</strong><br />

Summer school SFB 491<br />

Claudia Felser


Content<br />

• Concept<br />

• Materials<br />

• Methods<br />

• Vision


<strong>Spintronics</strong><br />

P. Ball, Nature 404 (2000) 918,<br />

G. A. Prinz, Science 282 (1998) 1660


Rational Design<br />

Synthesis<br />

computational<br />

design<br />

structure<br />

nano particles<br />

single crystals<br />

thin films<br />

ceramics<br />

spectroscopy


Spin-electronics<br />

Spin + Charge = <strong>Spintronics</strong><br />

C. Felser Angew. Chem. Int. Ed. 46 (2007) 668


Giant Magnetoresistance: GMR<br />

P. Grünberg, PRB39, 4828 (1989);<br />

A. Fert, PRL61, 2472 (1988)


Colossal Magnetoresistance: CMR<br />

La 0.6 Ca 0.3 MnO 3


Colossal Magnetoresistance: CMR<br />

Semiconductor to Metal Transition<br />

in GdI 2<br />

MR 0 = 60 % bei RT<br />

Problem: high field effect,<br />

small at room temperature<br />

C. Felser et al. JSSC 19 147 (1999).


Half metallic Ferromagnet<br />

Normal Metal P = 0 Halfmetallic ferromagnet P = 1


Tunnel Magnetoresistance: TMR<br />

MRAM = Magnetic RAM


Tunnel Magnetoresistance: TMR<br />

A<br />

⇒ TMR = R − P<br />

R P<br />

R P<br />

= 2P LP R<br />

1 − P L<br />

P R<br />

Julliere formula


Spin injection into semiconductor<br />

Ferromagnetic Semiconductor<br />

with T C above room<br />

temperature is still a challenge


Content<br />

• Concept<br />

• Materials<br />

• Methods<br />

• Vision


Ferromagnetic Metals


How to Design Halfmetallic Ferromagnets<br />

• Precondition: a gap in the overall electronic structure:<br />

• Covalent compounds – related to semiconductors Si<br />

• Ionic compounds –oxides, halides, sulfides<br />

Felser et al. Angew. Chem. Int. Ed. 46 (2007) 668


Half metallic Ferromagnets


Definition Half metals (Coey)<br />

Type Density of states Conductivity ↑ Electrons at<br />

E F<br />

↓ Electrons at<br />

E F<br />

I A<br />

half-metal metallic itinerant none<br />

I B<br />

half-metal metallic none itinerant<br />

II A<br />

half-metal nonmetallic localized none<br />

II B<br />

half-metal nonmetallic none localized<br />

III A<br />

metal metallic itinerant localized<br />

III B<br />

metal metallic localized itinerant<br />

IV A<br />

semimetal metallic itinerant localized<br />

IV B<br />

semimetal metallic localized itinerant<br />

V A<br />

semiconductor semiconducting few, itinerant none<br />

V A<br />

semiconductor semiconducting none few, itinerant


Structure Al<br />

M auf 0 0 0<br />

z.B. Al


Structure Si<br />

()<br />

M X auf 0 ¼¼¼ 0 0<br />

M auf z.B. ¼ZnS<br />

¼ ¼<br />

z.B. Si


Half Heusler Compound CoTiSb<br />

M auf 0 0 0<br />

M auf ½ ½ ½<br />

M auf ¼ ¼ ¼<br />

z.B. LiAlSi oder NiMnSb<br />

Kandpal et al. J. Phys. D 39 (2006) 776


Design of a Semiconductor<br />

Valence electrons<br />

Si 2<br />

2 x 4 = 8<br />

Ga<br />

As<br />

3 + 5 = 8<br />

ZnS → C1b<br />

9 + 4 + 5 = 18<br />

