10.03.2014 Views

Decidability of Description Logics with Transitive Closure of Roles

Decidability of Description Logics with Transitive Closure of Roles

Decidability of Description Logics with Transitive Closure of Roles

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

9. (Y 2<br />

1 ) I = {〈a (k,l) , a (k,l+1) 〉 | (k mod 2 = 1)∧(l mod 2 =<br />

1)}<br />

10. (P 11<br />

12 ) I = {〈a (k,l) , a (k+1,l) 〉 | (k mod 2 = 0) ∧<br />

(l mod 2 = 0)}∪<br />

{〈a (k,l) , a (k,l+1) 〉 | (k mod 2 = 1) ∧ (l mod 2 = 0)}<br />

11. (P 11<br />

21 ) I = {〈a (k,l) , a (k+1,l) 〉 | (k mod 2 = 0) ∧<br />

(l mod 2 = 1)}∪<br />

{〈a (k,l) , a (k,l+1) 〉 | (k mod 2 = 0) ∧ (l mod 2 = 0)}<br />

12. (P 22<br />

12 ) I = {〈a (k,l) , a (k+1,l) 〉 | (k mod 2 = 1) ∧<br />

(l mod 2 = 1)}∪<br />

{〈a (k,l) , a (k,l+1) 〉 | (k mod 2 = 0) ∧ (l mod 2 = 1)}<br />

13. (P 22<br />

21 ) I = {〈a (k,l) , a (k+1,l) 〉 | (k mod 2 = 1) ∧<br />

(l mod 2 = 0)}∪<br />

{〈a (k,l) , a (k,l+1) 〉 | (k mod 2 = 1) ∧ (l mod 2 = 1)}<br />

14. (P 21<br />

21 ) I = {〈a (k,l) , a (k+1,l) 〉 | (k mod 2 = 1) ∧<br />

(l mod 2 = 0)}∪<br />

{〈a (k,l) , a (k,l+1) 〉 | (k mod 2 = 0) ∧ (l mod 2 = 0)}<br />

15. (P 21<br />

12 ) I = {〈a (k,l) , a (k+1,l) 〉 | (k mod 2 = 1) ∧<br />

(l mod 2 = 1)}∪<br />

{〈a (k,l) , a (k,l+1) 〉 | (k mod 2 = 1) ∧ (l mod 2 = 0)}<br />

16. (P 12<br />

21 ) I = {〈a (k,l) , a (k+1,l) 〉 | (k mod 2 = 0) ∧<br />

(l mod 2 = 1)}∪<br />

{〈a (k,l) , a (k,l+1) 〉 | (k mod 2 = 1) ∧ (l mod 2 = 1)}<br />

17. (P 12<br />

12 ) I = {〈a (k,l) , a (k+1,l) 〉 | (k mod 2 = 0) ∧<br />

(l mod 2 = 0)}∪<br />

{〈a (k,l) , a (k,l+1) 〉 | (k mod 2 = 0) ∧ (l mod 2 = 1)}<br />

18. (ε AD ) I = {〈a (k,l) , a (k+1,l+1) 〉 | (k mod 2 = 0) ∧<br />

(l mod 2 = 0)}<br />

19. (ε DA ) I = {〈a (k,l) , a (k+1,l+1) 〉 | (k mod 2 = 1) ∧<br />

(l mod 2 = 1)}<br />

20. (ε BC ) I = {〈a (k,l) , a (k+1,l+1) 〉 | (k mod 2 = 1) ∧<br />

(l mod 2 = 0)}<br />

21. (ε BC ) I = {〈a (k,l) , a (k+1,l+1) 〉 | (k mod 2 = 0) ∧<br />

(l mod 2 = 1)}<br />

22. D i I = {a (k,l) | t(k, l) = D i } for each D i ∈ D<br />

23. A I = {a (k,l) | (k mod 2 = 0) ∧ (l mod 2 = 0)}<br />

24. D I = {a (k,l) | (k mod 2 = 1) ∧ (l mod 2 = 1)}<br />

25. B I = {a (k,l) | (k mod 2 = 1) ∧ (l mod 2 = 0)}<br />

26. C I = {a (k,l) | (k mod 2 = 0) ∧ (l mod 2 = 1)}<br />

27. X I = X1<br />

1 I<br />

∪ X<br />

1I 2 ∪ X<br />

2I 1 ∪ X<br />

2I<br />

2<br />

28. Y I = Y1<br />

1 I<br />

∪ Y<br />

1I 2 ∪ Y<br />

2I 1 ∪ Y<br />

2I<br />

2<br />

We now check that I satisfies all axioms in Definition 8.<br />

1. X i r ⊑ P ij<br />

⊑ Prs ij for all i, j, r, s ∈ {1, 2}, r ≠ s.<br />

For each k, l ≥ 0, we consider the following cases:<br />

rs, Ys<br />

j<br />

• Assume (k mod 2 = 0) ∧ (l mod 2 = 0). From the<br />

assertions 2, 6, we have 〈a (k,l) , a (k+1,l) 〉 ∈ X1 1 I<br />

, and<br />

〈a (k,l) , a (k,l+1) 〉 ∈ Y1<br />

