07.03.2014 Views

Novel Organic Synthesis in Supercritical Carbon Dioxide - ISASF

Novel Organic Synthesis in Supercritical Carbon Dioxide - ISASF

Novel Organic Synthesis in Supercritical Carbon Dioxide - ISASF

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Novel</strong> <strong>Organic</strong> <strong>Synthesis</strong> <strong>in</strong> <strong>Supercritical</strong> <strong>Carbon</strong> <strong>Dioxide</strong><br />

Sarah A. Brough, Christopher M. Rayner* and Anthony A. Clifford, Department of Chemistry, University of<br />

Leeds, Leeds, LS2 9JT, UK, C.M.Rayner@leeds.ac.uk, Fax +44 113 343 6565<br />

INTRODUCTION<br />

We have pursued a programme of <strong>in</strong>vestigat<strong>in</strong>g the substitution of environmentally benign<br />

supercritical carbon dioxide (scCO 2 ) for organic solvents <strong>in</strong> synthetic chemistry [1]. The<br />

focus of the present study is to synthesise novel bis-oxazol<strong>in</strong>e (BOX) ligands for use as<br />

catalysts <strong>in</strong> asymmetric cyclopropanation reactions utilis<strong>in</strong>g scCO 2 as a solvent [2-3]. BOX<br />

ligands have become one of the most successful, versatile and commonly used class of<br />

ligands for asymmetric catalysis [4], and can be applied <strong>in</strong> a wide range of metal catalysed<br />

organic transformations [5].<br />

FORMATION OF BOX LIGANDS<br />

The majority of BOX ligands are derived from readily available am<strong>in</strong>o acids.<br />

R 1 CO 2 H LiAlH 4<br />

R 1<br />

OH<br />

NH 2<br />

THF NH 2<br />

Yield = R 1 = i -Pr 84 %<br />

R 1 = t -Bu 90 %<br />

Cl NH 2 NH 2 Cl<br />

EtO OEt<br />

CH 2 Cl 2<br />

R 1 = i -Pr, t -Bu or Bn<br />

O<br />

R 1<br />

N<br />

N<br />

O<br />

R 1<br />

Yield = R 1 = i -Pr 56 %<br />

R 1 = t -Bu 43 %<br />

Scheme 1<br />

Alkyl, ester or amide groups were <strong>in</strong>corporated <strong>in</strong> the R 2 position to enhance the solubility of<br />

the ligand <strong>in</strong> scCO 2 .<br />

O<br />

R 1<br />

N<br />

N<br />

O<br />

R 1<br />

(1) n-BuLi<br />

(2) R 2 -Br<br />

THF<br />

R 2 R 2<br />

O<br />

N N<br />

R 1<br />

O<br />

R 1<br />

R 1 = i -Pr, t -Bu or Bn<br />

R 2 = n -Bu, Me, CH 2 CO 2 Et or CH 2 CONEt 2<br />

Scheme 2


BOX CATALYSED ASYMMETRIC CYCLOPROPANATION REACTIONS<br />

The cyclopropyl group is found as a basic structural element <strong>in</strong> a wide range of naturally<br />

occurr<strong>in</strong>g plants and micro-organisms [2,6]. Asymmetric cyclopropanation reactions have<br />

been extensively studied, and are usually carried out <strong>in</strong> conventional solvents such as CHCl 3<br />

and CH 2 Cl 2 . Studies have also been carried out <strong>in</strong> scCHF 3 demonstrat<strong>in</strong>g <strong>in</strong>terest<strong>in</strong>g solvent<br />

effects [7]. In conventional solvents, the gem-dimethyl derivative typically gave the best<br />

enantioselectivity, hence is the most widely used chiral BOX ligand [8].<br />

O O<br />

N N<br />

Cu<br />

t-Bu t-Bu<br />

R 2 TfO OTf<br />

+<br />

R R R 1 R 2<br />

1 1 R<br />

+<br />

2<br />

N2 CHCl 3 or CH 2 Cl 2<br />

+<br />

R 2<br />

R 2<br />

R 1 or R 2 = aliphatic or aromatic<br />

Scheme 3<br />

BOX CATALYSED CYCLOPROPANATION REACTIONS IN scCO 2 COMPARED<br />

WITH CONVENTIONAL SOLVENTS<br />

Cyclopropanation reactions of styrene and ethyl diazoacetate were performed <strong>in</strong> scCO 2 us<strong>in</strong>g<br />

1 mol% BOX catalyst at different pressures to identify conditions for optimum selectivity.<br />

The same reactions were also carried out <strong>in</strong> chloroform and toluene as conventional solvents<br />

comparison. Results are presented for the four ligands shown <strong>in</strong> Scheme 4.<br />