Co<br />

Ti<br />

Sb


Half-Heusler Compounds<br />

Charge density<br />

CoTiSb<br />

Charge density<br />

CoMnSb<br />

(e)<br />

Spin density<br />

CoMnSb<br />

18 = 9+4+5<br />

Semiconductor<br />

21 = 9+7+5 3μ B<br />

Half metallic Ferromagnet


Heusler Compound Co 2 CrAl<br />

TM auf 0 0 0<br />

M auf ½ ½ ½<br />

TM auf ¼¼¼<br />

TM auf ¾¾¾<br />

Half metallic ferromagnet


Oauf 0 0 ½<br />

Heusler- Double Perovskite


Design of half metallic ferromagnet<br />

Valence electrons<br />

Si 2<br />

2 x 4 = 8<br />

Cr<br />

As<br />

6 + 5 = 8 +3<br />

3 μ B<br />

ZnS → C1b<br />

10 + 7 + 5 = 18 + 4<br />

Ni<br />

Mn<br />

Sb<br />

3 μ B


CrAs with ZnS structure


NiMnSb – Half Heusler


Ionic: CrO 2 – Rutil structure


Rational Design of New Materials<br />

XYZ<br />

Halb-Heusler<br />

C1 b<br />

X 2 YZ<br />

Heusler L2 1


Heusler and the Periodic Table


Heusler Compounds: ~500


Slater-Pauling Rule for Heusler<br />

Magic valence electron number 24<br />

Valence electrons =<br />

24 + saturation magnetisation<br />

Co 2 CrAl<br />

2*9 + 6 + 3 = 27<br />

Saturation magnetisation :3μ B<br />

Total spin moment: M t<br />

(μ Β<br />

)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

Co 2<br />

CrAl<br />

Fe 2<br />

MnSi<br />

Ru 2<br />

MnSi<br />

Ru 2<br />

MnGe<br />

Ru 2<br />

MnSn<br />

M t<br />

=Z t<br />

−24<br />

Mn 2<br />

VAl<br />

Co 2<br />

MnSi<br />

Co 2<br />

MnGe<br />

Co 2<br />

MnSn<br />

Co 2<br />

VAl<br />

Fe 2<br />

MnAl<br />

Fe 2<br />

CrAl<br />

Co 2<br />

TiAl<br />

Fe 2<br />

VAl<br />

Mn 2<br />

VGe<br />

Co 2<br />

MnAs<br />

Co<br />

Co<br />

2<br />

MnSb<br />

Rh 2<br />

FeSi<br />

2<br />

MnIn<br />

Rh Co 2<br />

FeAl<br />

2<br />

MnTl<br />

Co 2<br />

TiSn<br />

Co 2<br />

MnAl<br />

Co 2<br />

MnGa<br />

Rh 2<br />

MnAl<br />

Rh 2<br />

MnGa<br />

Ru 2<br />

MnSb<br />

Ni 2<br />

MnAl<br />

Rh 2<br />

MnGe<br />

Rh 2<br />

MnSn<br />

Rh 2<br />

MnPb<br />

−3<br />

20 21 22 23 24 25 26 27 28 29 30 31 32<br />

Number of valence electrons: Z t<br />

Galanakis et al., PRB 66, 012406 (2002)


Heusler Compounds: ~500<br />

Co 2 CrAl: 27e -<br />

Co 2 FeAl: 29e -


Result<br />

Large magneto resistance at room temperature and low fields<br />

• High T C<br />

• Doping<br />

Co 2 Cr 0.6 Fe 0.4 Al +<br />

15% Al 2 O 3<br />

H<br />

Block, et al. J. Solid State Chem. 176, 646 (2003)


Rational Design<br />

Half metallicity<br />

High density of states at E F<br />

Large MR at room temperature<br />

Intermag 2002: Co 2 Cr 0.4 Fe 0.6 Al<br />

• First TMR device (Inomata et al.) 19% at RT<br />

• TMR-device with MgO (Marukame et al. APL 90 (2007) 012508)<br />

109% TMR at RT ⇒ 88 % spin polarisation at 4K<br />

• Point contact 80% MR (Coey et al.)<br />

• Patent (Felser, Block, DE 101 08 760, H01 L43/08 )<br />

• Block, Felser, et al. J. Solid State Chem. 176, 646 (2003)


