21.02.2014 Views

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>An</strong> <strong>introduction</strong> <strong>to</strong><br />

<strong>Solid</strong> <strong>State</strong> <strong>NMR</strong><br />

<strong>and</strong> <strong>its</strong> <strong>Interactions</strong><br />

From tensor <strong>to</strong> <strong>NMR</strong> spectra<br />

CECAM Tu<strong>to</strong>rial – September 2009<br />

Calculation of <strong>Solid</strong>-<strong>State</strong> <strong>NMR</strong> Parameters<br />

Using the GIPAW Method<br />

Thibault Charpentier - CEA Saclay<br />

thibault.charpentier@cea.fr


Nuclear Magnetic Resonance<br />

Spin<br />

Magnetic Field<br />

The Rabi oscillation<br />

N = N ħ I<br />

Rabi oscillations in quantum dots<br />

Source: http://iramis.cea.fr/drecam/spec/<br />

Pres/Quantro/Qsite/projects/qip.htm


The Zeeman effect<br />

I= 3 2<br />

B 0 ≠0<br />

∣m=3/2 〉<br />

E=− N . B 0<br />

0<br />

ħ H=− N ħ I . B 0 =ħ 0 I Z<br />

B 0 =0<br />

∣m=1/2 〉<br />

The Larmor frequency<br />

0<br />

0<br />

∣m=−1/2 〉<br />

0 =− N B 0<br />

0<br />

∣m=−3/2 〉<br />

0 =− N<br />

2 B 0<br />

<strong>NMR</strong> spectrum of an isolated nucleus<br />

m=∓1


The spin opera<strong>to</strong>rs<br />

I= 3 2<br />

I =I X<br />

I Y<br />

I Z<br />

<br />

I Z<br />

∣m 〉=m∣m 〉<br />

I ∣m 〉= I I1−mm1∣m1 〉<br />

I −<br />

∣m 〉= I I1−mm−1∣m−1 〉<br />

0 0 0<br />

0 1/2 0 0<br />

I Z =3/2<br />

0 0 −1/2 0<br />

0 0 0 −3/2<br />

I X = 1 2 I I − <br />

I Y = 1 2 I −i I − <br />

3/2 0 0<br />

I =0 <br />

0 0 2 0<br />

0 0 0 3/2<br />

0 0 0 0<br />

=<br />

0 0 0 0<br />

0<br />

I<br />

3/2 0 0 0<br />

−<br />

0 2 0 0<br />

0 0 3/2


The Larmor precession<br />

B 0<br />

z<br />

The classical approach <strong>to</strong> Larmor precession<br />

N<br />

d N<br />

y<br />

d t = N N t ∧ B 0<br />

0<br />

x<br />

The quantum approach <strong>to</strong> Larmor precession<br />

i ħ d 〈 I 〉<br />

d t<br />

=i ħ d dt 〈t ∣ I ∣ t〉=〈t ∣ [ H , I ] ∣ t〉=i ħ N<br />

〈 I 〉∧ B 0


The nuclear magnetization<br />

In <strong>NMR</strong>, the only direct observable is<br />

the macroscopic magnetization<br />

M=∑ i<br />

i<br />

But <strong>NMR</strong> spectroscopist know how <strong>to</strong> play with<br />

