29.10.2012 Views

Instrumented Indentation - CSM Instruments

Instrumented Indentation - CSM Instruments

Instrumented Indentation - CSM Instruments

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Advanced mechanical surface testing by<br />

Nanoindentation<br />

Technical Workshop<br />

Brescia, 17.04.2012<br />

Fanny Ecarla


Agenda<br />

Introduction –<br />

Classical Hardness vs<br />

Principle of <strong>Instrumented</strong> <strong>Indentation</strong><br />

<strong>Instrumented</strong> <strong>Indentation</strong><br />

Advance measuring modes, analysis and challenges of<br />

<strong>Instrumented</strong> <strong>Indentation</strong><br />

Key features of <strong>CSM</strong> <strong>Indentation</strong> Tester – Surface Top<br />

Referencing


Classical hardness measurement<br />

//// Drawbacks<br />

> All classical hardness measurement are<br />

based on manual optical measurements<br />

> No automatic calculation of hardness from<br />

several indentations<br />

> At low loads resolution limits of the optical<br />

microscope are reached (imprint is too small<br />

for precise diagonal measurement)<br />

> Minimum penetration depths �1 to 2�m


Principle of <strong>Instrumented</strong> <strong>Indentation</strong>


Why the Nanoindentation?<br />

> On a surface covered by thin layers, the<br />

maximum depth of the indentation must be<br />

lower than 10% of total depth of the<br />

covering<br />

substrate.<br />

to avoid influence on the<br />

Film depth, h film<br />

Maximum penetration, h m<br />

Elastic distortion<br />

h<br />

h<br />

m �<br />

film<br />

10%<br />

> High resolution positioning:<br />

- Small volume testing<br />

- High positioning accuracy<br />

10�m


What is the <strong>Instrumented</strong> <strong>Indentation</strong><br />

> Instrument which provides the ability to measure the indenter depth<br />

penetration, h, under the applied force, F, throughout the testing<br />

cycle.<br />

> It is capable of measuring both the plastic and elastic deformation of<br />

the material under test.<br />

F<br />

N<br />

Sample<br />

XY Table<br />

Load Actuator<br />

(coil/magnet)<br />

Displacement Sensor<br />

(capacitive gauge or LVDT)<br />

Reference


<strong>Instrumented</strong> indentation: not only hardness<br />

//// Information revealed from Nanoindentation Testing:<br />

> Hardness (instrumented, recalculated Vickers hardness)<br />

> Elastic modulus<br />

> Storage & loss modulus (polymers)<br />

- Depth profiles (hardness, Elastic modulus, storage & loss modulus)<br />

> Elastic/plastic energy ratio (measure of elasticity)<br />

> Fracture toughness (brittle materials)<br />

> Creep<br />

> Stress-strain curves (analogy to tension tests)<br />

> …etc.


<strong>Indentation</strong> Tips<br />

Berkovich (142.3°)<br />

Conical (R < 3 µm)<br />

Vickers (136°)<br />

Cube Corner (90°)<br />

Conical (R > 3 µm)