TMR-device with CCFA<br />

IrMn<br />

Co 90 Fe 10<br />

Ru<br />

Co 50 Fe 50<br />

MgO<br />

Co 2 Cr 0.6 Fe 0.4 Al<br />

5 nm<br />

(b)<br />

a CCFA<br />

= 0.5737 nm<br />

a CMG<br />

= 0.5743 nm<br />

a CMS<br />

= 0.5654 nm<br />

a MgO<br />

= 0.4212 nm<br />

Marukame et al. APL 90 2007 012508


Heusler Compounds: ~500<br />

Co 2 FeAl: 29e -<br />

Co 2 FeSi: 30e -


Further Candidates<br />

Heusler compounds:<br />

Co 2 YZ<br />

Halfmetallic<br />

ferromagnets<br />

High Curietemperatures<br />

Curie Temperature T c<br />

[K]<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Ni<br />

Co<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

Fe<br />

pure elements<br />

Co 2<br />

YZ<br />

Fit Co 2<br />

YZ<br />

Co 2<br />

FeSi this work<br />

Magnetic Moment per Atom m [μ B<br />

]<br />

Expected Curie temperature for Co 2 FeSi : > 1000K<br />

Fecher, J. Appl. Phys. 99 (2006) 08J106


Co 2 FeSi: Determination of Saturation Magnetization<br />

Magnetic Moment per unit cell m [μ B<br />

]<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

5K<br />

300K<br />

775K<br />

1.0%<br />

0.5%<br />

0.0%<br />

-0.5%<br />

-1.0%<br />

-2.0k 0.0 2.0k<br />

-3 -2 -1 0 1 2 3<br />

Magnetic Field H [10 6 A/m]<br />

SQUID magnetometry<br />

Magnetic moment in saturation:<br />

5.97μ B<br />

±0.1μ B<br />

at 5K<br />

Extrapolation to 0K :Slater-<br />

Pauling rule: 6 μ B<br />

Co 2 FeSi is a halfmetallic ferromagnet<br />

Wurmehl, et al ., Phys. Rev. B 72 (2005) 184434


Co 2 FeSi: Determination of the Curie-Temperature<br />

Lake Shore<br />

Specific Magnetization σ [Am 2 kg -1 ]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

σ(T)<br />

T C<br />

= 1100 ± 20 K<br />

μ 0<br />

H = 0.1T<br />

m = 47 μg<br />

1/χ(T)<br />

Θ = 1150 ± 50 K<br />

T C<br />

0<br />

0<br />

700 800 900 1000 1100 1200 1300<br />

Temperature T [K]<br />

800<br />

600<br />

400<br />

200<br />

Inverse Susceptibility 1/χ<br />

Curie temperature of Co 2 FeSi is (1100 ± 20) K<br />

Wurmehl, et al ., APL 88 (2006) 032502.