more complex objects...<br />

z<br />

B 0<br />

At equilibrium,<br />

N up<br />

N down<br />

∝exp − E<br />

k B<br />

T<br />

y<br />

y<br />

the magnetization is<br />

along the magnetic field<br />

x<br />

x<br />

M z<br />

≠0<br />

Boltzman populations<br />

M x<br />

=M y<br />

=0


Sensitivity of <strong>NMR</strong><br />

The Curie Law (high temperature limit)<br />

M 0<br />

= 0<br />

B 0<br />

=N I<br />

2 ħ 2 I I1<br />

3 k T<br />

B 0<br />

The quantum approach<br />

H=ħ 0 I Z<br />

M 0 =N I 〈 N 〉=N I N ħTr 〚 I eq 〛 eq ∝exp − H<br />

In the high temperature limit<br />

k B<br />

T <br />

eq ∝− 0<br />

k B T I Z<br />

M eq =N I × N ħ× 0<br />

k T ×Tr 〚 I Z<br />

2<br />

〛<br />

Description of <strong>NMR</strong> experiments in term of I <br />

opera<strong>to</strong>rs


The Resonance Phenomenum<br />

B 0<br />

z<br />

<br />

M 0<br />

Nutation<br />

Application of a tranverse RF<br />

magnetic field at the Larmor<br />

frequency produces the precession<br />

of the nuclear magnetization around<br />

the RF field (nutation) in the socalled<br />

rotating frame<br />

H t= 0<br />

I Z<br />

H RF<br />

t<br />

x T<br />

Pulse <strong>An</strong>gle<br />

y T<br />

= 1<br />

w<br />

w<br />

H RF<br />

t =− N<br />

2 B 1<br />

I x<br />

cos RF<br />

t =2 1<br />

I x<br />

cos RF<br />

t <br />

d 〈 I 〉<br />

dt<br />

LAB<br />

=〈 I 〉∧<br />

<br />

− 0<br />

z2 N<br />

B 1<br />

cos RF<br />

t x <br />

Time Dependent<br />

Rotating frameat RF<br />

around B 0<br />

:x ,y ,z LAB<br />

⇒x ,y , z T<br />

d 〈 I 〉<br />

dt<br />

T<br />

=〈 I 〉∧<br />

<br />

{ RF<br />

− 0<br />

}z− 1<br />

x<br />

T<br />

Time Independent


Pulsed Fourier Transform <strong>NMR</strong><br />

Typical Timing of a <strong>Solid</strong> <strong>State</strong> <strong>NMR</strong> experiment<br />

Thermal<br />

Equilibrium<br />

&<br />

Relaxation<br />

RF Pulse<br />

p <br />

Free Precession Decay<br />

ms-hours s<br />

s-ms<br />

Macroscopic Magnetization Motion<br />

M p =M 0 x<br />

M 0=M 0 z<br />

M t p =M 0 ×x cos 0 ty sin 0 t <br />

The complex <strong>NMR</strong> signal Fourier Transform<br />

st∝M 0 exp −i 0 t <br />

0


Pulsed Fourier Transform <strong>NMR</strong><br />

Bloch equations<br />

z<br />

dM x<br />

dt<br />

=− M x<br />

T 2<br />

i M y<br />

B 0<br />

dM y<br />

dt<br />

=− M y<br />

T 2<br />

−i M x<br />

y<br />

dM z<br />

dt<br />

=− M z −M eq<br />

T 1<br />

Density opera<strong>to</strong>r (quantum state)<br />

x<br />

y<br />

Coherent state<br />

M x<br />

≠0 M y<br />

≠0<br />

t =a x<br />

t I x<br />

a y<br />

t I y<br />

a z<br />

t I z<br />

M <br />

t ∝Tr 〚 I <br />

. t 〛<br />

x<br />

I z<br />

: magnetization ; I <br />

, I −<br />

single quantum coherence<br />

The only directly observable entity


Pulsed Fourier Transform <strong>NMR</strong><br />

Free Precession Decay<br />

Signal Processing<br />

(Apodization)<br />

Fourier Transform<br />

(phase correction)<br />

<strong>NMR</strong> Spectrum


The <strong>NMR</strong> signal in theory<br />

st=Tr 〚 I exp −i H t I x exp i H t 〛<br />

Initial state:<br />

I x<br />

System evolves under:<br />

H<br />

One quantum transitions are observed:<br />

I <br />

st∝∑ m<br />

∣〈m1∣I ∣m 〉∣ 2 ×exp −i m, m1 t <br />

The <strong>NMR</strong> frequencies<br />

m, m1 =〈m1∣ H∣m1〉−〈m∣ H∣m〉<br />

The contribution of each transition<br />

<strong>to</strong> the signal amplitude is (isotropic !!)<br />

∣〈m1∣I ∣m 〉∣ 2<br />

Hamil<strong>to</strong>nian of <strong>NMR</strong> interactions are needed H<br />

DFT calculations provide H !


<strong>NMR</strong> <strong>Interactions</strong> A complex situation...<br />

H=− N<br />

ħ I⋅ B ext<br />

B local = H Z<br />

H inter.<br />

B 0,<br />

B RF<br />

t<br />

EPR<br />

Electrons<br />

B loc<br />

External fields <strong>to</strong><br />

manipulate<br />

the system:<br />

B 0,<br />

B RF<br />

t<br />

<strong>NMR</strong><br />

Nuclear Spins I<br />

Nuclear Spins S<br />

<strong>NMR</strong><br />

Internal fields:<br />

B loc<br />

inter.<br />

Phonons<br />

inter.<br />

<br />

MicroWaves, ....<br />

H= H Z<br />

H CS<br />

H J<br />

H D<br />

H Q<br />

...<br />

0<br />

Chemistry:


