20.02.2014 Views

Small-Angle Neutron Scattering - Kfki

Small-Angle Neutron Scattering - Kfki

Small-Angle Neutron Scattering - Kfki

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Small</strong>-<strong>Angle</strong> <strong>Neutron</strong> <strong>Scattering</strong><br />

Mitglied in der Helmholtz-Gemeinschaft<br />

1<br />

Jülich Centre for <strong>Neutron</strong> Science<br />

Forschungszentrum Jülich GmbH<br />

2<br />

Frank Laboratory of <strong>Neutron</strong> Physics<br />

Joint Institute for Nuclear Research<br />

29. May 2013 | Artem Feoktystov 1 , Mikhail Avdeev 2


Mitglied in der Helmholtz-Gemeinschaft<br />

Plan<br />

1. <strong>Small</strong>-angle neutron scattering<br />

2. Contrast variation. Basic functions<br />

3. Theory<br />

4. Core-shell structure<br />

5. Magnetic fluids<br />

6. SANS of polarized neutrons<br />

7. Spin canting<br />

8. Direct modeling<br />

9. Conclusions


<strong>Small</strong>-angle neutron scattering (SANS)<br />

Non-polarized neutrons<br />

= 0<br />

k<br />

qsinφ<br />

qcosφ<br />

k r k r<br />

0<br />

θ<br />

q r<br />

r<br />

q = k r<br />

−k r<br />

0<br />

4π<br />

θ<br />

q=<br />

sin<br />

λ 2<br />

θ <<br />

10<br />

o<br />

k 0<br />

For diluted samples (ϕ m < 3 vol. %)<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

H r )<br />

Differential<br />

cross section<br />

dσ<br />

d<br />

Ω Ω<br />

=<br />

dσ<br />

(q<br />

dΩ<br />

dσ<br />

( q)<br />

dΩ<br />

2<br />

≈ FN ( q)<br />

+<br />

Nuclear formfactor<br />

2<br />

3<br />

F<br />

2<br />

M<br />

( q)<br />

Magnetic formfactor


SAS: obtained information<br />

<strong>Scattering</strong> length density (SLD)<br />

profile<br />

Particle structure<br />

(form-factor F(q))<br />

I(q)~F 2 (q)S(q)<br />

<strong>Scattering</strong><br />

curve<br />

q<br />

Radial distribution function (RDF)<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Particle interaction<br />

(structure-factor S(q))


<strong>Small</strong>-<strong>Angle</strong> <strong>Neutron</strong> <strong>Scattering</strong> (SANS):<br />

modern research objects<br />

Biological macromolecular complexes<br />

Self-organization in solutions of<br />

surfactants and lipids, complex liquids<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Liquid dispersions of organic and<br />

magnetic materials<br />

Polymers<br />

Tendency – study of complex mixed systems!<br />

Features of neutron scattering:<br />

•wide abilities of isotopic hydrogendeuterium<br />

substitution<br />

•magnetic scattering<br />

•high penetration depth (absence of<br />

special sample preparation)


<strong>Neutron</strong> and X-ray scattering lengths<br />

Mitglied in der Helmholtz-Gemeinschaft


Contrast variation: basic idea<br />

“Core-Shell” particles<br />

in “Solvent”<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Matching of scattering<br />

from “Shell”<br />

Matching of scattering<br />

from “Core”<br />

In SANS the realization is made by substitution of H with D in solvent!


