10.03.2014 Views

Solid State Theory Solution Sheet 3

Solid State Theory Solution Sheet 3

Solid State Theory Solution Sheet 3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Solid</strong> <strong>State</strong> <strong>Theory</strong><br />

<strong>Solution</strong> <strong>Sheet</strong> 3<br />

FS 2013<br />

Prof. M. Sigrist<br />

Exercise 3.1<br />

Lifting the degeneracy of atomic states<br />

The continuous group O(3) has irreducible representations in each odd dimension 2l + 1.<br />

The spherical harmonics Y lm (θ, φ) (m = −l, . . . , l) form a basis for the (2l+1)-dimensional<br />

representations. Within the group O(3), each element which describes a rotation by the<br />

same angle belongs to the same conjugacy class. Therefore, we can focus on the rotations<br />

around the z-axis. A rotation around the z-axis transforms the spherical harmonics<br />

according to<br />

Y lm (θ, φ) ↦→ Y lm (θ, φ + α) = e imα Y lm (θ, φ).<br />

The matrix for such a rotation is diagonal in the basis of the spherical harmonics:<br />

The trace is given by<br />

χ l (α) =<br />

D (l) (α) = diag(e −ilα , . . . , e ilα ). (1)<br />

l∑<br />

m=−l<br />

e imα = 1 +<br />

l∑<br />

e imα +<br />

m=1<br />

l∑<br />

m=1<br />

e −imα<br />

= 1 + eiα − e iα(l+1)<br />

+ e−iα − e −iα(l+1)<br />

= . . .<br />

1 − e iα 1 − e −iα<br />

=<br />

cos(αl) − cos [α(l + 1)]<br />

1 − cos(α)<br />

= sin [ α(l + 1 2 )]<br />

sin( α 2 ) (2)<br />

Now we assume that the atom belongs to a crystal with a crystal field of cubic symmetry.<br />

Due to the reduced symmetry, the representations will in general split into irreducible<br />

representations of O h .<br />

p-orbitals, l=1 From Eq. (2) we obtain for l = 1 the following group character<br />

O h E C 3 (8) C 2 4(3) C 2 (6) C 4 (6)<br />

χ p 3 0 −1 −1 1<br />

There is no need to worry about the inversion, because the parity of the spherical<br />

harmonics is known to be (−1) l . Using the orthogonality relation we find<br />

n Γ1 = 1 (3 − 3 − 6 + 6) = 0,<br />

24<br />

n Γ2 = 1 (3 − 3 + 6 − 6) = 0,<br />

24<br />

n Γ12 = 1 (6 − 6) = 0,<br />

24<br />

n Γ15 = 1 (9 + 3 + 6 + 6) = 1,<br />

24<br />

n Γ25 = 1 (3 − 3 + 6 − 6) = 0.<br />

24<br />

Because the parity for l = 1 is −1 it follows that D 1 ↦→ Γ − 15.<br />

1


d-orbitals, l=2 In the same way we find for l = 2<br />

and<br />

O h E C 3 (8) C 2 4(3) C 2 (6) C 4 (6)<br />

χ d 5 −1 1 1 −1<br />

n Γ1 = 1 (5 − 8 + 3 + 6 − 6) = 0,<br />

24<br />

n Γ2 = 1 (5 − 8 + 3 − 6 + 6) = 0,<br />

24<br />

n Γ12 = 1 (10 + 8 + 6) = 1,<br />

24<br />

n Γ15 = 1 (15 − 3 − 6 − 6) = 0,<br />

24<br />

n Γ25 = 1 (15 − 3 + 6 + 6) = 1.<br />

24<br />

Since the parity is now positive it follows that D 2 ↦→ Γ + 12 ⊕ Γ + 25.<br />

f-orbitals, l=3<br />

This yields<br />

O h E C 3 (8) C 2 4(3) C 2 (6) C 4 (6)<br />

χ f 7 1 −1 −1 −1<br />

n Γ1 = 1 (7 + 8 − 3 − 6 − 6) = 0,<br />

24<br />

n Γ2 = 1 (7 + 8 − 3 + 6 + 6) = 1,<br />

24<br />

n Γ12 = 1 (14 − 8 − 6) = 0,<br />

24<br />

n Γ15 = 1 (21 + 3 + 6 − 6) = 1,<br />

24<br />

n Γ25 = 1 (21 + 3 − 6 + 6) = 1.<br />

24<br />

Because of the negative parity we obtain D 3 ↦→ Γ − 2 ⊕ Γ − 15 ⊕ Γ − 25.<br />

Eigenfunctions of the d-orbitals We know that D 2 ↦→ Γ + 12 ⊕ Γ + 25, where Γ + 12 and Γ + 25<br />