B loc<br />

= A X =<br />

<strong>NMR</strong> <strong>Interactions</strong><br />

.<br />

are tensors<br />

A xx<br />

A xy<br />

A xz x<br />

<br />

A yx<br />

A yy<br />

A yz<br />

X y<br />

A zx<br />

A zy<br />

A zz<br />

X z<br />

X<br />

H=− N<br />

ħ×I . A . X<br />

Second-rank Tensor<br />

A=1 , X=B 0,<br />

B RF<br />

Zeeman Interaction<br />

A= , X=B 0<br />

A=D , X=S<br />

A=J , X=S<br />

A=Q , X=I<br />

Magnetic shielding<br />

Dipolar Magnetic couplings<br />

(through space)<br />

Indirect Magnetic couplings<br />

(through bond)<br />

Quadrupolar Interaction<br />

(electric couplings)


<strong>NMR</strong> <strong>Interactions</strong>: PAS<br />

Diagonalization of A yields the Principal Axis System (PAS)<br />

A xx<br />

A xy<br />

A xz<br />

A A=<br />

.<br />

A XX<br />

0 0<br />

yx<br />

A yy<br />

A yz A<br />

A zx<br />

A zy<br />

A zz=X −1 0 A YY<br />

0 X A<br />

=X A<br />

0 0 A ZZ. −1 . A PAS<br />

. X A<br />

Principal Axes labeling:<br />

A iso<br />

= 1 3 Tr 〚 A〛<br />

∣A ZZ<br />

−A iso ∣≥∣A XX<br />

− A iso ∣≥∣A YY<br />

−A iso ∣<br />

A ZZ<br />

A YY<br />

A iso<br />

A XX


<strong>NMR</strong> <strong>Interactions</strong>: PAS<br />

Introducing a convenient representation for encoding<br />

this orientational dependence<br />

1<br />

A PAS<br />

=A iso<br />

1 A−1/2 <br />

1<br />

0 0<br />

0 −1/2 1− 0<br />

0 0<br />

Isotropic shift:<br />

A iso<br />

=1/3Tr 〚 A〛<br />

Strength of the anisotropy:<br />

Symmetry of the anisotropy<br />

(asymmetry parameter):<br />

A<br />

=A ZZ<br />

−A iso<br />

A<br />

= A XX<br />

−A YY / A


<strong>NMR</strong> <strong>Interactions</strong>: PAS<br />

Relative orientation of the PAS with respect <strong>to</strong> a reference<br />