Monodisperse non-magnetic systems:<br />

basic functions approach in contrast variation<br />

Contrast<br />

∆ρ<br />

=<br />

ρ −<br />

ρ s<br />

H.B. Stuhrmann (1975)<br />

average scattering length<br />

density of the particle<br />

scattering length<br />

density of the solvent<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

shape scattering<br />

scattering from density fluctuation<br />

r r<br />

ρ ( ) = ρ(<br />

) − ρ<br />

f


Example: core-shell particles<br />

ρ 1<br />

, R 1<br />

ρ<br />

I ( q)<br />

= n[(<br />

ρ ρs ρ ρ Φ qR<br />

2<br />

1<br />

− ) V1Φ(<br />

qR1<br />

) − (<br />

1<br />

−<br />

0)<br />

V0<br />

(<br />

0)]<br />

Φ( x)<br />

= 3(sin x − x cos x) / x<br />

n is the particle number density<br />

3<br />

V<br />

i<br />

=<br />

3<br />

( 4 / 3) πRi<br />

ρ 0<br />

, R 0<br />

ρ s<br />

ρ =<br />

V<br />

V<br />

V<br />

( ρ<br />

0 0<br />

ρ0<br />

+ 1−<br />

)<br />

1<br />

V1<br />

1<br />

∆ρ<br />

=<br />

ρ −<br />

ρ s<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

I( q) = nV ( ρ − ρ ) [ Φ( qR ) − Φ ( qR )] +<br />

2 2 2<br />

0 1 0 1 0<br />

+ 2 nVV ( ρ − ρ ) Φ( qR )[ Φ( qR ) − Φ( qR )]( ∆ ρ)<br />

+<br />

1 0 1 0 1 1 0<br />

+ nV Φ ( qR )( ∆ρ)<br />

2 2 2<br />

1 1<br />

Is<br />

Ics<br />

( q)<br />

( q)<br />

I ( ) c<br />

q


Core-shell particles. Basic functions<br />

R 0 = 4.5 nm<br />

R 1 = 6.0 nm<br />

ρ 0 = 7.0×10 10 cm -2<br />

ρ 1 = 0 cm -2<br />

ρ s1 = 5.4×10 10 cm -2<br />

ρ s2 = 3.0×10 10 cm -2<br />

ρ s3 = 1.0×10 10 cm -2<br />

5<br />

I 1<br />

(q)<br />

100<br />

10<br />

I c<br />

(q)<br />

4<br />

1<br />

I 3<br />

(q)<br />

0.1<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

I(q), arb. units<br />

3<br />

2<br />

1<br />

0<br />

I 2<br />

(q)<br />

0.01<br />

1E-3<br />

0.01 0.1 1 10<br />

q, nm -1 1E-3 0.01 0.1<br />

0<br />

I<br />

I s<br />

(q)<br />

cs<br />

(q)<br />

0.01 0.1 1<br />

q, nm -1


Guinier approximation<br />

Guinier approximation, 1939<br />

ellipsoid<br />

sphere<br />

cylinder<br />

I( q ~ 0) = I( 0)<br />

e −<br />

q<br />

< 1<br />

R<br />

g<br />

2 2<br />

q R g<br />

3<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

R g<br />

( )<br />

2<br />

I( 0) = nV ρ − ρs<br />

2<br />

– scattering intensity in zero angle<br />

– radius of gyration of scattering density distribution in particle


Monodisperse systems: Guinier regime<br />

1 2 2<br />

I( q ~ 0) = I( 0)exp( − q R g<br />

)<br />

Forward scattering<br />

intensity<br />

q<br />

< 1<br />

3 Rg<br />

Radius of gyration<br />

2 2<br />

I( 0 ) = nV ( ∆ρ)<br />

R = R + α ∆ρ − β ( ∆ρ)<br />

c<br />

2 2 2<br />

g c<br />

I(0)<br />

R 2 g<br />

radius of gyration<br />

of the shape<br />

2<br />

R c<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

0<br />

match point<br />

∆ρ<br />

0<br />

(∆ρ) −1


Radius of gyration:<br />

monodisperse systems<br />

R = R + α ∆ρ − β ( ∆ρ)<br />

2 2 2<br />

g c<br />

α = V<br />

−1<br />

c<br />

∫<br />

V c<br />

r<br />

ρ ( r )<br />

f<br />

r 2<br />

r<br />

d<br />

β =<br />

∫ ∫<br />

−2<br />

Vc<br />

f<br />

r1<br />

)<br />

f<br />

( r2<br />

)( r1<br />

r2<br />

) dr1<br />

dr2<br />

V V<br />

c<br />

c<br />

ρ<br />

( ρ<br />

β = 0<br />

β > 0<br />

α > 0<br />

α < 0<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

“light”<br />

component<br />

“heavy”<br />

component


Mitglied in der Helmholtz-Gemeinschaft<br />

Example: ribosome<br />

70S ribosome<br />

1 2<br />

50S<br />

subunit<br />

30S<br />

subunit<br />

Proteins + RNA


Contrast variation on ribosome<br />

30S subunit<br />

is deuterated<br />

both 50S and 30S<br />

subunits are<br />

deuterated<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

50S ribosome<br />

H.Stuhrmann, et al., PNAS 73 (1976) 2379<br />

70S ribosome<br />

M.Koch, et al., Biophys. Struct. Mechan.<br />

4 (1978) 251


Systems with high polydispersity<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

• Avdeev, M.V ©<br />

What information one can obtain in general case from the SANS<br />

contrast variation?


Polydisperse non-magnetic systems<br />

I(<br />

q)<br />

= ∑ ni{<br />

I<br />

i<br />

i<br />

s<br />

( q)<br />

i<br />

+ ∆ ρI<br />

( q)<br />

+<br />

i<br />

cs<br />

( ∆<br />

i<br />

ρ)<br />

2<br />

I<br />

i<br />

c<br />

( q)}<br />

Size polydispersity<br />

Structural polydispersity<br />

ρ 1<br />

ρ 2<br />

ρ 1<br />

ρ 2<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

ρ 3<br />

ρ s<br />

ρ 3<br />

ρ s


Polydisperse magnetic systems<br />

I(<br />

q)<br />

i<br />

i<br />

2 i<br />

= ∑ ni { I<br />

s<br />

( q)<br />

+ ∆iρIcs<br />

( q)<br />

+ ( ∆iρ)<br />

Ic<br />

( q)}<br />

+<br />

i<br />

I<br />

m<br />

( q)<br />

Size polydispersity<br />

Structural polydispersity<br />

ρ 1<br />

ρ 2<br />

ρ 1<br />

ρ 2<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

ρ 3<br />

ρ s<br />

ρ 3<br />

ρ s


Polydisperse systems. General case<br />

I(q) = + + <br />

is averaging over the particle polydispersity function.<br />

The idea of the following transformations is to introduce the effective mean<br />

scattering length density, ρ e , independent of the averaging, so that the<br />

intensity equation takes the classical form but with the modified contrast.<br />

∆ ~ ρ =<br />

ρ e<br />

− ρ s<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

∆ ρ ρ − ρ + ρ − ρ = ρ − ρ + ∆<br />

~ ρ<br />

I(<br />

q)<br />

=<br />

=<br />

e e s<br />

e<br />

~<br />

I<br />

s<br />

( q)<br />

+ ∆<br />

~~<br />

ρI<br />

cs<br />

( q)<br />

+<br />

( ∆<br />

~ ρ)<br />

2<br />

~<br />

I<br />

c<br />

( q)


Modified basic functions<br />

I<br />

~ ( q)<br />

2<br />

s<br />

s<br />

e cs<br />

e<br />

~<br />

I<br />

~<br />

I<br />

cs<br />

c<br />

( q)<br />

( q)<br />

=< I ( q)<br />

> + < ( ρ − ρ ) I ( q)<br />

> + < ( ρ − ρ ) I ( q)<br />

=< I ( q)<br />

> + 2 < ( ρ − ρ ) I ( q)<br />

cs<br />

=< I ( q)<br />

c<br />

><br />

e<br />

c<br />

><br />

c<br />

><br />

Choice of<br />

ρe<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

ρ<br />

e<br />

=<<br />

∂I<br />

(0)<br />

∂ρ<br />

s<br />

= 0<br />

effective match point<br />

2<br />

ρI<br />

c<br />

( 0) > / < I<br />

c<br />

(0) >=< ρVc<br />

> / < Vc<br />

2<br />

>


Modified shape basic function<br />

ρ s<br />

From three measurements with different :<br />

~<br />

I ( q)<br />

c<br />

= −{(<br />

ρs2 − ρs3)<br />

I1(<br />

q)<br />

+ ( ρs3<br />

− ρs<br />

1)<br />

I2(<br />

q)<br />

+ ( ρs<br />

1<br />

− ρs2)<br />

I3(<br />

q)}/<br />

/( ρ<br />

s1 − ρ<br />

s2<br />

)( ρ<br />

s2<br />

− ρ<br />

s3)(<br />

ρ<br />

s3<br />

− ρ<br />

s1)<br />

ρ e<br />

Knowledge of exact -value is not necessary<br />

to obtain shape scattering function!<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