Pyramid indenters<br />

Projected contact area For pyramidal indenters<br />

A p<br />

(vickers) = Ap (berkovich)<br />

Same h


Load-Displacement Data<br />

Comparison of elastic, perfectly plastic, and elastic-plastic<br />

contact characteristics<br />

Stress-Strain<br />

curves<br />

<strong>Indentation</strong><br />

curves<br />

<strong>Indentation</strong><br />

prints<br />

�<br />

F<br />

Elastic<br />

�<br />

h<br />

�<br />

F<br />

Plastic Elastic - Plastic<br />

�<br />

h<br />

�<br />

F<br />

�<br />

h


Calculation of Hardness (H IT )<br />

The maximum applied force Fm is obtained by the load and unload<br />

curves<br />

The projected contact area is established by the contact point.<br />

Hardness �<br />

H �<br />

IT<br />

Fm<br />

Ap<br />

F m<br />

Applied Load<br />

Depth


Calculation of Elastic Modulus (E IT )<br />

> Similar procedure as for hardness calculation:<br />

1. fit of the loading/unloading curve<br />

2. determination of the slope S<br />

3. determination of the contact depth h c (the depth<br />

corresponding to contact of the material with the<br />

indenter, not the maximum depth)<br />

4. calculation of projected contact area A p at contact<br />

depth<br />

5. calculation of reduced modulus E*<br />

6. knowing Elastic modulus of the indenter<br />

(diamond) we can calculate Elastic modulus of the<br />

coating EIT Reduced modulus<br />

*<br />

E<br />

IT<br />

�<br />

π<br />

2<br />

S<br />

A p<br />

S stiffness<br />

Ap projected contact area<br />

Eit, � Elastic modulus/Poisson’s ratio of the coating<br />

Ei, �i Elastic modulus/Poisson’s ratio of the indenter<br />

F m<br />

Load, F<br />

Depth<br />

, h<br />

E<br />

it<br />

*<br />

it<br />

h<br />

p<br />

h<br />

r<br />

hs =<br />

�.(hm–hr h<br />

2<br />

1��<br />

�<br />

2<br />

1 1��<br />

� i<br />

E E<br />

c<br />

S<br />

Elastic modulus (E IT )<br />

i<br />

)<br />

h<br />

m


Experimental procedure<br />

F m<br />

Measure F m and h t<br />

Calculate<br />

Hardness<br />

Calculate<br />

Reduced<br />

Modulus<br />

E<br />

*<br />

IT<br />

h t<br />

F<br />

HIT �<br />

A<br />

�<br />

�<br />

2<br />

m<br />

p<br />

S<br />

A<br />

p<br />

Calculate<br />

Modulus<br />

F m<br />

1<br />

E<br />

*<br />

IT<br />

A<br />

p<br />

�<br />

0<br />

2<br />

c<br />

1<br />

2<br />

h<br />

c<br />

�<br />

h<br />

t<br />

Fm<br />

� �<br />

S<br />

Calculate<br />

Contact Depth<br />

� C h � C hc<br />

� C hc<br />

� C hc<br />

Calculate Projected Area of Contact<br />

( 1<br />

2<br />

� � ) ( 1 � �<br />

�<br />

E<br />

E IT<br />

S<br />

ht Calculate Stiffness<br />

i<br />

2<br />

i<br />

)<br />

1<br />

2<br />

3<br />

1<br />

4<br />

� ...


Advanced modes and analysis


<strong>Indentation</strong> Software<br />

Load<br />

Type of test<br />

Standard Multicycle CMC Sinus<br />

Time<br />

Type of array<br />

Load<br />

Time<br />

Simple Line Matrix<br />

Load<br />

Time<br />

Load<br />

Time


<strong>Indentation</strong> Software<br />

Standard test<br />

One <strong>Indentation</strong><br />

One measure of H IT & E IT<br />

Load<br />

Time


<strong>Indentation</strong> Software<br />

CMC (Continuous Multi Cycle)<br />

Each cycle gives H IT and E IT<br />

Load<br />

Time<br />

Same position<br />

Increasing load at each cycle


<strong>Indentation</strong> Software<br />

Sinus (DMA)<br />

Load<br />

Time


Dynamic Mechanical Analysis:<br />

Sinus Mode<br />

Force<br />

A small amplitude force oscillation is superimposed onto the<br />

applied load signal and the resultant displacement amplitude<br />

measured. This method is very useful in revealing information<br />

about storage and loss modulus.<br />

Time<br />

Force<br />

Time


Dynamic Mechanical Analysis: Sinus Mode<br />

The viscous character of the material introduces a phase angle<br />

φ between the force and displacement signals:<br />

ho<br />

Force<br />

�<br />

Time<br />

ho<br />

Displacement


Visual Matrix


Visual <strong>Indentation</strong><br />

Direct calculation of hardness from the loading / unloading curve:<br />

possibility of automated measurements<br />

(matrix/advanced visual matrix)<br />

No need for optical measurement of dimension of the imprint<br />

Directly measured penetration depth: to avoid influence by the<br />

substrate


Fracture Toughness<br />

Pure Silicon<br />

K<br />

1<br />

�<br />

� � E<br />

� �<br />

� �<br />

�<br />

� � H<br />

IT<br />

IT<br />

�<br />

�<br />

�<br />

�<br />

1/<br />

2<br />

�<br />

�<br />

� P<br />

�<br />

��<br />

��<br />

c<br />

3<br />

2<br />

�<br />

�<br />

�<br />

�<br />

TiN on 440C steel<br />

c


Creep<br />

><br />

><br />

Force, F [mN]<br />

In an indentation test, creep often manifests itself as a bowing out<br />

or “nose” in the unloading portion of the force-displacement curve.<br />

For such material, when the force is held during a certain time at<br />

the maximum force, the indenter continues to penetrate.<br />

1.2<br />

0.8<br />

0.4<br />

0<br />

Hold period of 120s<br />

No hold period<br />

0 200 400 600<br />

<strong>Indentation</strong> depth, h [nm]<br />

Nose<br />

PMMA 1mN force<br />

Loading rate 2mN/min


Influence of Surface Roughness


Influence of Surface Roughness<br />

><br />

><br />

Surface roughness is extremely important in <strong>Instrumented</strong><br />

<strong>Indentation</strong> Testing because mechanical properties of the<br />

tested material are calculated on the assumption that the<br />

sample surface is flat.<br />

Because the IIT technique uses the measured indentation<br />

depth to estimate the residual contact area and subsequently<br />

calculate the hardness, the surface roughness can have a<br />

significant influence on the resultant values.