Curie Temperatures<br />

Curie Temperature T c<br />

[K]<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Ni<br />

Calculated T C<br />

[K]<br />

Co<br />

1200<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

Fe<br />

pure elements<br />

Co1000<br />

2<br />

YZ<br />

Fit Co 2<br />

YZ<br />

Co 2<br />

FeSi 800 this work<br />

Magnetic Moment per Atom<br />

600<br />

m [μ B<br />

]<br />

400<br />

200<br />

T calc<br />

= T meas<br />

Co 2<br />

VGa<br />

Co 2<br />

CrGa<br />

Co 2<br />

TiAl<br />

Co 2<br />

VSn<br />

Co 2<br />

MnAl<br />

Co 2<br />

FeSi<br />

Co 2<br />

MnSi<br />

Co 2<br />

MnSn<br />

0<br />

0 200 400 600 800 1000 1200<br />

Measured T C<br />

[K]<br />

Kübler et al., submitted PRB


Tuning the Fermi Energy Co 2 FeAl 1-x Si x<br />

Spin resolved density of states ρ(E) [eV -1 ]<br />

10<br />

5<br />

0<br />

5<br />

10<br />

10<br />

5<br />

0<br />

5<br />

10<br />

10<br />

5<br />

0<br />

5<br />

10<br />

10<br />

5<br />

0<br />

5<br />

10<br />

10<br />

5<br />

0<br />

5<br />

10<br />

Majority<br />

Minority<br />

-10 -5 0<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

Energy E − ε F<br />

[eV]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

(a)<br />

LSDA - GGA<br />

CBM<br />

VBM<br />

(b)<br />

LDA +U<br />

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00<br />

Si concentration x<br />

Energy E − ε F<br />

[eV]<br />

G. H. Fecher, C. Felser J. Phys. D 40 (2007) 1582


200<br />

Higher TMR using MgO Barrier<br />

MgO(100)/Cr(40)/CFAS(30)/MgO(2)/CFAS(5)/CoFe(3)/IrMn(10)/Ta(15)<br />

unit : nm<br />

TMR = 174%<br />

RT<br />

150<br />

Annealing at 500 °C<br />

TMR (%)<br />

100<br />

50<br />

0<br />

-1000 -500 0 500 1000<br />

H (Oe)<br />

K. Inomata APL 89 (2006) 252508


Co 2 MnSi: TMR and spin polarization<br />

Very high TMR ratios<br />

P lower<br />

=0.89 P upper<br />

=0.81<br />

Half metals<br />

Strong temperature<br />

dependence<br />

Sakuraba et al. APL 89 (2006) 052508


TMR at Room Temperature<br />

Co 2<br />

MnSi/Al 2<br />

O 3<br />

/Co 2<br />

MnSi,<br />

580 %@2K<br />

Sakuraba et al. APL 89 (2006) 052508


The Goal for Spinlogic 1000%<br />

TMR at 4 K with La 0.6 Sr 0.3 MnO 3<br />

A. Fert et al. APL<br />

82 (2003) 233.


Half Heusler Compounds: ~250<br />

Mn 2 MnGa:24e -


Mn 3 Ga<br />

Mn 2 MnGa<br />

Two magnetic sublattice<br />

•24 Valence electrons – 0 μ B<br />

•Mn at tetrahedral site – 4 μ B<br />

⇒Compensated ferrimagnet


Balke et al. APL 90 (2007) 152504<br />

Spin torque transfer application<br />

Mn 2 MnGa<br />

•Compensated ferrimagnet: 1μ B<br />

•Theoretical Spinpolarisation: 88%<br />

•Energy product: 52.5 kJ m -3 at 5K<br />

•Curie temperature: 730 K<br />

•Tetragonal


<strong>Spintronics</strong><br />

Summer school SFB 491<br />

Claudia Felser


Content<br />

• Concept<br />

• Materials<br />

• Methods<br />

• Vision


Half metallic Ferromagnets


Covalent: MgAgAs and InAs<br />

The half-Heusler (MgAgAs) crystal structure can be thought of as a<br />

stuffed zinc blende, with ionic Mg 2+ stuffing a more covalent<br />

(AgAs) 2- lattice. The (AgAs) 2- lattice is isostructural and<br />

isoelectronic with InAs.