~<br />

I (0) = n <<br />

~ 2 2 2<br />

R =< V R ><br />

c<br />

2<br />

c<br />

V c<br />

c<br />

c<br />

/<br />

><br />

< V<br />

2<br />

c<br />

>


Guinier invariants<br />

I (0) = n∆ % ρ < V > +<br />

2 2<br />

c<br />

2 2<br />

( ρ ρe )<br />

c m<br />

(0)<br />

+ n < − V > + I<br />

~<br />

R<br />

2<br />

g<br />

=<br />

2 2<br />

< Vc<br />

Rc<br />

><br />

(<br />

2<br />

< V ><br />

c<br />

+<br />

A<br />

~ −<br />

∆ρ<br />

B<br />

( ∆<br />

~ ρ)<br />

2<br />

) /(1 +<br />

D<br />

( ∆<br />

~ ρ)<br />

2<br />

)<br />

I(0)<br />

classical<br />

monodisperse systems<br />

(a)<br />

~ 2<br />

R g<br />

< V<br />

< V<br />

R<br />

2 2<br />

c c<br />

2<br />

c<br />

><br />

><br />

Mitglied in der Helmholtz-Gemeinschaft<br />

0<br />

effective<br />

match point<br />

∆ρ ~<br />

In comparison with monodisperse case there are possibilities<br />

for analyzing Guinier region around effective match point!<br />

−<br />

B /<br />

D<br />

0<br />

( ∆ρ~<br />

)<br />

−1


Polydisperse systems<br />

Intensity at zero angle<br />

~<br />

I<br />

~<br />

I<br />

~<br />

s<br />

I cs<br />

(0)<br />

(0)<br />

(0)<br />

=<br />

=<br />

=<br />

n<br />

n < ( ρ − ρ )<br />

0<br />

<<br />

2<br />

c<br />

V c<br />

><br />

e<br />

2<br />

V<br />

2<br />

c<br />

><br />

I(0)<br />

classical<br />

monodisperse systems<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

I (0)<br />

=<br />

+<br />

2<br />

n∆ρ~<br />

< V<br />

2<br />

c<br />

n < ( ρ − ρ )<br />

e<br />

> +<br />

2<br />

V<br />

2<br />

c<br />

><br />

Full matching is not possible!<br />

0<br />

effective<br />

match point<br />

∆ρ ~


Polydisperse systems<br />

Radius of gyration<br />

~<br />

R<br />

2<br />

g<br />

=<br />

2 2<br />

< Vc<br />

Rc<br />

><br />

(<br />

2<br />

< V ><br />

c<br />

+<br />

A<br />

~ −<br />

∆ρ<br />

B<br />

( ∆<br />

~ ρ)<br />

2<br />

) /(1 +<br />

D<br />

( ∆<br />

~ ρ)<br />

2<br />

)<br />

classical<br />

monodisperse systems<br />

A<br />

= 1 2<br />

c<br />

< V<br />

2<br />

2<br />

( < αV<br />

> + 2 < ( − ) > )(a)<br />

2 c<br />

ρ ρ<br />

e<br />

Vc<br />

R<br />

><br />

c<br />

1<br />

B =<br />

< V<br />

2<br />

c<br />

( < βV<br />

><br />

2<br />

c<br />

2<br />

− < ( ρ − ρ ) V<br />

> − < ( ρ − ρ ) αV<br />

e<br />

2<br />

c<br />

R<br />

2<br />

c<br />

e<br />

> )<br />

2<br />

c<br />

><br />

~ 2<br />

R g<br />

< V<br />

< V<br />

R<br />

2 2<br />

c c<br />

2<br />

c<br />

><br />

><br />

Mitglied in der Helmholtz-Gemeinschaft<br />

D<br />

< ( ρ − ρ )<br />

e<br />

=<br />

2<br />

< Vc<br />

2<br />

><br />

V<br />

2<br />

c<br />

><br />

In comparison with monodisperse case there are possibilities<br />

for analyzing Guinier region around effective match point!<br />

−<br />

B /<br />

D<br />

0<br />

( ∆ρ~<br />

)<br />

−1


Case of two kinds of particles<br />

ρ ,ε ,ε<br />

1 1<br />

2 2<br />

ε + ε<br />

1 2<br />

=<br />

1<br />

2<br />

2 2<br />

ρ = ( ε ρ V + ε ρ V ) /( ε V + ε V<br />

e<br />

2<br />

1 1 c1<br />

2 2 c2<br />

1 c1<br />

2 c2<br />

)<br />

I(0)<br />

=<br />

ρ ~ 2 2 2<br />

2 2 2 2 2<br />

n∆ρ ( ε V + ε V ) + n(<br />

ρ − ρ ) ε ε V V /( ε V + ε V )<br />

1<br />

c1<br />

2<br />

c2<br />

1<br />

2<br />

1<br />

2<br />

c1<br />

c2<br />

1<br />

c1<br />

2<br />

c2<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Residual intensity at zero angle is determined by the difference in SLDs.


