29.10.2012 Views

Instrumented Indentation - CSM Instruments

Instrumented Indentation - CSM Instruments

Instrumented Indentation - CSM Instruments

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Advanced mechanical surface testing by<br />

Nanoindentation<br />

Technical Workshop<br />

Brescia, 17.04.2012<br />

Fanny Ecarla


Agenda<br />

Introduction –<br />

Classical Hardness vs<br />

Principle of <strong>Instrumented</strong> <strong>Indentation</strong><br />

<strong>Instrumented</strong> <strong>Indentation</strong><br />

Advance measuring modes, analysis and challenges of<br />

<strong>Instrumented</strong> <strong>Indentation</strong><br />

Key features of <strong>CSM</strong> <strong>Indentation</strong> Tester – Surface Top<br />

Referencing


Classical hardness measurement<br />

//// Drawbacks<br />

> All classical hardness measurement are<br />

based on manual optical measurements<br />

> No automatic calculation of hardness from<br />

several indentations<br />

> At low loads resolution limits of the optical<br />

microscope are reached (imprint is too small<br />

for precise diagonal measurement)<br />

> Minimum penetration depths �1 to 2�m


Principle of <strong>Instrumented</strong> <strong>Indentation</strong>


Why the Nanoindentation?<br />

> On a surface covered by thin layers, the<br />

maximum depth of the indentation must be<br />

lower than 10% of total depth of the<br />

covering<br />

substrate.<br />

to avoid influence on the<br />

Film depth, h film<br />

Maximum penetration, h m<br />

Elastic distortion<br />

h<br />

h<br />

m �<br />

film<br />

10%<br />

> High resolution positioning:<br />

- Small volume testing<br />

- High positioning accuracy<br />

10�m


What is the <strong>Instrumented</strong> <strong>Indentation</strong><br />

> Instrument which provides the ability to measure the indenter depth<br />

penetration, h, under the applied force, F, throughout the testing<br />

cycle.<br />

> It is capable of measuring both the plastic and elastic deformation of<br />

the material under test.<br />

F<br />

N<br />

Sample<br />

XY Table<br />

Load Actuator<br />

(coil/magnet)<br />

Displacement Sensor<br />

(capacitive gauge or LVDT)<br />

Reference


<strong>Instrumented</strong> indentation: not only hardness<br />

//// Information revealed from Nanoindentation Testing:<br />

> Hardness (instrumented, recalculated Vickers hardness)<br />

> Elastic modulus<br />

> Storage & loss modulus (polymers)<br />

- Depth profiles (hardness, Elastic modulus, storage & loss modulus)<br />

> Elastic/plastic energy ratio (measure of elasticity)<br />

> Fracture toughness (brittle materials)<br />

> Creep<br />

> Stress-strain curves (analogy to tension tests)<br />

> …etc.


<strong>Indentation</strong> Tips<br />

Berkovich (142.3°)<br />

Conical (R < 3 µm)<br />

Vickers (136°)<br />

Cube Corner (90°)<br />

Conical (R > 3 µm)