are two- and three-dimensional representations, respectively. It is also known that<br />

the spherical harmonics for l = 2 form a basis for the harmonic, homogeneous<br />

polynomials of order 2. Such a polynomial can be written as<br />

P = c 1 xz + c 2 xy + c 3 yz + c 4 (x 2 − z 2 ) + c 5 (y 2 − z 2 ), (3)<br />

where it is implicitly assumed that x 2 + y 2 + z 2 = 1. Now let us consider a rotation<br />

around the z axis by π/2. Thus, z ↦→ z, x ↦→ y and y ↦→ −x. This yields<br />

xz ↦→ yz, xy ↦→ −xy, yz ↦→ −xz,<br />

x 2 ↦→ y 2 , y 2 ↦→ x 2 , z 2 ↦→ z 2 .<br />

2


We see that the triple {xz, xy, yz} and the pair {x 2 − z 2 , y 2 − z 2 } do not mix under<br />

this transformation.<br />

Therefore, {xz, xy, yz} = { cos φ sin θ cos θ, cos φ sin φ sin 2 θ, sin φ sin θ cos θ } is a basis<br />

for Γ + 25 and {x 2 − z 2 , y 2 − z 2 } = {cos φ 2 sin θ 2 − cos θ 2 , sin φ 2 sin θ 2 − cos θ 2 } is a<br />

basis for Γ + 12. Often, the two-dimensional subspace of Γ + 12 is called the e g subspace<br />

and the three dimensional subspace of Γ + 25 is called the t 2g subspace.<br />

Exercise 3.2<br />

Two-orbital tight-binding model in 2d<br />

a) The Bloch-waves constitute a basis of the (quasi-2-dimensional) Hilbert space of<br />

the system. Since the Wannier functions are the “Fourier-transforms” of the Blochwaves,<br />

they, too, span the whole Hilbert space. Thus, we can write<br />

H =<br />

∑<br />

〈w α (r − r j )|H|w α ′(r − r j ′)〉c † αj c α ′ j<br />

, (4)<br />

′<br />

α, α ′ , j, j ′<br />

which can be split in two terms as<br />

H = ∑ α<br />

H α + ∑ α≠α ′ H α,α ′. (5)<br />

Considering only intra-band hopping terms and restricting the sum to nearest neighbour<br />

terms, we obtain<br />

H α = ∑ j<br />

ε α c † αj c αj + (tx αc † α(j+ˆx) c αj + ty αc † α(j+ŷ) c αj<br />

+ h.c.) (6)<br />

with<br />

ε α =〈w α (r)|H|w α (r)〉, (7)<br />

t x α =〈w α (r − aˆx)|H|w α (r)〉, (8)<br />

t y α =〈w α (r − aŷ)|H|w α (r)〉. (9)<br />

Considering the overlap elements t x/y<br />

α<br />

for both bands, we recognize that<br />

t x p x<br />

= t y p y<br />

, (10)<br />

t x p y<br />

= t y p x<br />

(11)<br />

due to the symmetry properties of the lattice system and the atomic orbitals.<br />

b) If we approximate the Wannier functions (which are orthogonal to each other) by<br />

atomic (hydrogen) states (which are not orthogonal to each other), we choose the<br />

orientation of the orbitals such that<br />

{<br />

positive, x > 0,<br />

sign(w px (r)) =<br />

(12)<br />

negative, x < 0,<br />

{<br />

positive, y > 0,<br />

sign(w py (r)) =<br />

(13)<br />

negative, y < 0.<br />

3


=〈w py (r − aˆx)|ε py + ∑ j≠0<br />

=〈w py (r − aŷ)|ε py + ∑ j≠0<br />

Using H j=0 w α (r) = (H kin + V (r))w α (r) = ε α w α (r), we find for the matrix elements<br />

t x p x<br />

=〈w px (r − aˆx)|ε px + ∑ j≠0<br />

V (r − r j )|w px (r)〉 (14)<br />

t y p x<br />

=〈w px (r − aŷ)|ε px + ∑ j≠0<br />

V (r − r j )|w px (r)〉 (15)<br />

t x p y<br />

V (r − r j )|w py (r)〉 (16)<br />

t y p y<br />

V (r − r j )|w py (r)〉. (17)<br />

The main contribution to this matrix element comes from the region between the two<br />