Structural polydispersity<br />

V c<br />

= const<br />

=< ρ ><br />

I<br />

ρ e<br />

2 2<br />

2 2 ~ 2 2 2 2<br />

( 0) = n∆<br />

~ ρ Vc<br />

+ n < ( ρ − ρe<br />

) > Vc<br />

= n∆ρ<br />

Vc<br />

+ nσ<br />

ρVc<br />

~ 2 2 A B<br />

Rg = ( Rc<br />

+ ~ − ~ ) /(1 +<br />

2<br />

∆ρ<br />

( ∆ρ)<br />

D<br />

( ∆<br />

~ ρ)<br />

2<br />

)<br />

A =< α ><br />

B<br />

=<<br />

β > − <<br />

2 2<br />

2 2<br />

( ρ − ρe<br />

) α > − < ( ρ − ρe<br />

) > Rc<br />

=< β > − < ( ρ − ρe<br />

) α > −σ<br />

ρ<br />

Rc<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

D =< ρ ρe<br />

>= σ<br />

2 2<br />

( − )<br />

ρ


Example: ferritin<br />

protein shell, R 1 = 6 nm,<br />

ρ 1 = 1.9-2.95 × 10 10 cm -2<br />

ρ s<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

ferrite core, R 0 = 4 nm<br />

SANS curves from<br />

iron unsaturated ferritin<br />

in various H 2 O/D 2 O mixtures<br />

H.Stuhrmann, E.Duee, JAC 8 (1975) 538


Mitglied in der Helmholtz-Gemeinschaft<br />

Density of the core is distributed with<br />

σ ρ = 0.35 × 10 10 cm −2 = −1.14 × 10 −3


For particle of two components with common center of mass:<br />

2<br />

2 ( ρ0<br />

− ρs<br />

)( V0<br />

/ V1<br />

) R0<br />

+ ( ρ1<br />

− ρs<br />

)(1 − ( V0<br />

/ V1<br />

)) R<br />

Rg<br />

=<br />

∆ρ<br />

2<br />

1<br />

I.N.Serdyuk, B.A.Fedorov,<br />

J. Polym. Sci. 11 (1973) 645<br />

2 2<br />

2 2 ( V0<br />

/ V1<br />

)(1 − ( V0<br />

/ V1<br />

))( ρ1<br />

− ρ0)(<br />

R1<br />

− R0<br />

)<br />

Rg<br />

= Rc<br />

+<br />

∆ρ<br />

=<br />

R<br />

2<br />

c<br />

+<br />

α<br />

∆ρ<br />

For iron unsaturated ferritin:<br />

~<br />

R<br />

= ( R<br />

< α ><br />

∆<br />

~ ρ<br />

B<br />

( ∆<br />

~ ρ)<br />

) /(1<br />

2 2<br />

g c<br />

+ − +<br />

2<br />

D<br />

( ∆<br />

~ ρ)<br />

2<br />

)<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

2<br />

< α<br />

>=<br />

( V0 / V1<br />

)(1 − ( V0<br />

/ V1<br />

))( ρ1− < ρ0<br />

> )( R1<br />

− R<br />

< ρ<br />

>=<br />

e<br />

( V<br />

ρ<br />

0<br />

/ V1<br />

) < ρ0<br />

> + (1 − ( V0<br />

/ V1<br />

))<br />

Analysis of B, D<br />

1<br />

2<br />

0<br />

)<br />

< ρ<br />

< ρ<br />

10 -2<br />

0 >=<br />

5 .0×<br />

10 cm<br />

10 -2<br />

0 >=<br />

4 .9×<br />

10 cm<br />

additional data for σ ρ


Magnetic neutron scattering<br />

Cross-section of the magnetic moment<br />

of one atom in domain:<br />

dσ<br />

dΩ<br />

2 2<br />

( ) = m<br />

vm<br />

p<br />

p - magnetic scattering length<br />

vm<br />

= γ −η ( ηγ )<br />

- magnetic interaction vector<br />

Nuclear + magnetic scattering:<br />

dσ<br />

=<br />

dΩ<br />

b<br />

2<br />

+<br />

2 2<br />

2bp(<br />

vm t ) + vm<br />

p<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

unit vector along the<br />

magnetic moment<br />

direction<br />

ν m<br />

=sinα, α - angle between<br />

unit vector along<br />

the scattering vector<br />

γ<br />

and<br />

q<br />

neutron spin<br />

non-polarized beam:<br />

dσ<br />

=<br />

dΩ<br />

b<br />

disoriented domains:<br />

dσ<br />

dΩ<br />

2<br />

+ v<br />

2<br />

m<br />

p<br />

b<br />

2 v<br />

2 p<br />

2 b<br />

2<br />

= + <<br />

m<br />

><br />

Ω<br />

= +<br />

2<br />

2 p<br />

3<br />

2


Effect of magnetic scattering<br />

Monodisperse case<br />

∆<br />

~ ρ = ∆ρ<br />

~<br />

Ic ( q)<br />

= Ic(<br />

q)<br />

~<br />

I<br />

s<br />

( q)<br />

= Is<br />

( q)<br />

+ I<br />

~<br />

I ( q)<br />

I ( q)<br />

cs<br />

=<br />

cs<br />

m<br />

( q)<br />

I<br />

I<br />

=<br />

2<br />

3<br />

ρ<br />

2 2<br />

m<br />

( 0) nV m m<br />

m<br />

( q<br />

~ 0) =<br />

I<br />

m<br />

(0)(1 −<br />

R<br />

2 q 2<br />

m<br />

/ 3)<br />

~<br />

I<br />

(0)<br />

=<br />

2<br />

3<br />

2<br />

s<br />

nV m<br />

ρ<br />

2<br />

I<br />

s<br />

( q ~ 0) = I<br />

m<br />

(0) −{<br />

−βnVc<br />

+<br />

2<br />

m<br />

~ 2<br />

I (0) R } q<br />

2<br />

m m<br />

/ 3<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

~<br />

R<br />

2<br />

g<br />

=<br />

( R<br />

2<br />

c<br />

+<br />

α<br />

−<br />

∆ρ<br />

I<br />

∆ρ +<br />

2<br />

3<br />

ρ<br />

2 2<br />

2 2<br />

( 0) = n Vc<br />

n<br />

mVm<br />

2<br />

β − (2 / 3) ρ<br />

m<br />

( V<br />

( ∆ρ)<br />

2<br />

m<br />

2<br />

/ V<br />

2<br />

c<br />

) R<br />

2<br />

m<br />

) /(1 +<br />

2<br />

(2 / 3) ρ<br />

m<br />

( V<br />

( ∆ρ)<br />

2<br />

m<br />

2<br />

/ V<br />

2<br />

c<br />

)<br />

)


Effect of magnetic scattering<br />

Monodisperse case.<br />

Radius of gyration: homogeneous particles<br />

α = 0 β = 0<br />

R 2 g<br />

2 2 2 2<br />

~ 2 2 (2 / 3) ρm(<br />

Vm<br />

/ Vc<br />

) Rm<br />

R<br />

g<br />

= ( Rc<br />

+<br />

) /(1 +<br />

2<br />

( ∆ρ)<br />

a<br />

2<br />

(2 / 3) ρm(<br />

V<br />

( ∆ρ)<br />

2<br />

m<br />

2<br />

/ V<br />

2<br />

c<br />

)<br />

)<br />

The view depends on which radius is larger!<br />

R 2 m<br />

R m<br />

> R c<br />

If for spherical particles<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

R 2 c<br />

R 2 m<br />

0<br />

R m<br />

< R c<br />

(∆ρ) -1<br />

R<br />

m<br />

= R c<br />

~ 2 2<br />

g<br />

R c<br />

R =<br />

No magnetic scattering effect!