frame (crystallographic axes, labora<strong>to</strong>ry frame, ...)<br />

Fac<strong>to</strong>rization of X A<br />

provides the three Euler angles<br />

A<br />

, A<br />

, A<br />

X A<br />

=R A<br />

, A<br />

, A<br />

=exp −i A<br />

I z ⋅exp −i A<br />

I y ⋅exp −i A<br />

I z <br />

(x,y,z) is the PAS<br />

of the reference frame B 0<br />

A ZZ<br />

In <strong>NMR</strong> the position of a line<br />

(single crystal) is dependent<br />

upon the six parameters:<br />

A iso<br />

, A<br />

, A<br />

, A<br />

, A<br />

, A<br />

A XX<br />

A YY


The secular approximation<br />

High Field <strong>NMR</strong>:<br />

B 0<br />

≫ B loc<br />

Perturbation Expansion of the <strong>NMR</strong> interactions<br />

H Z<br />

≫ H inter.<br />

H inter.<br />

≈ H 1 CS<br />

H 1 Q<br />

H 2 Q<br />

H 1 D<br />

H 1 J<br />

...<br />

Keeping terms invariant under rotation around B 0<br />

B 0<br />

A XX<br />

A zz<br />

<br />

A YY<br />

A ZZ


A general representation of the<br />

<strong>NMR</strong> interactions<br />

Powerful Tensorial approach <strong>to</strong> derive all formula !<br />

m2<br />

H <br />

=C <br />

∑ m=−2<br />

−1 m R 2,−m<br />

×T 2m<br />

Euler angles<br />

= , , <br />

Spatial dependence<br />

R =∑ 2,m n<br />

<br />

2, n<br />

2<br />

D n , m<br />

<strong>NMR</strong> parameters<br />

Spin Opera<strong>to</strong>r dependence<br />

[I z<br />

,T 2, m<br />

]=mT 2,m<br />

<br />

2,±2<br />

= <br />

2 , 2,±1<br />

T 2, m<br />

(first order ) secular approximation easy : m=0!<br />

H <br />

1 =C R 2,0 ×T 20<br />

<br />

=0 , <br />

2,0 =<br />

3 2 <br />

T II 2,0 =<br />

1 3 I 2 Z<br />

−I I1<br />

6


The Chemical Shift Tensor<br />

Absolute chemical shielding (GIPAW output)<br />

<br />

Isotropic chemical shift<br />

=−− REF<br />

1<br />

iso<br />

=− iso<br />

− REF <br />

exp<br />

exp iso<br />

ppm=10 6 iso<br />

− REF Hz<br />

×<br />

REF<br />

Hz<br />

Chemical Shift <strong>An</strong>isotropy (CSA) <br />

, <br />

z PAS<br />

<br />

B 0<br />

H CSA<br />

= CS<br />

, I Z=<br />

2 3 R 2,0 I Z<br />

CS<br />

,= 0 XX<br />

sin 2 cos 2 YY<br />

sin 2 sin 2 ZZ<br />

cos 2 <br />

CS<br />

,= 0<br />

iso<br />

0 <br />

2<br />

{3cos 2 −1 <br />

sin 2 cos2}<br />

<br />

y PAS<br />

x PAS


<strong>NMR</strong> powder spectrum<br />

S powder<br />

t=∫sin d d exp−i ,t⇒ TF ⇒ S powder


The quadrupole Interaction<br />

I1/2<br />

Electric coupling between the nuclear quadrupole moment Q<br />

<strong>and</strong> local electric field gradient V(r nuc<br />

) at the nucleus<br />

Quadrupolar Coupling Constant ( ~ MHz )<br />

C Q<br />

= eQ h V ZZ<br />

Quadrupolar asymmetry parameter<br />

First order<br />

C Q<br />

H 1 Q<br />

=<br />

6I2I−1 ×R Q ×T<br />

20<br />

20<br />

Second order (complex...)<br />

H Q 2 = 1 0<br />

C Q<br />

Q<br />

= V −V XX YY<br />

V iso<br />

=0<br />

V ZZ<br />

T 2,0=<br />

1 3 I 2 Z<br />

−I I1<br />

6<br />

6I2I−1 × ∑ l=0,2,4<br />

A l ∑ k=−l ,l<br />

B l k<br />

k<br />

D l , 0<br />

A l = f I Z 3 , I Z<br />

<br />

Second Order Quadrupolar Induced Shift !<br />

Q 2 =A 0 B 0 0 <br />

Isotropic shift


Quadrupolar nuclei<br />

Powder Quadrupolar Static spectra


x LAB<br />

z LAB<br />

The Dipolar Interaction<br />

H D<br />

= ħ {<br />

I S<br />

I .S− 3<br />

I⋅r<br />

3 2 IS<br />

S⋅ r } IS<br />

=I⋅D⋅S<br />

r IS<br />

r IS<br />

B 0 <br />

S<br />

=0<br />

r<br />

IS<br />

I<br />

D PAS = −2 ħ I S<br />

3<br />

y r IS<br />

LAB<br />

− 1 <br />

0 0<br />

2<br />

0 − 1 0<br />

2<br />

0 0 1<br />

Homonuclear<br />

Heteronuclear<br />

H 1 D<br />

= ħ I S<br />

3<br />

r IS<br />

H 1 D<br />

= ħ I S<br />

3<br />

r IS<br />

×R D IS<br />

20<br />

×T 20<br />

<br />

×R D 20<br />

× 3 2 I S Z Z


Indirect J coupling<br />

Small interaction (~Hz), anisotropic effects (so far) neglected<br />

H J<br />

=I J iso<br />

1J ani S≈J iso<br />

I⋅S<br />

Like spins<br />

Unlike spins<br />

I S<br />

J iso<br />

≥∣ iso<br />

− ∣ iso<br />

I S<br />

J iso<br />

≤∣ iso<br />

− ∣ iso<br />

H J<br />

=J iso<br />

I⋅S<br />

H J<br />

=J iso<br />

I Z<br />

S Z<br />

IS<br />

IS 2<br />

IS 3<br />

0<br />

I<br />

0<br />

I<br />

0<br />

I


Multiple interactions<br />

Lineshape is also dependant upon the relative orientation<br />

of CSA PAS with respect <strong>to</strong> quadrupolar PAS (or vice-versa)<br />