Pyramid indenters<br />

Projected contact area For pyramidal indenters<br />

A p<br />

(vickers) = Ap (berkovich)<br />

Same h


Load-Displacement Data<br />

Comparison of elastic, perfectly plastic, and elastic-plastic<br />

contact characteristics<br />

Stress-Strain<br />

curves<br />

<strong>Indentation</strong><br />

curves<br />

<strong>Indentation</strong><br />

prints<br />

�<br />

F<br />

Elastic<br />

�<br />

h<br />

�<br />

F<br />

Plastic Elastic - Plastic<br />

�<br />

h<br />

�<br />

F<br />

�<br />

h


Calculation of Hardness (H IT )<br />

The maximum applied force Fm is obtained by the load and unload<br />

curves<br />

The projected contact area is established by the contact point.<br />

Hardness �<br />

H �<br />

IT<br />

Fm<br />

Ap<br />

F m<br />

Applied Load<br />

Depth


Calculation of Elastic Modulus (E IT )<br />

> Similar procedure as for hardness calculation:<br />

1. fit of the loading/unloading curve<br />

2. determination of the slope S<br />

3. determination of the contact depth h c (the depth<br />

corresponding to contact of the material with the<br />

indenter, not the maximum depth)<br />

4. calculation of projected contact area A p at contact<br />

depth<br />

5. calculation of reduced modulus E*<br />

6. knowing Elastic modulus of the indenter<br />

(diamond) we can calculate Elastic modulus of the<br />

coating EIT Reduced modulus<br />

*<br />

E<br />

IT<br />

�<br />

π<br />

2<br />

S<br />

A p<br />

S stiffness<br />

Ap projected contact area<br />

Eit, � Elastic modulus/Poisson’s ratio of the coating<br />

Ei, �i Elastic modulus/Poisson’s ratio of the indenter<br />

F m<br />

Load, F<br />

Depth<br />

, h<br />

E<br />

it<br />

*<br />

it<br />

h<br />

p<br />

h<br />

r<br />

hs =<br />

�.(hm–hr h<br />

2<br />

1��<br />

�<br />

2<br />

1 1��<br />

� i<br />

E E<br />

c<br />

S<br />

Elastic modulus (E IT )<br />

i<br />

)<br />

h<br />

m


Experimental procedure<br />

F m<br />

Measure F m and h t<br />

Calculate<br />

Hardness<br />

Calculate<br />

Reduced<br />

Modulus<br />

E<br />

*<br />

IT<br />

h t<br />

F<br />

HIT �<br />

A<br />

�<br />

�<br />

2<br />

m<br />

p<br />

S<br />

A<br />

p<br />

Calculate<br />

Modulus<br />

F m<br />

1<br />

E<br />

*<br />

IT<br />

A<br />

p<br />

�<br />

0<br />

2<br />

c<br />

1<br />

2<br />

h<br />

c<br />

�<br />

h<br />

t<br />

Fm<br />

� �<br />

S<br />

Calculate<br />

Contact Depth<br />

� C h � C hc<br />

� C hc<br />

� C hc<br />

Calculate Projected Area of Contact<br />

( 1<br />

2<br />

� � ) ( 1 � �<br />

�<br />

E<br />

E IT<br />

S<br />

ht Calculate Stiffness<br />

i<br />

2<br />

i<br />

)<br />

1<br />

2<br />

3<br />

1<br />

4<br />

� ...


Advanced modes and analysis


<strong>Indentation</strong> Software<br />

Load<br />

Type of test<br />

Standard Multicycle CMC Sinus<br />

Time<br />

Type of array<br />

Load<br />

Time<br />

Simple Line Matrix<br />

Load<br />

Time<br />

Load<br />

Time


<strong>Indentation</strong> Software<br />

Standard test<br />

One <strong>Indentation</strong><br />

One measure of H IT & E IT<br />

Load<br />

Time


<strong>Indentation</strong> Software<br />

CMC (Continuous Multi Cycle)<br />

Each cycle gives H IT and E IT<br />

Load<br />

Time<br />

Same position<br />

Increasing load at each cycle


<strong>Indentation</strong> Software<br />

Sinus (DMA)<br />

Load<br />

Time


Dynamic Mechanical Analysis:<br />

Sinus Mode<br />

Force<br />

A small amplitude force oscillation is superimposed onto the<br />

applied load signal and the resultant displacement amplitude<br />

measured. This method is very useful in revealing information<br />

about storage and loss modulus.<br />

Time<br />

Force<br />

Time


Dynamic Mechanical Analysis: Sinus Mode<br />

The viscous character of the material introduces a phase angle<br />

φ between the force and displacement signals:<br />

ho<br />

Force<br />

�<br />

Time<br />

ho<br />

Displacement


Visual Matrix


Visual <strong>Indentation</strong><br />

Direct calculation of hardness from the loading / unloading curve:<br />

possibility of automated measurements<br />

(matrix/advanced visual matrix)<br />

No need for optical measurement of dimension of the imprint<br />

Directly measured penetration depth: to avoid influence by the<br />

substrate


Fracture Toughness<br />

Pure Silicon<br />

K<br />

1<br />

�<br />

� � E<br />

� �<br />

� �<br />

�<br />

� � H<br />

IT<br />

IT<br />

�<br />

�<br />

�<br />

�<br />

1/<br />

2<br />

�<br />

�<br />

� P<br />

�<br />

��<br />

��<br />

c<br />

3<br />

2<br />

�<br />

�<br />

�<br />

�<br />

TiN on 440C steel<br />

c


Creep<br />

><br />

><br />

Force, F [mN]<br />

In an indentation test, creep often manifests itself as a bowing out<br />

or “nose” in the unloading portion of the force-displacement curve.<br />

For such material, when the force is held during a certain time at<br />

the maximum force, the indenter continues to penetrate.<br />

1.2<br />

0.8<br />

0.4<br />

0<br />

Hold period of 120s<br />

No hold period<br />

0 200 400 600<br />

<strong>Indentation</strong> depth, h [nm]<br />

Nose<br />

PMMA 1mN force<br />

Loading rate 2mN/min


Influence of Surface Roughness


Influence of Surface Roughness<br />

><br />

><br />

Surface roughness is extremely important in <strong>Instrumented</strong><br />

<strong>Indentation</strong> Testing because mechanical properties of the<br />

tested material are calculated on the assumption that the<br />

sample surface is flat.<br />

Because the IIT technique uses the measured indentation<br />

depth to estimate the residual contact area and subsequently<br />

calculate the hardness, the surface roughness can have a<br />

significant influence on the resultant values.