Effect of magnetic scattering<br />

Polydisperse case<br />

Size-polydisperse non-homogeneous particles<br />

2 2<br />

2 2<br />

2<br />

I ( 0) = n∆ρ~<br />

< Vc<br />

> + n < ( ρ − ρe)<br />

Vc<br />

> + (2 / 3) nρm<br />

< Vm<br />

2<br />

><br />

~<br />

R<br />

2<br />

g<br />

=<br />

2 2<br />

< Vc<br />

Rc<br />

><br />

(<br />

2<br />

< V ><br />

c<br />

+<br />

A<br />

~ −<br />

∆ρ<br />

B<br />

( ∆<br />

~ ρ)<br />

2<br />

) /(1 +<br />

D<br />

( ∆<br />

~ ρ)<br />

2<br />

)<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

B<br />

1 2<br />

2<br />

A = ( < αV<br />

> + 2 < ( − )<br />

2 > )<br />

2 c<br />

ρ ρ<br />

e<br />

Vc<br />

R<br />

< V ><br />

c<br />

c<br />

= 1 2<br />

2<br />

2 2 2<br />

2 2<br />

( < βV<br />

> − < ( − ) > − < ( − ) > −(2 / 3) <<br />

2 ><br />

2 c<br />

ρ ρe<br />

αVc<br />

ρ ρe<br />

Vc<br />

Rc<br />

ρm<br />

Vm<br />

R<br />

< V ><br />

m<br />

c<br />

2 2<br />

2 2<br />

< ( ρ − ρe)<br />

Vc<br />

> (2 / 3) ρm<br />

< Vm<br />

><br />

D = +<br />

2<br />

2<br />

< Vc<br />

> < Vc<br />

><br />

)


Basic functions approach<br />

ρ =<br />

const<br />

bi<br />

ρ = ∑V<br />

i<br />

ρ ≠<br />

const<br />

ρ<br />

e<br />

2<br />

< ρV<br />

><br />

= <<br />

2<br />

V ><br />

Contrast<br />

Modified contrast<br />

ρs<br />

∆ ρ = ρ − ρ s<br />

ρs<br />

∆ % ρ = ρ − ρ<br />

e<br />

s<br />

I( q) = I ( q) + ∆ ρI ( q) + ( ∆ρ) 2 I ( q)<br />

I( q) = I % ( q) + ∆ % ρI % ( q) + ( ∆ % ρ) 2 I % ( q)<br />

s cs c<br />

s cs c<br />

∆ ρ = ∞ ∆ % ρ = ∞<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

I ( ) c<br />

q<br />

• Stuhrmann, H.B.(1982). <strong>Small</strong>-<strong>Angle</strong> X-ray <strong>Scattering</strong>, edited by O. Glatter & O. Kratky, pp.197-213, London: Academic Press<br />

• Avdeev, M.V. J. Appl. Cryst. 40 (2007) 56-70<br />

I%<br />

( q) =< I ( q)<br />

><br />

c<br />

c


Integral scattering parameters<br />

2 2<br />

2 2 2 2<br />

I( 0 ) = nV ( ∆ρ)<br />

I( 0) = n < V > ( ∆ % ρ) + n < ( ρ − ρ ) V > +<br />

c<br />

<strong>Scattering</strong> intensity in zero angle:<br />

c e c<br />

2 2<br />

+ ( 2 3)<br />

nρ<br />

< V ><br />

m<br />

m<br />

I(0)<br />

I(0)<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

0 ∆ρ<br />

0 ∆ρ


Integral scattering parameters<br />

R<br />

α<br />

= R + −<br />

∆ρ<br />

2 2<br />

g c<br />

Radius of gyration:<br />

2 2<br />

β<br />

2<br />

⎛ < Vc<br />

Rc<br />

> A B ⎞ ⎛ D ⎞<br />

R<br />

2 g<br />

= ⎜ + − ⎟ +<br />

( ∆ρ)<br />

Vc<br />

ρ ( ρ) ⎜1<br />

2 2 2<br />

< > ∆ ∆ ( ∆ρ)<br />

⎟<br />

⎝<br />

% % ⎠ ⎝ % ⎠<br />

α0<br />

R 2 g<br />

R 2 g A


Magnetic fluids (ferrofluids)<br />

Mitglied in der Helmholtz-Gemeinschaft


Magnetic fluid: biomedical applications<br />

The main direction is cancer treatment!<br />

Drug delivery<br />

Therapy<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Diagnostics


Magnetic drug concentrator:<br />

idea (SIEMENS)<br />

Mitglied in der Helmholtz-Gemeinschaft


Magnetic drug concentrator:<br />

prototype (SIEMENS)<br />

Mitglied in der Helmholtz-Gemeinschaft


Magnetic fluids (ferrofluids):<br />

specific properties for biomedicine<br />

Magnetic nanoparticles, size d = 2-30 nm<br />

(one-domain magnetic state →<br />

magnetic moment of single particle ~10 3 -10 5 µ B<br />

→ superparamagnetic behavior)<br />

Liquid carrier<br />

Surfactant shell,<br />

thickness d = 1-2 nm<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

R.E. Rosensweig, 1966<br />

<strong>Small</strong> size – large specific surface,<br />

natural removal from organisms<br />

Combination of liquidity<br />

and magnetism are widely<br />

used in technical applications<br />

Magnetism – control by external<br />

magnetic field


Classical stabilization procedure for<br />

nonpolar organic magnetic fluids<br />

Co-precipitation<br />

aqueous solutions Fe 2+ , Fe 3+ with NH 4 OH (T = 80 o C)<br />

Oleic Acid (OA)<br />

Oleic Acid (OA)<br />

Coating<br />

chemisorption of oleic acid (T = 80 o C)<br />

Nanomagnetite<br />

Washing<br />

water<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Flocculation<br />

acetone<br />

Initial dispersing<br />

light hydrocarbon<br />

Repeating flocculation and re-dispersing<br />

surfactant removal and particle concentrating<br />

Organic liquid<br />

(hydrocarbon)<br />

Organic non-polar magnetic fluids are<br />

often the first step in synthesis of<br />

various biocompatible systems


Types of ferrofluid stabilization<br />

Single sterical<br />

stabilization<br />

Double sterical<br />

stabilization<br />

Ionic (electrostatic)<br />

stabilization<br />

H +<br />

H +<br />

H +<br />

H +<br />

H + H + H + H +<br />

H<br />

H + +<br />

H + H +<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Surfactant chemisorption;<br />

no surfactant excess<br />

I layer – surfactant chemisorption;<br />

II layer – physical adsorption of<br />

surfactant in excess<br />

Adsorption of ions<br />

(H + , ОH − , citrate-ion)<br />

(Massart’s method)


Surfactants for stabilization<br />

of magnetic fluids based on organic liquids<br />

Unsaturated monocarboxylic acid<br />

Kinked<br />

double bond<br />

Oleic Acid (OA)<br />

СН 3 (CH 2 ) 8 =(СН 2 ) 8 СOОН or C 18 H 34 O 2<br />

Excellent stabilizer<br />

Saturated monocarboxylic acids<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Stearic Acid (SA)<br />