lattice sites where the two orbitals have opposite sign. As ε α < 0 and V (r) < 0, we<br />

obtain that t x p x<br />

= t y p y<br />

> 0. For t y p x<br />

, the orbitals have the same sign and t y p x<br />

= t x p y<br />

< 0.<br />

Performing the Fourier transformation<br />

c αj = √ 1 ∑<br />

e −ik·r j<br />

c αk (18)<br />

N<br />

of the annihilation operators in the Hamiltonian, we obtain<br />

k<br />

H α = ∑ k<br />

ε α,k c † αk c αk<br />

(19)<br />

with<br />

ε px,k = ε + 2t 1 cos(k x a) − 2t 2 cos(k y a) (20)<br />

ε py,k = ε − 2t 2 cos(k x a) + 2t 1 cos(k y a) (21)<br />

where ε = ε px = ε py , t 1 = t x p x<br />

, and t 2 = −t y p x<br />

> 0. The band structure and the Fermi<br />

surface (ɛ F = ɛ for half-filling) are visualized in Fig. 1.<br />

c) We now also take into account the coupling between the different bands. The<br />

nearest neighbour hopping matrix elements between different bands vanishes due to<br />

the symmetry of the orbitals. Therefore, we have to consider next-nearest neighbour<br />

hopping between different bands. In the same way as before, we obtain<br />

H α,α ′ = ∑ j<br />

t + αα<br />

c † ′ α(j+ˆx+ŷ) c α ′ j + t− αα<br />

c † ′ α(j+ˆx−ŷ) c α ′ j<br />

+ h.c. (22)<br />

with<br />

t ± αα ′ =〈w α (r − a(ˆx ± ŷ)|H|w α ′(r)〉 (23)<br />

Due to symmetry properties and the analogue consideration as above, we obtain<br />

t + p xp y<br />

= t + p yp x<br />

= −t − p xp y<br />

= −t − p yp x<br />

≡ t 3 > 0. Performing a Fourier transform of the<br />

Hamiltonian, we obtain<br />

H α,α ′ = ∑ k<br />

−4t 3 sin(k x a) sin(k y a)c † αk c α ′ k . (24)<br />

4


1.0<br />

0.5<br />

0.0<br />

0.5<br />

1.0<br />

1.0 0.5 0.0 0.5 1.0<br />

1.0<br />

0.5<br />

0.0<br />

0.5<br />

1.0<br />

1.0 0.5 0.0 0.5 1.0<br />

Figure 1: The band structure in the absence of interband coupling is visualized by a 3d plot<br />

and contour plot of the two bands. Also shown is the Fermi surface (t 1 = 0.4, t 2 = 0.05).<br />

Defining g k = −4t 3 sin(k x a) sin(k y a), the complete Hamiltonian can be written as<br />

H = ∑ k<br />

( )<br />

c † T ( ) ( )<br />

p xk εpxk g k c pxk<br />

c † p yk<br />

g k ε pyk<br />

c pyk<br />

(25)<br />

such that to diagonalize the Hamiltonian, we have to find the Eigenvalues E ± k<br />

the matrix above determined by the equation<br />

of<br />

The calculation is straightforward and we obtain<br />

(ε pxk − E ± k )(ε p yk − E ± k ) − g2 k = 0. (26)<br />

E ± k = ε + (t 1 − t 2 )(cos(k x a) + cos(k y a)) (27)<br />

√<br />

± (t 1 + t 2 ) 2 (cos(k x a) − cos(k y a)) 2 + 16t 2 3 sin 2 (k x a) sin 2 (k y a).<br />

The resulting band structure and the Fermi surface (ɛ F<br />

plotted in Fig. 2.<br />

= ɛ for half-filling) are<br />

5


1.0<br />

0.5<br />

0.0<br />

0.5<br />

1.0<br />

1.0 0.5 0.0 0.5 1.0<br />

1.0<br />

0.5<br />

0.0<br />

0.5<br />

1.0<br />

1.0 0.5 0.0 0.5 1.0<br />

Figure 2: The band structure in the presence of interband coupling is visualized by a 3d<br />

plot and contour plot of the two bands. Also shown is the Fermi surface (t 1 = 0.4, t 2 =<br />

0.05, t 3 = 0.1).<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!