22.02.2014 Views

Heating of the ISM by Alfvén-wave damping - Theoretische Physik IV ...

Heating of the ISM by Alfvén-wave damping - Theoretische Physik IV ...

Heating of the ISM by Alfvén-wave damping - Theoretische Physik IV ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

”The Magnetized Interstellar Medium”<br />

8–12 September 2003, Antalya, Turkey<br />

Eds.: B. Uyanıker, W. Reich & R. Wielebinski<br />

<strong>Heating</strong> <strong>of</strong> <strong>the</strong> <strong>ISM</strong> <strong>by</strong> Alfvén-<strong>wave</strong> <strong>damping</strong><br />

Felix Spanier<br />

Institut für <strong>Theoretische</strong> <strong>Physik</strong> <strong>IV</strong>, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum<br />

Abstract. We calculate <strong>the</strong> heating rate from <strong>damping</strong> <strong>of</strong> Alfvén <strong>wave</strong>s in <strong>the</strong> warm ionized medium. An anisotropic<br />

<strong>wave</strong> spectrum was used and <strong>the</strong> <strong>damping</strong> processes considered were collision Landau <strong>damping</strong>, Joule heating, viscous<br />

<strong>damping</strong> and ion-neutral collisions.<br />

1 <strong>ISM</strong> scenario<br />

We consider a scenario found in <strong>the</strong> Warm Intercloud Medium with <strong>the</strong> following parameters:<br />

temperature T ≈ 10 4 K, particle density n ≈ 0.2 cm −3 and a background magnetic field B = 4 µG.<br />

Therefore we find an efficient cooling mechanism with <strong>the</strong> cooling rate<br />

L R = 5 · 10 −24 n 2 e erg s −1 cm −3 (1)<br />

as proposed <strong>by</strong> Minter & Spangler (1997).<br />

One finds a mixture <strong>of</strong> Alfvén and fast magnetosonic <strong>wave</strong>s, we will focus on Alfvén Waves. As<br />

Spangler (1991) points out that <strong>the</strong>se <strong>wave</strong>s must <strong>wave</strong> numbers in <strong>the</strong> regime<br />

k min =<br />

2π<br />

10 17 cm , k max = 2π<br />

10 7 cm<br />

which is given <strong>by</strong> <strong>the</strong> ion inertia length on <strong>the</strong> one hand and on <strong>the</strong> distance between two clouds on<br />

<strong>the</strong> o<strong>the</strong>r hand.<br />

2 Wave spectrum<br />

We use an anisotropic power spectrum <strong>of</strong> electron density fluctuations from Spangler (1991)<br />

P nn =<br />

CN<br />

2<br />

(k‖ 2 + Λk2 ⊥ ) 2+s<br />

2<br />

(2)<br />

To derive <strong>the</strong> magnetic fluctuation spectra a kinetic approach is needed (Schlickeiser & Lerche 2002)<br />

P A yy( ⃗ k)<br />

B 2 0<br />

= Ω2 p sin 2 θ<br />

9V 2 A k2 P A nn( ⃗ k)<br />

n 2 e<br />

whereas for fast magnetosonic <strong>wave</strong>s <strong>the</strong> relation between both spectra is nearly linear.<br />

The constant C N is defined <strong>by</strong> normalisation over <strong>the</strong> total fluctuating power<br />

∫<br />

d 3 k P nn ( ⃗ k) = (δn e ) 2 (4)<br />

As <strong>the</strong> power is splitted into two parts for magnetosonic and Alfvén <strong>wave</strong>s, we introduce two constants,<br />

C A and C M which determine <strong>the</strong> magnetic fluctuations.<br />

∫<br />

(δB A ) 2 = d 3 kPyy( A ⃗ k)<br />

(3)<br />

(5)<br />

1


2 Felix Spanier<br />

3 Damping Processes<br />

For a given <strong>damping</strong> rate <strong>the</strong> energy dissipation rate is given <strong>by</strong>:<br />