СН 3 (CH 2 ) 16 СOОН or C 18 H 36 O 2<br />

Extremely bad stabilizer<br />

Palmitic Acid (PA)<br />

C 16 H 32 O 2<br />

Myristic Acid (MA)<br />

C 14 H 28 O 2<br />

Lauric Acid (LA)<br />

C 12 H 24 O 2<br />

Intermediate<br />

case


Nuclear and magnetic particle form-factors<br />

Nuclear scattering<br />

Magnetic scattering<br />

F<br />

2<br />

( q)<br />

= [<br />

R<br />

max<br />

∫<br />

0<br />

sin( qr)<br />

( ρ(<br />

r)<br />

− ρs<br />

)<br />

qr<br />

4πr<br />

2<br />

dr]<br />

2<br />

F<br />

2<br />

N<br />

( q)<br />

= [( ρ0<br />

- ρ1)<br />

V0Φ(<br />

qR0<br />

) + ( ρ1<br />

- ρs<br />

) V1Φ(<br />

qR1<br />

)]<br />

2<br />

F<br />

2<br />

M<br />

( q)<br />

= [ ρmVmΦ(<br />

qRm<br />

)]<br />

2<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Model spherical “core-shell”<br />

Model “homogeneous sphere”<br />

Unmagnetized FF<br />

Φ( x)<br />

= 3(sin( x)<br />

− x cos( x)) / x<br />

I +<br />

2<br />

3<br />

2<br />

2<br />

( q)<br />

= nF N<br />

nFM<br />

3


Contrast variation on MF: principle stages<br />

Dissolution of initial concentrated system<br />

(ϕ m 1-10%) with mixtures of H- and D- carriers;<br />

measurements of scattering curves.<br />

Determination of<br />

effective match point<br />

from minimum of dependence I(0) ~ ρ s<br />

Minimization of<br />

χ<br />

2<br />

Experimental separation<br />

on basic functions<br />

1 [ I ( q) I ( q) I ( q) ( ) I ( q)]<br />

= ∑ % % % % %<br />

N − 3 ( )<br />

k<br />

2 2<br />

k<br />

−<br />

s<br />

− ∆ρk cs<br />

− ∆ρk c<br />

2<br />

σ<br />

k<br />

q<br />

I k<br />

(q), σ k<br />

(q) are experimental data for k-th contrast;<br />

N is number of contrasts.<br />

SLD map for MF components<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Separation to modified basic functions<br />

Comparison of I s with scattering<br />

in effective match point<br />

(check-out separation)<br />

Analysis of I c .<br />

Comparison of I c (total shape)<br />

with scattering in H-carrier<br />

(only «sphere» of magnetic material)<br />

7.0×10 10 cm -2<br />

2.0×10 10 cm -2 D-solvent<br />

1.0×10 10 cm -2<br />

0.0×10 10 cm -2<br />

magnetic SLD<br />

Н-solvent<br />

magnetic<br />

materials<br />

surfactants


Contrast variation on FFs:<br />

separate nonhomogeneous particles<br />

Intensity, cm -1<br />

10<br />

1<br />

0.1<br />

0.01<br />

10<br />

Magnetite (ϕ m ~ 1 %) coated with oleic (OA) or myristic (MA) acids in benzene<br />

OA<br />

10% C 6<br />

D 6<br />

20% C 6<br />

D 6<br />

30% C 6<br />

D 6<br />

50% C 6<br />

D 6<br />

55% C 6<br />

D 6<br />

60% C 6<br />

D 6<br />

70% C 6<br />

D 6<br />

75% C 6<br />

D 6<br />

90% C 6<br />

D 6<br />

q, nm -1<br />

0.1 1<br />

100% C 6<br />

D 6<br />

100% C 6<br />

D 6<br />

90% C 6<br />

D 6<br />

75% C 6<br />

D 6<br />

60% C 6<br />

D 6<br />

I (0)<br />

2<br />

R g<br />

I(0) for OA, cm -1<br />

I(0) для ОК, см -1<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

80<br />

70<br />

60<br />

МК<br />

MA<br />

34.2 %<br />

ОК<br />

OA<br />

63 %<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2<br />

ОК<br />

OA<br />

МК<br />

MA<br />

[C 6<br />

D 6<br />

]/[C 6<br />

D 6<br />

+C 6<br />

H 6<br />

]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

I(0) для for MA, МК, см cm -1 -1<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Intensity, cm -1<br />

1<br />

0.1<br />

0.01<br />

MA<br />

0.1 1<br />

q, nm -1<br />

50% C 6<br />

D 6<br />

40% C 6<br />

D 6<br />

38% C 6<br />

D 6<br />

35% C 6<br />

D 6<br />

32% C 6<br />

D 6<br />

30% C 6<br />

D 6<br />

20% C 6<br />

D 6<br />

10% C 6<br />

D 6<br />

R<br />

2<br />

R 2 g ,<br />

g<br />

nm<br />

2<br />

,нм2<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10<br />

(∆ρ) -1 −1 ×10 -10 ,,cm см 22<br />

/


Contrast variation on FFs:<br />

separate nonhomogeneous particles<br />

Separation on modified basic functions<br />

Comparison of I s (q) with the scattering<br />

at the effective match point<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

Ic<br />

1<br />

MA<br />

MA 35% C 6<br />

D 6<br />

OA<br />

OA 60% C 6<br />

D 6<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

Ics<br />

Is<br />

I s<br />

, cm -1<br />

0.1<br />

0.1<br />

0.0<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

-0.1<br />

0.1 1<br />

q, nm -1<br />

0.1 1<br />

q, nm -1


Contrast variation on FFs:<br />

separate non-homogeneous particles<br />

Magnetite (ϕ m ~ 1 %) coated with oleic (OA) or myristic (MA) acids in benzene<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

I I c<br />

x см c × 10 -20 , cm 3<br />

Analysis of I с (q) and comparison with<br />

scattering from magnetite component<br />

10<br />

1<br />

0.1<br />

0.01<br />

1E-3<br />

1E-4<br />

D N<br />

(R)<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

from Н-solvent<br />

MA<br />

МК<br />

OA<br />

ОК<br />

0.0<br />

0 2 4 6 8 10<br />

R, нм<br />

ОК<br />

МК<br />

from I c (q)<br />

q, нм nm -1 -1<br />

0.1 1<br />

OA<br />

MA<br />

I c (q)<br />

I(q)<br />

at 0% C 6 D 6<br />

Size and polydispersity decrease when substituting OA with MA!<br />

Thickness of effective surfactant shell (1.5 nm) does not change with substitution!<br />