Semiconducting Half Heusler Compounds<br />

Magic numbers: 8 and 18 valence-electrons<br />

8<br />

6<br />

4<br />

2<br />

0<br />

8<br />

LiMgN<br />

LiMgP<br />

LiMgAs<br />

LiMgBi<br />

CePtSb<br />

RENiSb<br />

REAuSn<br />

AgCdSb<br />

…<br />

DOS (states eV −1 cell −1 )<br />

0<br />

18<br />

12<br />

6<br />

0<br />

18<br />

12<br />

6<br />

0<br />

TiCoSb<br />

VCoSn<br />

NbCoSn<br />

VFeSb<br />

TiCoSb<br />

YNiSb<br />

Kandpal et al. J. Phys. D 39 (2006) 776


8-Electron Half-Heusler Compounds<br />

Si LiAlSi LiMgN<br />

(a) (b) (c)<br />

Van Vlechten<br />

(c) (d) (c)<br />

Kandpal et al. J. Phys. D 39 (2006) 776


Design of a Semiconductor<br />

Valence electrons<br />

Si 2<br />

2 x 4 = 8<br />

Ga<br />

As<br />

3 + 5 = 8<br />

ZnS → C1b<br />

9 + 4 + 5 = 18<br />

Co<br />

Ti<br />

Sb


Half Heusler Compounds: ~250<br />

CoTiSb:18e -


Design of a magnetic Semiconductor ?<br />

Valence electrons<br />

Si 2<br />

2 x 4 = 8<br />

Ga<br />

As<br />

3 + 5 = 8<br />

ZnS → C1b<br />

9 + 7 + 5 = 18 +3<br />

Co<br />

Mn<br />

Sb


XCoSb<br />

Design of a magnetic Semiconductor ?<br />

1. Obey Slater-Pauling rules<br />

2. Most of them half-metals<br />

3. Large exchange splitting


Design of a Magnetic Semiconductor<br />

Valence electrons<br />

Si<br />

2 x 4 = 8<br />

Ga<br />

Mn<br />

As<br />

3 + 5 = 8 + x<br />

Zinc-Blende → C1b<br />

9 + 4 + 5 = 18 ± x<br />

Co<br />

Ti<br />

Sb<br />

Fe


Spin injection into semiconductor<br />

Ferromagnetic Semiconductor<br />

with T C above room<br />

temperature is still a challenge


Semiconducting CoTiSb


For Spin Injection<br />

XMCD-Investigation on Fe<br />

DOS [eV -1 ]<br />

DOS [eV -1 ]<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

CoTiSb<br />

CoTi 0.9<br />

Fe 0.1<br />

Sb<br />

-8<br />

-12 -10 -8 -6 -4 -2 0 2 4<br />

Energy E [eV]<br />

Kroth et al. APL 89 202509 (2006 )


Half Heusler Compounds: ~250<br />

REPdSb:18e -<br />

+ 4f n


Stuffed Wurtzites: ZnS<br />

hexagonal semiconducting and half-metallic analogues<br />

half-Heusler (MgAgAs)<br />

Stuffed wurtzite (LiGaGe)


Structure<br />

MgAgAs – ABC<br />

LiGaGe – ABA<br />

Test


Half-Heusler – LiGaGe-Type<br />

Semiconducting Half-Heusler:<br />

GdNiSb - MnNiSb<br />

GdNiBi<br />

GdPtSb<br />

GdPtBi<br />

LiGaGe-Type :<br />

GdAgSn<br />

GdPdSb<br />

GdAuSn<br />

GdAgPb<br />

Gd 3+ - Mn 3+


Content<br />

• Concept<br />

• Materials<br />

• Methods<br />

• Devices<br />

• Vision


Synthesis<br />

computational<br />

design<br />

structure<br />

nano particles<br />

single crystals<br />

thin films<br />

ceramics<br />

spectroscopy


Methods: Single crystals<br />

Single crystal disc<br />

-cut<br />

- polished<br />

Arc-melter<br />

with Single Crystal Puller<br />

Co 2 FeSi single crystal


Methods: Sample Preparation<br />

Cutting<br />

Polishing<br />

Sample as-cast<br />

Etching<br />

CEMS<br />

Target production<br />

Relative intensity I / I 0<br />

1.02<br />

1.01<br />

1.00<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Doppler velocity v [mms -1 ]


Structural Characterisation<br />

_<br />

Im3m Pm3m Fm3m<br />

Structural characterisation<br />

by XRD not sufficient.