><br />

//// Influence of Surface Roughness<br />

When the indenter comes into contact with a peak, the non-uniform<br />

contact increases the localized stress at the points of contact,<br />

deforming the material to a greater depth at relatively low loads.<br />

This can result in a greater penetration depth and lower calculated<br />

hardness.<br />

When the indenter comes into contact with a valley, the true<br />

contact area is underestimated and consequently, the calculated<br />

hardness is overestimated.


Influence of Surface Roughness<br />

Ra=5nm<br />

Ra=167nm


Influence of Surface Roughness<br />

><br />

><br />

It is imperative to know the condition of a surface before<br />

proceeding with an instrumented indentation test.<br />

The International Standard ISO 14577-4 stipulated that the Ra<br />

value should be less than 5% of the maximum penetration<br />

depth.


Influence of Surface Roughness


Nanoindentation in Liquid


Nanoindentation in Liquid<br />

Simple NHT modification for in-situ liquid testing<br />

All NHT technical specifications are maintained


Nanoindentation in Liquid<br />

Standard NHT<br />

Modified NHT<br />

NOTE: The holes in the extension allow liquid to circulate around indenter without any<br />

risk of entering the head


Key Features of <strong>CSM</strong> <strong>Indentation</strong> Testers<br />

Top Surface Referencing


<strong>Instrumented</strong> <strong>Indentation</strong><br />

General Principle<br />

F N<br />

Sample<br />

XY Tables<br />

Load Actuator<br />

(coil/magnet or<br />

Electrostatic)<br />

Displacement Sensor<br />

(capacitive gauge or LVDT)


<strong>Instrumented</strong> <strong>Indentation</strong><br />

Thermal drift<br />

Depth variation


<strong>Instrumented</strong> <strong>Indentation</strong><br />

Table play, sample drift or compression<br />

Depth variation


<strong>CSM</strong> <strong>Indentation</strong>: <strong>Instrumented</strong> <strong>Indentation</strong><br />

<strong>CSM</strong> Principle<br />

F N<br />

Sample<br />

XY Tables<br />

Load Actuator<br />

(coil/magnet)<br />

Displacement Sensor<br />

(capacitive gauge or LVDT)<br />

Reference (ring or fork)


<strong>CSM</strong> Principle<br />

Thermal drift<br />

Depth stable


<strong>CSM</strong> Principle<br />

Table play, sample drift or compression<br />

Depth stable


Top Referencing<br />

Effective compliant material is of the order of a few millimeters in<br />

length, between the surface and the depth sensor<br />

6 mm<br />

Sample


Top Referencing<br />

The reduction in the length of the compliant material between<br />

the surface and the depth sensor leads to greater accuracy in<br />

the measurement.<br />

Sample


<strong>CSM</strong> Nanoindentation<br />

Unique referencing technique by <strong>CSM</strong> <strong>Instruments</strong><br />

> Unique thermal stability<br />

> High Throughput<br />

> Reliability<br />

> Functionalities<br />

> The most easy-to-use nanoindentation system


Ultra Nanoindentation Tester


FN<br />

Ultra Nanoindentation Tester (UNHT)<br />

Feedback loop<br />

on force sensor<br />

Load-depth curve<br />

Dz<br />

Indenter Loading Unloading Contact<br />

A1<br />

I<br />

sample<br />

Stage<br />

A2<br />

R<br />

A1 & A2:<br />

piezoelectric<br />

actuators<br />

Reference contact<br />

Motorized<br />

Feedback loop<br />

for accurate low<br />

force sensing<br />

Z table


<strong>Indentation</strong> depth, h [nm]<br />

UNHT Stability During Measurement<br />

h [nm]<br />

91<br />

90<br />

89<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

33 83 133 183 233 283 333<br />

Time, t [s]<br />

0 50 100 150 200 250 300 350<br />

Time, t [s]<br />

Fused Silica 1mN force<br />

1.5<br />

1.2<br />

0.9<br />

0.6<br />

0.3<br />

0<br />

Depth variation<br />

less than 1nm<br />

over 5 minutes<br />

Force, F [mN]


Force (µN)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

5 nm indentation on DLC film<br />

Noise floor less than 0.1 nm!<br />

Single Indent<br />

0 1 2 3 4 5 6<br />

Pentration Depth (nm)


Thank you for your attention

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!