∫<br />

ɛ i = d 3 kPyy2γ A i (6)<br />

Four different processes have been included in<br />

<strong>the</strong> calculation:<br />

• Collisionless Landau <strong>damping</strong><br />

• Viscous <strong>damping</strong><br />

• Joule heating<br />

• Ion-Neutral collisions<br />

3.1 Joule <strong>Heating</strong><br />

Joule heating is related to <strong>the</strong> resistivity <strong>of</strong> <strong>the</strong><br />

plasma and <strong>the</strong> currents. We take <strong>the</strong> formula<br />

from Braginskii (1965)<br />

Fig. 1. Damping rates at θ = 2 ◦<br />

resulting in<br />

σ ⊥ = ω2 pe<br />

4πν e<br />

, σ ‖ = 1.96σ ⊥ (7)<br />

γ J (k) = ν ec 2 k 2<br />

2ω 2 pe<br />

(<br />

cos 2 θ + 0.51 sin 2 θ ) (8)<br />

Joule heating is neglected in favor <strong>of</strong> viscosity.<br />

3.2 Viscosity<br />

Viscosity was proposed <strong>by</strong> Hollweg (1985), <strong>the</strong> parameter η 0 cancels out due to <strong>the</strong> incompressibility<br />

<strong>of</strong> Alfvén <strong>wave</strong>s<br />

γ V (k) =<br />

k2 (<br />

(η<br />

p<br />

1<br />

2m p n + ηe 1) sin 2 θ + (η p 2 + ηe 2) cos 2 θ ) (9)<br />

e<br />

The electron contribution is small compared to <strong>the</strong> proton contribution<br />

Introducing<br />

γ V (k) ≃ 0.15 k BT p k 2 c 2 τ i<br />

(<br />

sin 2<br />

m p c 2 (Ω p τ i ) 2 θ + 4 cos 2 θ ) (10)<br />

k c = Ω p<br />

V A<br />

, κ = k k c<br />

we find for Joule and viscous <strong>damping</strong> toge<strong>the</strong>r<br />

γ V +J = 10 −7 κ 2 ( sin 2 θ + 4 cos 2 θ ) (11)<br />

As Joule and viscous <strong>damping</strong> have <strong>the</strong> same k 2 dependence and similar angular depence we may sum<br />

<strong>the</strong>m up. Integrating with 6 gives<br />

ɛ V +J = 4 · 10 7 1 + s<br />

3 − s (δB κ 3−s<br />

A) 2 kc<br />

2 max − κ 3−s<br />

min<br />

κ 1+s<br />

max − κ 1+s H V +J (Λ, s) (12)<br />

min<br />

H V +J (Λ, s) = 3F ( 2+s<br />

2+s<br />

2<br />

, 1; 3; 1 − Λ−1)<br />

8F ( 3F (<br />

2<br />

2+s<br />

2 , 1 2 ; 5 + , 2; 4; 1 − Λ−1 )<br />

2<br />

; 1 − Λ−1) 8F ( 2+s<br />

2 , 1 2 ; 5 2 ; 1 − (13)<br />

Λ−1 )


<strong>Heating</strong> <strong>of</strong> <strong>the</strong> <strong>ISM</strong> <strong>by</strong> Alfvén-<strong>wave</strong> <strong>damping</strong> 3<br />

resulting in<br />

ɛ V +J = 10 −39 erg s −1 cm −3 (Λ = 1) (14)<br />

This gives only a small contribution, so it has no influence on <strong>ISM</strong> heating.<br />

3.3 Collisionless Landau<br />

We are using <strong>the</strong> <strong>damping</strong> rate for obliquely propagating shear Alfvén <strong>wave</strong>s (Ginzburg 1961, p.218,<br />