Heusler and the Periodic Table


Resonant XRD<br />

1.6<br />

_<br />

1<br />

(400)<br />

(422)<br />

(220)<br />

0.1<br />

(111)<br />

(200)<br />

(311)<br />

(222)<br />

(331)<br />

(420)<br />

0.01<br />

Co 2<br />

FeGa<br />

hν = 7050 eV<br />

Relative intensity I / Imax<br />

1.4<br />

1.2<br />

1.0<br />

(100)<br />

(110)<br />

Co 2<br />

FeZ<br />

Z =<br />

Al (B2)<br />

hν= 7050eV<br />

Co 2 FeGa<br />

0.8<br />

0.6<br />

0.001<br />

1<br />

0.1<br />

0.01<br />

30° 40° 50° 60° 70° 80° 90° 100°<br />

Scattering angle 2θ<br />

Co 2<br />

FeGe<br />

hν = 7050 eV<br />

Relative intensity I / Imax<br />

(111)<br />

(200)<br />

(311)<br />

(222)<br />

(331)<br />

(420)<br />

(400)<br />

(422)<br />

(220)<br />

0.4<br />

0.2<br />

0.0<br />

(111)<br />

(200)<br />

(220)<br />

Si (L2 1<br />

)<br />

Ga (?)<br />

Ge (?)<br />

12° 15° 18° 21° 24° 27° 30° 33° 36°<br />

Scattering angle 2θ<br />

Co 2 FeGe<br />

30° 40° 50° 60° 70° 80° 90° 100°<br />

Scattering angle 2θ<br />

Relative intensity I / Imax


EXAFS Investigation<br />

Fe spectra<br />

Short Fe-Co distance<br />

Co spectra<br />

Short Co-Fe distance<br />

Short Co-Si distance<br />

Co 2 FeSi crystallises in L2 1 structure<br />

B. Balke et al. APL, accepted (2007)


Wurmehl et al. submitted APL<br />

55<br />

Mn-NMR: Co 2 Mn 0.5 Fe 0.5 Si<br />

n=0 n=1 n=12<br />

n=6<br />

…<br />

…<br />

Yellow: Mn<br />

Black: Fe<br />

Random distribution of Mn/Fe<br />

in third coordination shell<br />

of 55 Mn. Each satellite is<br />

attributed to certain numbers<br />

of Fe atoms.<br />

x= 0.114<br />

x= 0.899


Mößbauer Characterisation Co 2 Cr 0.6 Fe 0.4 Al<br />

Quelle Probe Detektor<br />

~ 0.1 μ m<br />

~ 1 μm<br />

γ<br />

γ<br />

e -<br />

Res. Transmission, %<br />

100.00<br />

99.50<br />

99.00<br />

98.50<br />

98.00<br />

-10 -5 0 5 10<br />

4<br />

a<br />

Detektor<br />

X, γ<br />

Transmissionsgeometrie<br />

3<br />

2<br />

T = 300 K<br />

b<br />

Rückstreugeometrie<br />

a) Mößbauer spectroscopy in transmission<br />

b) CEMS 57 Fe Mößbauer spectroscopy sputter<br />

targetsCo 2 Cr 0.6 Fe 0.4 Al at RT<br />

c) CEMS at 93 K<br />

Res. Emission, %<br />

0 1<br />

1 2 3<br />

-10 -5<br />

T = 93 K<br />

0<br />

5<br />

c<br />

10<br />

0<br />

-10<br />

-5<br />

0<br />

5<br />

v, mms -1<br />

10


High Energy Photoemission<br />

Hard X-ray photoemission: bulk sensitive !<br />

Electron mean free path (Angstrom)<br />

100<br />

10<br />

" Universal " curve :<br />

SXPES<br />

Region for standard photoemission<br />

Measured<br />

Extrapolated<br />

HAXPES<br />

100<br />

10<br />

1<br />

1 10 100 1000 10000<br />

Electron kinetic energy (eV)<br />

1


New High Energy Spectrometer in Mainz<br />

SPECS PHOIBOS 225 HV (delivered June 2006)<br />

Energy up to 15keV<br />

2D detector<br />

Angular resolved PES<br />

Mott detector<br />

Spin resolved PES


High Energy Photoemission


Tuning the Fermi Energy<br />

Kandpal et al., Phys. Rev. B 73 (2006) 094422


High Energy Photoemission: HAXPES<br />