• Feoktystov, A.V., Avdeev, M.V., Aksenov, V.L., Bulavin, L.A., et al., Surface Investigations 3 (2009) 1-4<br />

• Feoktystov, A.V., Avdeev, M.V., Aksenov, V.L., Bulavin, L.A., et al., Solid State Phenomena 152-153 (2009) 186-189


SANS on water-based ferrofluids<br />

Intensity, cm -1<br />

100<br />

10<br />

1<br />

0.1<br />

magnetite/lauric acid/water<br />

0% D 2<br />

O<br />

10% D 2<br />

O<br />

20% D 2<br />

O<br />

30% D 2<br />

O<br />

40% D 2<br />

O<br />

50% D 2<br />

O<br />

60% D 2<br />

O<br />

70% D 2<br />

O<br />

80% D 2<br />

O<br />

90% D 2<br />

O<br />

Intensity, cm -1<br />

10<br />

1<br />

0.1<br />

magnetite/myristic acid/water<br />

0% D 2<br />

O<br />

10% D 2<br />

O<br />

20% D 2<br />

O<br />

30% D 2<br />

O<br />

40% D 2<br />

O<br />

50% D 2<br />

O<br />

60% D 2<br />

O<br />

70% D 2<br />

O<br />

80% D 2<br />

O<br />

90% D 2<br />

O<br />

0.01<br />

0.1 1<br />

q, nm -1<br />

0.1 1<br />

q, nm -1<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

I( q ~ 0) = I( 0)<br />

e −<br />

2 2<br />

q R g<br />

3<br />

Due to a strong aggregation in both samples<br />

the Guinier region is inaccessible!<br />

• Feoktystov, A.V., Bulavin, L.A., Avdeev, M.V., et al., Ukr. J. Phys. 54 (2009) 266-273


Dependence of match point on q<br />

Match Point, D 2<br />

O vol. %<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

LA<br />

MA<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

q, nm -1<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

In case of myristic acid stabilization homogeneous aggregates with the size<br />

bigger than 20 nm are present in the system.<br />

In magnetic fluid with lauric acid stabilization the aggregates in the system<br />

are inhomogeneous.


Structure parameters of aggregates<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

I c<br />

, x10 -20 cm 3<br />

10<br />

1<br />

0.1<br />

0.01<br />

1E-3<br />

0.1 1<br />

q, nm -1<br />

LA<br />

MA<br />

p(r)<br />

0.15<br />

0.10<br />

0.05<br />

Characteristic radii of aggregates:<br />

(19.5 ± 0.3) nm (LA+LA stabilization)<br />

(13.8 ± 0.1) nm (MA+MA stabilization)<br />

0.25 TEM of separate particles<br />

0.20<br />

Indirect Fourier Transform of I c<br />

(q)<br />

MA<br />

Indirect Fourier Transform of scattering<br />

curve of the sample on H 2<br />

O<br />

LA<br />

MA<br />

LA<br />

0.00<br />

0 10 20 30 40 50<br />

r, nm<br />

In case of lauric acid stabilization nanomagnetite is coated with<br />

a surfactant shell with thickness ~3.5 nm.<br />

In the sample with myristic acid stabilization the aggregates in the system<br />

consist of nanomagnetite with one incomplete layer of the acid.


Mitglied in der Helmholtz-Gemeinschaft<br />

Aggregate structure of both ferrofluids<br />

magnetite/lauric acid/water<br />

magnetite/myristic acid/water


Contrast variation on FFs:<br />

separate homogeneous particles<br />

Biocompatible FFs with maghemite coated by citric ions (0.2 nm) in water.<br />

Coulomb interaction compensated (NaCl addition). Magnetic interaction compensated (ϕ m ~ 1%).<br />

I c (q)<br />

(negligible magnetic scattering)<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

I(q), cm -1<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

1E-3<br />

1E-4<br />

0 % D2O<br />

70 % D2O<br />

80 % D2O<br />

90 % D2O<br />

95 % D2O<br />

100 % D2O<br />

I s (q)<br />

(matched nuclear scattering)<br />

0.1 1<br />

q, nm -1<br />

R g<br />

2<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

characteristic nuclear radius<br />

R N ~ 10 nm<br />

0 2 4 6 8 10<br />

∆ρ~<br />

−1<br />

( ) ×<br />

Increase in apparent particle size<br />

because of residual Van der Waals interaction<br />

(non-uniform surface charge distribution)<br />

• Avdeev, M.V., Dubois, E., Mériguet, G., et al., J. Appl. Cryst. 42 (2009) 1009-1019<br />

characteristic magnetic radius<br />

R M ~ 7.2 nm<br />

10<br />

-10<br />

cm<br />

2


<strong>Small</strong>-angle neutron scattering<br />

Polarized neutrons – magnetic structure<br />

qsinφ<br />

H r ∞<br />

k<br />

qcosφ<br />

k r q r<br />

θ<br />

k r 0<br />

r<br />

q = k r<br />

−k r<br />

0<br />

4π<br />

θ<br />

q=<br />

sin2<br />

λ<br />

k 0<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Incident beam of<br />

polarized neutrons with<br />

wavelength λ<br />

d<br />

dΩ<br />

−<br />

d<br />

dΩ<br />

Dissolved samples.<br />

Cross section for two states of neutron polarization<br />

+<br />

σ r 2<br />

2<br />

2<br />

( q)<br />

≈ FN<br />

( q)<br />

+ { FM<br />

( q)<br />

− 2FN<br />

( q)<br />

FM<br />

( q)}sin<br />

σ r 2<br />

2<br />

2<br />

( q)<br />

≈ FN ( q)<br />

+ { FM<br />

( q)<br />

+ 2FN<br />

( q)<br />

FM<br />

( q)}sin<br />

Nuclear formfactor<br />

Magnetic formfactor<br />

ϕ<br />

ϕ


<strong>Small</strong>-angle neutron scattering:<br />

polarized neutrons<br />

Magnetite (ϕ m ~ 1%) with OA and MA coating in D-cyclohexane<br />

I + ,I − , H=0 I + , H=H ∞ I − , H=H ∞<br />

OA<br />

2D pattern of neutron scattering for two states of<br />

neutron polarization: parallel (I − ) and antiparallel<br />

(I + ) to external magnetic field (2.5 Т) on<br />

samples:<br />

MA<br />

Detector size 55×55 cm 2<br />

Sample-detector distance 4.5 m<br />

<strong>Neutron</strong> wavelength 0.83 nm<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

