22.02.2014 Views

Heating of the ISM by Alfvén-wave damping - Theoretische Physik IV ...

Heating of the ISM by Alfvén-wave damping - Theoretische Physik IV ...

Heating of the ISM by Alfvén-wave damping - Theoretische Physik IV ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2 Felix Spanier<br />

3 Damping Processes<br />

For a given <strong>damping</strong> rate <strong>the</strong> energy dissipation rate is given <strong>by</strong>:<br />

∫<br />

ɛ i = d 3 kPyy2γ A i (6)<br />

Four different processes have been included in<br />

<strong>the</strong> calculation:<br />

• Collisionless Landau <strong>damping</strong><br />

• Viscous <strong>damping</strong><br />

• Joule heating<br />

• Ion-Neutral collisions<br />

3.1 Joule <strong>Heating</strong><br />

Joule heating is related to <strong>the</strong> resistivity <strong>of</strong> <strong>the</strong><br />

plasma and <strong>the</strong> currents. We take <strong>the</strong> formula<br />

from Braginskii (1965)<br />

Fig. 1. Damping rates at θ = 2 ◦<br />

resulting in<br />

σ ⊥ = ω2 pe<br />

4πν e<br />

, σ ‖ = 1.96σ ⊥ (7)<br />

γ J (k) = ν ec 2 k 2<br />

2ω 2 pe<br />

(<br />

cos 2 θ + 0.51 sin 2 θ ) (8)<br />

Joule heating is neglected in favor <strong>of</strong> viscosity.<br />

3.2 Viscosity<br />

Viscosity was proposed <strong>by</strong> Hollweg (1985), <strong>the</strong> parameter η 0 cancels out due to <strong>the</strong> incompressibility<br />

<strong>of</strong> Alfvén <strong>wave</strong>s<br />

γ V (k) =<br />

k2 (<br />

(η<br />

p<br />

1<br />

2m p n + ηe 1) sin 2 θ + (η p 2 + ηe 2) cos 2 θ ) (9)<br />

e<br />

The electron contribution is small compared to <strong>the</strong> proton contribution<br />

Introducing<br />

γ V (k) ≃ 0.15 k BT p k 2 c 2 τ i<br />

(<br />

sin 2<br />

m p c 2 (Ω p τ i ) 2 θ + 4 cos 2 θ ) (10)<br />

k c = Ω p<br />

V A<br />

, κ = k k c<br />

we find for Joule and viscous <strong>damping</strong> toge<strong>the</strong>r<br />

γ V +J = 10 −7 κ 2 ( sin 2 θ + 4 cos 2 θ ) (11)<br />

As Joule and viscous <strong>damping</strong> have <strong>the</strong> same k 2 dependence and similar angular depence we may sum<br />

<strong>the</strong>m up. Integrating with 6 gives<br />

ɛ V +J = 4 · 10 7 1 + s<br />

3 − s (δB κ 3−s<br />

A) 2 kc<br />

2 max − κ 3−s<br />

min<br />

κ 1+s<br />

max − κ 1+s H V +J (Λ, s) (12)<br />

min<br />

H V +J (Λ, s) = 3F ( 2+s<br />

2+s<br />

2<br />

, 1; 3; 1 − Λ−1)<br />

8F ( 3F (<br />

2<br />

2+s<br />

2 , 1 2 ; 5 + , 2; 4; 1 − Λ−1 )<br />

2<br />

; 1 − Λ−1) 8F ( 2+s<br />

2 , 1 2 ; 5 2 ; 1 − (13)<br />

Λ−1 )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!