1 I<br />

. From the assertions 10, 11 we<br />

have 〈a (k,l) , a (k+1,l) 〉 ∈ P12 11 I<br />

and 〈a(k,l) , a (k,l+1) 〉 ∈<br />

P21 11 I<br />

.<br />

• Assume (k mod 2 = 1) ∧ (l mod 2 = 0). Similarly.<br />

• Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.<br />

• Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.<br />

2. Xr i ⊑ X, Yr<br />

i ⊑ Y for all i, r ∈ {1, 2}. From assertions<br />

27 and 28.<br />

3. ε AD ⊑ (P 11<br />

12 ) + , ε AD ⊑ (P 11<br />

21 ) + .<br />

For each k, l ≥ 0, we consider the following cases:<br />

Y 1<br />

2<br />

• Assume (k mod 2 = 0) ∧ (l mod 2 = 0).<br />

From the assertion 18, we have 〈a (k,l) , a (k+1,l+1) 〉 ∈<br />

ε I AD . From the assertions 2 and 8 it follows that<br />

〈a (k,l) , a (k+1,l) 〉 ∈ X1 1 I<br />

, 〈a(k+1,l) , a (k+1,l+1) 〉 ∈<br />

I<br />

(note that (k + 1 mod 2 = 1)). By the assertion<br />

10 we have 〈a (k,l) , a (k+1,l) 〉 ∈ P 11<br />

12<br />

I<br />

and<br />

〈a (k+1,l) , a (k+1,l+1) 〉 ∈ P12 11 I<br />

. This implies that<br />

〈a (k,l) , a (k+1,l+1) 〉 ∈ (P12 11 ) +I .<br />

On the other hand, from the assertions 6 and 4 we<br />

have 〈a (k,l) , a (k,l+1) 〉 ∈ Y1<br />

1 I<br />

, 〈a(k,l+1) , a (k+1,l+1) 〉 ∈<br />

X2 1 I<br />

(note that (l + 1 mod 2 = 1)). By the<br />

assertion 11 we have 〈a (k,l) , a (k,l+1) 〉 ∈ P21 11 I<br />

,<br />

〈a (k,l+1) , a (k+1,l+1) 〉 ∈ P21 11 I<br />

. This implies that<br />

〈a (k,l) , a (k+1,l+1) 〉 ∈ (P21 11 ) +I .<br />

• Assume (k mod 2 = 1) ∧ (l mod 2 = 0). Similarly.<br />

• Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.<br />

• Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.<br />

4. ε DA ⊑ (P12 22 ) + , ε DA ⊑ (P21 22 ) + . Similarly.<br />

5. ε BC ⊑ (P21 21 ) + , ε BC ⊑ (P12 21 ) + . Similarly.<br />

6. ε CB ⊑ (P21 12 ) + , ε CB ⊑ (P12 12 ) + . Similarly.<br />

7. ⊤ ⊑ ≤ 1Pr,s ij for all i, j, r, s ∈ {1, 2}, r ≠ s.<br />

For each k, l ≥ 0, we consider the following cases:<br />

• Assume (k mod 2 = 0) ∧ (l mod 2 = 0). From the<br />

assertions 10, 11, 14, 17 we have 〈a (k,l) , a (k+1,l) 〉 ∈<br />

P12<br />

11 I<br />

, 〈a(k,l) , a (k,l+1) 〉 ∈ P21 11 I<br />

, 〈a(k,l) , a (k,l+1) 〉 ∈<br />

I<br />

and 〈a(k,l) , a (k+1,l) 〉 ∈ P 12<br />

P 21<br />

21<br />

12<br />

I<br />

.<br />

• Assume (k mod 2 = 1) ∧ (l mod 2 = 0). Similarly.<br />

• Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.<br />

• Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.<br />

8. ⊤ ⊑ ≤ 1X, ⊤ ⊑ ≤ 1Y .<br />

For each k, l ≥ 0, we consider the following cases:<br />

• Assume (k mod 2 = 0) ∧ (l mod 2 = 0). From<br />

the assertions 2, 6 we have 〈a (k,l) , a (k+1,l) 〉 ∈ X1 1 I<br />

,<br />

〈a (k,l) , a (k,l+1) 〉 ∈ Y1<br />

1 I<br />

. From the assertion 28, we<br />

have 〈a (k,l) , a (k+1,l) 〉 ∈ X I , 〈a (k,l) , a (k,l+1) 〉 ∈ Y I .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!