In the crystallographic axes frame (GIPAW calculation)<br />

X ,c<br />

=R ,c<br />

, ,c<br />

, ,c<br />

<br />

X Q ,c<br />

=R Q ,c<br />

, Q ,c<br />

, Q ,c<br />

<br />

X ,c<br />

X −1 Q ,c<br />

=R ,Q<br />

, ,Q<br />

, ,Q<br />

<br />

B 0<br />

V ZZ<br />

ZZ<br />

XX<br />

V XX<br />

V YY<br />

YY


High Resolution <strong>NMR</strong><br />

Brownian Motion in Liquids<br />

H t= H iso<br />

H ani<br />

t<br />

H ani<br />

t=0<br />

Only isotropic contributions !<br />

iso<br />

, J iso<br />

In rigid lattices, broad lines<br />

iso<br />

, J iso<br />

+<br />

CSA<br />

, CSA<br />

,C Q<br />

, Q<br />

, CSA ,Q<br />

, CSA ,Q<br />

, CSA ,Q


Magic <strong>An</strong>gle Spinning Sample<br />

B 0<br />

<br />

R<br />

D 20<br />

<br />

Second Rank<br />

∝3cos 2 −1<br />

M<br />

A ZZ<br />

A YY<br />

A iso<br />

A XX<br />

3 cos 2 M<br />

−1=0<br />

A ZZ<br />

A XX<br />

A YY<br />

B 0<br />

M A ZZ<br />

M<br />

=0<br />

A ZZ<br />

A ZZ<br />

t =0<br />

A ZZ<br />

A ZZ<br />

t <br />

A ZZ<br />

t


MAS at work<br />

I=1/2<br />

+1/2 -1/2<br />

Static spectrum<br />

CSA + Dipolar ( 13 C- 13 C )<br />

Low speed MAS spectrum<br />

Spinning sideb<strong>and</strong>s<br />

ROT<br />

High speed MAS spectrum<br />

ROT<br />

Pro<strong>to</strong>n decoupling is necessary (sample rotation + spin rotation ! )


MAS at work<br />

23 Na<br />

I=3/2<br />

NaAlH 4<br />

+1/2 -1/2<br />

+3/2 +1/2<br />

-3/2 -1/2<br />

B 0<br />

= 7.05 T<br />

v ROT<br />

=10 kHz


NaAlH 4<br />

MAS at work<br />

27 Al<br />

I=5/2<br />

+1/2 -1/2<br />

Central transition<br />

Satellite transitions<br />

B 0<br />

= 7.05 T<br />

v ROT<br />

=10 kHz


The MAS <strong>NMR</strong> signal in theory<br />

st∝∑ m<br />

∣〈m1∣I ∣m 〉∣ 2 t<br />

×exp−i∫ 0<br />

m, m1 udu<br />

Time-dependent transitions frequencies:<br />

m, m1 =〈m1∣ H t∣m1〉−〈m∣ H t∣m〉<br />

Euler angles of the PAS in the ro<strong>to</strong>r fixed frame<br />

m, m1<br />

,, = 0<br />

, ∑ m≠0<br />

m<br />

, exp {−i m ROT<br />

t}<br />

∫ d exp {−i∫ 0<br />

t<br />

m ,m1 udu}=e −i 0 t , ×∑ k<br />

∣I k ,∣ 2 e −i k ROT t<br />

0 ,: MAS lineshape<br />

I k ,: spinning sideb<strong>and</strong>s pattern


The <strong>NMR</strong> Labora<strong>to</strong>ry<br />

<strong>to</strong>rturing probe...<br />

MAS probe<br />

MAS<br />

Ro<strong>to</strong>r<br />

Superconducting magnet


<strong>NMR</strong> parameters: DFT vs Experiment<br />

Quadrupolar parameters (I>1/2) (MHz)<br />

C Q<br />

, Q<br />

Isotropic Chemical shift (ppm)<br />

iso<br />

Chemical shift anisotropy (ppm)<br />

Relative orientation<br />

of CSA PAS in Quad. PAS<br />

(Three Euler angles)<br />

CSA<br />

, CSA<br />

CSA ,Q<br />

, CSA ,Q<br />

, CSA ,Q <br />

Isotropic J couplings (1-3 bonds) 1 J Si−O<br />

2 J Si−O−Si<br />

<strong>NMR</strong> provides methods for measurements<br />

of Dipolar interactions (only the structure is needed)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!