H r ∞


Separation of nuclear and<br />

magnetic neutron scattering<br />

D-cyclohexane + Fe 3<br />

O 4<br />

/ OA (ϕ m ~ 1%)<br />

D-cyclohexane + Fe 3<br />

O 4<br />

/ MA (ϕ m ~ 1%)<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

I(q), cm -1<br />

10<br />

1<br />

0.1<br />

fit by model “non-interacting<br />

polydisperse core-shell particles”<br />

F 2 N<br />

F 2 M<br />

Guinier<br />

approximations<br />

R g<br />

=8.0 nm<br />

R g<br />

=5.3 nm<br />

0.1 1<br />

q, nm -1<br />

I(q), cm -1<br />

10<br />

1<br />

0.1<br />

0.01<br />

1E-3<br />

R g<br />

=3.7 nm<br />

0.1 1<br />

q, nm -1<br />

R g<br />

=4 nm<br />

In contrast to correlation in particle locations, correlation in orientation of particle<br />

magnetic moments because of dipole-dipole interaction keeps its influence at small<br />

particle concentrations<br />

F 2 N<br />

F 2 M


Mitglied in der Helmholtz-Gemeinschaft<br />

Surface Effects. Spin canting<br />

• Labaye, Y., Crisan, O., Berger, L., et al., J. Appl. Phys. 91 (2002) 8715-8717


Mitglied in der Helmholtz-Gemeinschaft<br />

Surface Effects. Spin canting<br />

In a particle of radius 4 nm, about 50% of atoms lie on the surface.<br />

The concept of a well-defined super-moment breaks down.<br />

In real particles, the surface region thickness is very sensitive to particle shape<br />

distortion, surface roughness, surface impurities, defects (like vacancies),<br />

compositional inhomogeneity, surface chemical bonds with environment, etc.<br />

• Krycka, K.L., Booth, R.A., Hogg, C.R., et al., PRL 104 (2010) 207203


SANS on non-magnetized MFs:<br />

direct modeling<br />

D-solvents<br />

H-solvents<br />

I ( q)<br />

≈ (4 / 3)<br />

D n<br />

( R)<br />

2<br />

2 2<br />

3<br />

3<br />

2<br />

I(<br />

q)<br />

= (4 / 3) π n∫[(<br />

ρ − ρ ) R Φ(<br />

qR)<br />

+ ( ρ − ρ )( R + h)<br />

Φ(<br />

q(<br />

R + h))]<br />

D ( R dR +<br />

0<br />

∫<br />

1<br />

2 2 2<br />

6 2<br />

+ (4 / 3) π nρ<br />

( R −δ<br />

) Φ ( q(<br />

R −δ<br />

)) D ( R dR<br />

∫<br />

2<br />

2 6 2<br />

π n(<br />

ρ0<br />

− ρs ) R Φ ( qR)<br />

Dn<br />

( R)<br />

dR<br />

1 ⎛ ln<br />

exp<br />

⎜ −<br />

RS 2π<br />

⎝<br />

=<br />

2<br />

2<br />

( R<br />

2S<br />

R ⎞<br />

0)<br />

⎟<br />

⎠<br />

m n<br />

)<br />

100<br />

10<br />

1<br />

s n<br />

)<br />

Magnetite (ϕ m ~ 2 %) / OA / benzene<br />

H-benzene H-бензол<br />

D-benzene D-бензол<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

Fitting parameters:<br />

• SLDs of the components (up to 4),<br />

• parameters of size distribution function (up to 4)<br />

• thicknesses of surfactant and non-magnetic<br />

layers (2)<br />

• concentration, background (2)<br />

Contrast variation is independent method<br />

for check-up multiparameter fits, especially<br />

for aggregated systems!<br />

I(q), см -1<br />

1<br />

0.1<br />

0.01<br />

1E-3<br />

D N<br />

(R)<br />

0.04<br />

0.02<br />

SANS МУРН<br />

0.00<br />

0 2 4 6 8 10<br />

• Avdeev, M.V., Balasoiu, M., Torok, Gy., et al., J. Magn. Magn. Mater. 252 (2002) 86-88<br />

• Aksenov, V.L., Avdeev, M.V., Balasoiu, M., et al., Appl. Phys. A 74 (2002) S943-S944<br />

R, нм<br />

TEM ПЭМ<br />

0.1 1<br />

q, нм -1


Summary<br />

• <strong>Small</strong>-angle neutron scattering is a powerful noninvasive structural<br />

technique, which gives information about particle sizes and shapes and<br />

interaction between them.<br />

• Basic functions approach for SANS experiments on a system of<br />

polydisperse particles has been developed; it shows specific differences<br />

comparing with the classical case of monodisperse particles; despite<br />

more complicated equations in general, still several expressions<br />

suggest transparent interpretation.<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

• Compared to the monodisperse case, the contrast dependence of<br />

scattering integral parameters for the polydisperse system contains a<br />

number of additional parameters comprising information about<br />

polydispersity function of the system; their analysis increases the<br />

reliability of experimental results.<br />

• Magnetic scattering effect can be treated in terms of the basic functions<br />

approach, which provides an additional way to separate information<br />

about features of nuclear and magnetic structures of particles.


Acknowledgements<br />

Mitglied in der Helmholtz-Gemeinschaft<br />

M.V. Avdeev,<br />

V.L. Aksenov<br />

L.A. Bulavin<br />

V.I .Petrenko<br />

L. Vekas<br />

D. Bica [1952-2008]<br />

O. Marinica<br />

V.M. Garamus<br />

R. Willumeit<br />

E. Dubois<br />

R. Perzynski<br />

FLNP JINR, Russia<br />

Physics Department KNU, Ukraine<br />

Laboratory of Magnetic Fluids CFATR, Romania<br />

HZG, Germany<br />

UPMC, France<br />

Co-operation programs FLNP – KNU<br />

JINR – Hungarian Academy of Sciences,<br />

JINR – Romania<br />

RFBR-Helmholtz Germany, Program “Joint Research Groups”


Thank you for attention!<br />

Mitglied in der Helmholtz-Gemeinschaft

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!