Ph<br />

+<br />

N 2<br />

CO 2 Et<br />

R 2 R 2<br />

O O<br />

N N<br />

Cu<br />

R 1 R 1<br />

TfO OTf<br />

scCO 2<br />

Ph<br />

CO 2 Et<br />

+<br />

Ph<br />

CO 2 Et<br />

+<br />

EtO 2 C<br />

CO 2 Et<br />

R 1 = i Pr, t Bu or Bn<br />

n-Bu<br />

O<br />

n-Bu<br />

O<br />

EtO 2 CH 2 C<br />

O<br />

CH 2 CO 2 Et<br />

O<br />

N<br />

N<br />

N<br />

N<br />

R 2 = n Bu, CH 2 CO 2 Et, CH 2 CONEt 2<br />

N N<br />

1 2<br />

Et 2 NOCH 2 C<br />

O<br />

CH 2 CONEt 2<br />

O<br />

O<br />

O<br />

N<br />

N<br />

3 4<br />

Scheme 4


Table 1: Enantiometric excess (%) for the<br />

reaction <strong>in</strong> conventional solvents for the four<br />

ligands<br />

Enantiomeric exess (%)<br />

100<br />

90<br />

75<br />

50<br />

Ligand Chloroform Toluene<br />

1 >95 80<br />

2 45 23<br />

3 59 58<br />

4 87 88<br />

80<br />

100<br />

Pressure (bar)<br />

Ligand 1: Ligand 2: Ligand 3: Ligand 4:<br />

120<br />

Figure 1: ee values for the cyclopropanation<br />

reaction studies <strong>in</strong> scCO 2 .<br />

Enantiomeric excess values were<br />

determ<strong>in</strong>ed us<strong>in</strong>g HPLC (chiracel OJ<br />

column and elution with hexane/2-<br />

propanol (98:2) and a flow rate of 0.5<br />

ml/ m<strong>in</strong>ute, after reduction to the<br />

primary alcohol). Table 1 shows<br />

results for the enantiomeric excess<br />

(ee) obta<strong>in</strong>ed <strong>in</strong> conventional<br />

solvents. Ligands 1 and 4 perform<br />

relatively well, with >95% ee<br />

obta<strong>in</strong>ed for Ligand 1 <strong>in</strong> chloroform,<br />

but the others perform badly.<br />

Results for experiments carried<br />

out <strong>in</strong> scCO 2 are summarised <strong>in</strong><br />

Figure 1. As can be seen, the pressure<br />

can be altered to optimise<br />

enantioselectivity, with the optimum<br />

pressure around 115 bar. Ligand 2<br />

gave most <strong>in</strong>terest<strong>in</strong>g results as low ee<br />

was observed <strong>in</strong> chloroform (45%)<br />

and toluene (23%), but was much<br />

higher <strong>in</strong> scCO 2 at 115 bar (91%).<br />

Such high selectivities are rare with<br />

val<strong>in</strong>e-derived BOX ligands. Thus,<br />

cheaper L-val<strong>in</strong>e (€4.00 per g) derived<br />

BOX can be used <strong>in</strong> place of L-tertleuc<strong>in</strong>e<br />

(€33.50 per g) derived BOX<br />

ligands for cyclopropanation reactions<br />

<strong>in</strong> scCO 2 at 115 bar.<br />

YIELD OPTIMISATION<br />

Literature procedures for the reaction of styrene and ethyl diazoacetate <strong>in</strong> conventional<br />

solvents gave optimum yields (~50-95 %) if the diazoacetate was added over 24 hours via a<br />

syr<strong>in</strong>ge pump [9]. This reduced unwanted dimerisation of ethyl diazoacetate.<br />

EtO 2 C<br />

+<br />

CuBOX<br />

N 2<br />

CO 2 Et<br />

BOXCu<br />

EtO 2 C<br />

CO 2 Et<br />

N 2<br />

EtO 2 C<br />

CO 2 Et<br />

Scheme 5<br />

As this cannot be achieved us<strong>in</strong>g scCO 2 on current small scales, we have constructed a<br />

system, shown <strong>in</strong> Figure 2, which allows the ethyl diazoacetate to be added slowly to a 250<br />

ml reactor over a fixed period of time. Initial results show that slow addition of diazoacetate<br />

can decrease the extent of dimerisation, and this is currently be<strong>in</strong>g optimised.


enantiomeric excess of 91%.<br />

Figure 2: 250 mL reactor<br />

CONCLUSIONS<br />

1. It is possible to optimise the<br />

enantioselectivity of the<br />

asymmetric cyclopropanation<br />

reaction us<strong>in</strong>g BOX ligands <strong>in</strong><br />

scCO 2 us<strong>in</strong>g pressure.<br />

2. In some cases higher<br />

selectivities are obta<strong>in</strong>ed, than<br />

those available <strong>in</strong> conventional<br />

solvents with comparable<br />

ligands.<br />

3. In particular, cheaper L-val<strong>in</strong>e<br />

derived BOX ligands can be<br />

used <strong>in</strong> place of L-tert-leuc<strong>in</strong>e<br />

derived BOX ligands <strong>in</strong><br />

asymmetric cyclopropanation<br />

reactions, with an optimum<br />

REFERENCES:<br />

[1] OAKES, R.S.; CLIFFORD, A.A.; RAYNER, C.M. J. Chem. Soc., Perk<strong>in</strong> Trans. 1,<br />

2001, p. 918<br />

[2] GHOSH, A.K.; MATHIVANAN, P.; CAPPIELLO, J. Tetrahedron asymmetry, Vol. 9,<br />

1998, p. 1<br />

[3] DOYLE, M.P.; PROTOPOPOVA, M.N. Tetrahedron, 1998, p. 7919<br />

[4] MCMANUS, H.A.; GUIRY, P.T. Chem. Rev., 2004, p. 4151<br />

[5] CHRISTENSEN, C.; JULH, K.; JORGENSEN, K.A. Chem. Comm., 2001, p. 2222<br />

[6] LEBEL, H.; MARCOUX, J-F.; MOLINARO, C.; CHARETTE, A.B. Chem. Rev.,<br />

2003, p. 997<br />

[7] WYNNE, D.C., JESSOP, P.G. Angew. Chem. Int. Ed., Vol. 38, 1999, p. 1143<br />

[8] SALAUN, J. Chem. Rev., 1989, p. 147<br />

[9] LOWENTHAL, R.E.; ABIKO, A.; MASUME, S. Tetrahedron Lett., Vol. 31, 1990, p.<br />

6005

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!