><br />

//// Influence of Surface Roughness<br />

When the indenter comes into contact with a peak, the non-uniform<br />

contact increases the localized stress at the points of contact,<br />

deforming the material to a greater depth at relatively low loads.<br />

This can result in a greater penetration depth and lower calculated<br />

hardness.<br />

When the indenter comes into contact with a valley, the true<br />

contact area is underestimated and consequently, the calculated<br />

hardness is overestimated.


Influence of Surface Roughness<br />

Ra=5nm<br />

Ra=167nm


Influence of Surface Roughness<br />

><br />

><br />

It is imperative to know the condition of a surface before<br />

proceeding with an instrumented indentation test.<br />

The International Standard ISO 14577-4 stipulated that the Ra<br />

value should be less than 5% of the maximum penetration<br />

depth.


Influence of Surface Roughness


Nanoindentation in Liquid


Nanoindentation in Liquid<br />

Simple NHT modification for in-situ liquid testing<br />

All NHT technical specifications are maintained


Nanoindentation in Liquid<br />

Standard NHT<br />

Modified NHT<br />

NOTE: The holes in the extension allow liquid to circulate around indenter without any<br />

risk of entering the head


Key Features of <strong>CSM</strong> <strong>Indentation</strong> Testers<br />

Top Surface Referencing


<strong>Instrumented</strong> <strong>Indentation</strong><br />

General Principle<br />

F N<br />

Sample<br />

XY Tables<br />

Load Actuator<br />

(coil/magnet or<br />

Electrostatic)<br />

Displacement Sensor<br />

(capacitive gauge or LVDT)


<strong>Instrumented</strong> <strong>Indentation</strong><br />

Thermal drift<br />

Depth variation


<strong>Instrumented</strong> <strong>Indentation</strong><br />

Table play, sample drift or compression<br />

Depth variation


<strong>CSM</strong> <strong>Indentation</strong>: <strong>Instrumented</strong> <strong>Indentation</strong><br />

<strong>CSM</strong> Principle<br />

F N<br />

Sample<br />

XY Tables<br />

Load Actuator<br />

(coil/magnet)<br />

Displacement Sensor<br />

(capacitive gauge or LVDT)<br />

Reference (ring or fork)


<strong>CSM</strong> Principle<br />

Thermal drift<br />

Depth stable


<strong>CSM</strong> Principle<br />

Table play, sample drift or compression<br />

Depth stable


Top Referencing<br />

Effective compliant material is of the order of a few millimeters in<br />

length, between the surface and the depth sensor<br />

6 mm<br />

Sample


Top Referencing<br />

The reduction in the length of the compliant material between<br />

the surface and the depth sensor leads to greater accuracy in<br />

the measurement.<br />

Sample


<strong>CSM</strong> Nanoindentation<br />

Unique referencing technique by <strong>CSM</strong> <strong>Instruments</strong><br />

> Unique thermal stability<br />

> High Throughput<br />

> Reliability<br />

> Functionalities<br />

> The most easy-to-use nanoindentation system


Ultra Nanoindentation Tester


FN<br />

Ultra Nanoindentation Tester (UNHT)<br />

Feedback loop<br />

on force sensor<br />

Load-depth curve<br />

Dz<br />

Indenter Loading Unloading Contact<br />

A1<br />

I<br />

sample<br />

Stage<br />

A2<br />

R<br />

A1 & A2:<br />

piezoelectric<br />

actuators<br />

Reference contact<br />

Motorized<br />

Feedback loop<br />

for accurate low<br />

force sensing<br />

Z table


<strong>Indentation</strong> depth, h [nm]<br />

UNHT Stability During Measurement<br />

h [nm]<br />

91<br />

90<br />

89<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

33 83 133 183 233 283 333<br />

Time, t [s]<br />

0 50 100 150 200 250 300 350<br />

Time, t [s]<br />

Fused Silica 1mN force<br />

1.5<br />

1.2<br />

0.9<br />

0.6<br />

0.3<br />

0<br />

Depth variation<br />

less than 1nm<br />

over 5 minutes<br />

Force, F [mN]


Force (µN)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

5 nm indentation on DLC film<br />

Noise floor less than 0.1 nm!<br />

Single Indent<br />

0 1 2 3 4 5 6<br />

Pentration Depth (nm)


Thank you for your attention

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!