True bulk sensitivity (≈ 40 Heusler cells)<br />

Co 2<br />

MnSi Co 2<br />

Mn 0.5<br />

Fe 0.5<br />

Si Co 2<br />

FeSi<br />

15<br />

10<br />

hν = 8 keV<br />

5<br />

Intensity I [kcts]<br />

0<br />

-10 -5 0<br />

4<br />

3<br />

2<br />

-10 -5 0 -10 -5 0<br />

2<br />

3<br />

2<br />

1<br />

High resolution<br />

at ε F<br />

(≈100 meV)<br />

1<br />

1<br />

-1.5 -1.0 -0.5 0.0<br />

-1.5 -1.0 -0.5 0.0<br />

Energy E − ε F<br />

[eV]<br />

-1.5 -1.0 -0.5 0.0<br />

Balke et al. PRB 74, 104405 (2006)<br />

Fecher et al. J. Phys. D 40 1576 (2007)


HAXPES: Thin films<br />

Electron mean free path λ [Å]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Co 2<br />

MnSi<br />

Experiment<br />

Calculated<br />

0<br />

2000 2500 3000 3500 4000 4500 5000 5500 6000<br />

Electron energy E kin<br />

[eV]<br />

1nm Pt<br />

1 - 10 nm<br />

Co 2<br />

MnSi<br />

First Results from<br />

BESSY KMC-1<br />

Electron Mean Free Path<br />

Ta


HAXPES: CoTi 1-x Fe x Sb<br />

Normalised intensity I / I max<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

hv = 2.5keV<br />

CoTi 0.9<br />

Fe 0.1<br />

Sb<br />

CoTiSb<br />

2<br />

CoTi 0.9<br />

Fe 0.1<br />

Sb<br />

0.0<br />

-14 -12 -10 -8 -6 -4 -2 0 2<br />

Energy E − ε F<br />

[eV]<br />

DOS [eV -1 ]<br />

0<br />

-4 -2 0 2<br />

Energy E [eV]<br />

Fecher et al. JESRP accepted (2007)


1905<br />

1983<br />

2001<br />

Functions of Heusler Compounds<br />

• Magnetic material: Cu 2 MnAl<br />

• Halfmetallic ferromagnet: NiMnSb<br />

• Magneto-optical: PtMnSb<br />

• Magneto-mechanic: Ni 2 MnGa<br />

• Superconductor: Pd 2 YSn<br />

Semiconductor: CoTiSb<br />

• Heavy fermion:<br />

Fe 2 VAl<br />

• Li-conductor:<br />

LiMnSb<br />

• Magneto-electronic: Co 2 FeSi<br />

• Thermo-electric: TiNiSn<br />

• Magneto-caloric: CoMnSb:Nb


thermoelectrica<br />

composite<br />

4MBit MRAM<br />

(Motorola 2003)<br />

material<br />

power<br />

generation<br />

cooling<br />

Ni 2<br />

ZrGa<br />

Co 2<br />

ZrGa<br />

Ni 2<br />

ZrGa<br />

solar cells<br />

multi-ferroics<br />

magneto electronics


Heusler Compounds: ~500<br />

Ni 2 ZrGa:27e -


New Superconductors<br />

For superconductor-ferromagnet devices:<br />

Ni 2 ZrGa – Co 2 ZrGa<br />

Keitzer et al. Nature 439 (2006) 825<br />

Winterlik et al. In preparation


Multiferroic Materials: Co 2 XY and BaTiO 3<br />

Ferromagnetic pillars in<br />

ferroelectric matrix<br />

Multiferroic tunnel junctions<br />

M<br />

M<br />

P<br />

P<br />

M<br />

a few nm<br />

Fully polarized<br />

BaTiO 3<br />

Co 2 MnSi<br />

Zheng et al., Science 303, 661 (2004)<br />

Picozzi, private communication


Hybrid materials<br />

Spin injection into organic semiconductor<br />

Magnetic Nanoparticle<br />

Hybrid materials<br />

•Heusler<br />

•Organic or biological materials<br />

Co 2<br />

FeSi<br />

OSC<br />

GMR in π-conjugated organic<br />

semiconductor barrier<br />

N<br />

ΔR/R of 40% at 11K<br />

Xiong et al: Nature 427, 821 (2004)


X 2 YZ<br />

XYXZ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!