Eq. (14.56))<br />

γ L =<br />

≃<br />

Inserting into Eq. (6) yields<br />

( π<br />

) 1/2 ω<br />

3<br />

v e tan 2 θ<br />

8 Ω 2 p V A sin 2 θ + 3(ω 2 /Ω 2 p) cos 2 θ<br />

× ( vi 2 /ve 2 + (sin 2 θ + 4 cos 2 θ) exp[−VA/(2v 2 i 2 cos 2 θ)] )<br />

( π<br />

) 1<br />

2 m e<br />

v e k c κ 3 cos θ + sin 2 θ<br />

8 m p sin 2 θ + 3κ 2 cos 4 θ<br />

(15)<br />

Approximations<br />

ɛ L = 1.1 · 10 −5 1 + s<br />

2 − s v ek c (δB A ) 2 κ2−s max − κ 2−s<br />

min<br />

κ 1+s<br />

max − κ 1+s H L (Λ, s) (16)<br />

min<br />

H L (Λ, s) = 3F ( 2+s<br />

2<br />

, 1; 3; 1 − Λ−1)<br />

8F ( 2+s<br />

2 , 1 2 ; 5 (17)<br />

2<br />

; 1 − Λ−1)<br />

H L (Λ ≫ 1) ≃ const (18)<br />

H L (Λ ≪ 1) ∝ Λ 1/2 (19)<br />

For given <strong>ISM</strong> parameters we find<br />

ɛ L ≃ 3.8 · 10 −42 erg s −1 cm −3 (Λ = 1) (20)<br />

Collisionless Landau <strong>damping</strong> can be ignored for any value <strong>of</strong> Λ.<br />

Comparison to Fast Magnetosonic <strong>wave</strong>s<br />

Lerche & Schlickeiser (2001):<br />

3.4 Ion-Neutral<br />

R(Λ = 1) = ɛA L (Λ = 1)<br />

ɛ M L (Λ = 1) ≃ (δB A) 2<br />

10−20<br />

(δB M ) 2 (21)<br />

R(Λ ≫ 1) ≃ 10 −20 Λ s/2 (δB A) 2<br />

R(Λ ≪ 1) ≃ 10 −20 Λ −s/2 (δB A) 2<br />

(δB M ) 2 (22)<br />

(δB M ) 2 (23)<br />

γ N (k) ≃ ν N cos 2 θ , κ ≥ κ N cos θ (24)<br />

ν N = 4 · 10 −9 n H Hz (25)<br />

κ N = ν N [Hz]<br />

(26)<br />

B[G]


4 Felix Spanier<br />

γ N holds for propagation angles | θ |≤ π 2 − ω R/43Ω p<br />

Integrating considering <strong>the</strong> critical <strong>wave</strong> number<br />

ɛ N =<br />

We have two approximations for H N :<br />

2<br />

π(2 − s)(4 − s) ν Nt s+1<br />

2<br />

E (δB A) 2 H N (Λ, s) (27)<br />

H N (Λ, s) =<br />

2+s<br />

3F (<br />

2 , 2; 3 − s 2 ; 1 − Λ)<br />

4F ( 2+s<br />

2 , 1 2 ; 5 2 ; 1 − Λ) (28)<br />

ɛ N = 1.74 · 10 −29 erg s −1 cm −3 (29)<br />

H N (Λ ≫ 1) ≃ 2 s−3 (4 − s)(2 − s) (30)<br />

H N (t E < Λ ≪ 1) ≃<br />

s + 1<br />

(4 − s)(2 − s) 2 Λ−s/2 (31)<br />

This is <strong>the</strong> most important process, though <strong>the</strong> heating rate is still too small to maintain <strong>the</strong><br />

temperature balance.<br />

4 Conclusion<br />

• Ion-Neutral Damping is <strong>the</strong> dominant <strong>damping</strong> process in Alfvén <strong>wave</strong>s<br />

• Anisotropy can reduce <strong>damping</strong> for perpendicular <strong>wave</strong>s<br />

• Alfvén <strong>wave</strong>s cannot contribute significantly to <strong>the</strong> temperature balance <strong>of</strong> <strong>the</strong> <strong>ISM</strong><br />

Fig. 2. Energy dissipation rate vs. anisotropy parameter Λ<br />

References<br />

Braginskii, S. I., 1965, Rev. Plasma Phys. 1, 205<br />

Ginzburg, V. I., 1961, Propagation <strong>of</strong> Electromagnetic Waves in Plasma, Pergamon Press, New York<br />

Hollweg, J. V., 1985, J. Geophys. Res. 90, 7620<br />

Kulsrud, R. M., & Pearce, W. P., 1969, ApJ 156, 445<br />

Lerche, I., & Schlickeiser, R., 1982, MNRAS 201, 1041<br />

Lerche, I., & Schlickeiser, R., 2001, A& A 366, 1008 (paper I)<br />

Lerche, I., & Schlickeiser, R., 2002, A& A 383, 319<br />

Minter, A. H., & Spangler, S. R., 1997, ApJ 485, 182<br />

Schlickeiser, R., & Lerche, I., 2002, J. Plasma Phys. 68, 191<br />

Spangler, S. R., 1991, ApJ 376, 540

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!