12.03.2014 Views

Full Text - Journal of Theoretical and Applied Information Technology

Full Text - Journal of Theoretical and Applied Information Technology

Full Text - Journal of Theoretical and Applied Information Technology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Journal</strong> <strong>of</strong> <strong>Theoretical</strong> <strong>and</strong> <strong>Applied</strong> <strong>Information</strong> <strong>Technology</strong><br />

10 th June 2013. Vol. 52 No.1<br />

© 2005 - 2013 JATIT & LLS. All rights reserved .<br />

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195<br />

(11)<br />

C<br />

m n<br />

i<br />

throughput<br />

pS p<br />

i j<br />

i= 1 j=<br />

1 n<br />

= ∑∑ ù<br />

In which, the probability, which the source (or<br />

relay) node sent information was p .<br />

5. THROUGHPUT ANALYSIS<br />

Now we analyse the throughput <strong>of</strong> multi-source<br />

sink relay sensor network.<br />

Throughput <strong>of</strong> sensor network when m= n = 1<br />

There is only a source (or relay) node S 1<br />

<strong>and</strong> a<br />

target (or relay) node R<br />

1<br />

, i = j = 1 , so it is a<br />

situation <strong>of</strong> unicast <strong>and</strong> non-cooperation diversity.<br />

Because the probability density function <strong>of</strong> gain<br />

2<br />

| g<br />

ij<br />

| is p 2 ( x ) = e − x , <strong>and</strong> in here i = j = 1 , so<br />

| g |<br />

ij<br />

from the formula (9) <strong>and</strong> (11), we have:<br />

C = ù = =<br />

p Pr{ t < 1}<br />

throughput, m n 1 1 S1<br />

1<br />

⎧ ù<br />

⎫<br />

1<br />

= ù<br />

1<br />

p S<br />

Pr ⎨<br />

< 1<br />

1<br />

2 ⎬<br />

⎩log(1 + | g11 | ⋅PS<br />

(<br />

1))<br />

⎭<br />

ù 1<br />

⎧e<br />

−1<br />

2<br />

⎫<br />

+∞<br />

− x<br />

= ù<br />

1<br />

pS<br />

Pr ⎨ < | g<br />

1<br />

11<br />

| ⎬ = 1<br />

1<br />

1<br />

1<br />

⎩PS<br />

(<br />

1)<br />

ù pS<br />

∫ e e dx<br />

ù −<br />

⎭<br />

P( S1<br />

)<br />

ù 1<br />

⎧ e −1⎫<br />

= ù<br />

1<br />

pS<br />

exp ⎨−<br />

⎬<br />

(12)<br />

1<br />

⎩ PS (<br />

1)<br />

⎭<br />

From(12), if the source (or relay ) node S 1<br />

sent the information to R<br />

1<br />

with the nonzero<br />

probability p<br />

S 1<br />

<strong>and</strong> the rate ù 1<br />

, C<br />

throughput, m= n=<br />

1<br />

reached the maximum. Hence, when the level <strong>of</strong><br />

node power <strong>and</strong> the possibility <strong>of</strong> sending<br />

information are to achieve a dynamic balance, the<br />

throughput was maximum.<br />

Throughput <strong>of</strong> sensor network when m = 2 ,<br />

n = 2<br />

There were two source (or relay) nodes <strong>and</strong><br />

target (or relay) nodes, respectively, <strong>and</strong> the<br />

network was based on the cooperative diversity<br />

model, radio strategy <strong>and</strong> decoding technology<br />

mentioned above in this paper. Because the Joint<br />

2<br />

probability density function16 <strong>of</strong> gain | g<br />

i1<br />

| <strong>and</strong><br />

2<br />

| g | ( i = 1, 2) was<br />

i2<br />

S i<br />

<strong>and</strong> the conditional probability density function was<br />

y x<br />

p ( x| y)<br />

= e − , ( i = 1, 2) . We have the<br />

2 2<br />

| gi1| | gi2|<br />

theorem 1.<br />

Theorem 1 Based on the cooperative diversity<br />

model, radio strategy <strong>and</strong> decoding technology<br />

mentioned above, the parameters were described as<br />

2<br />

following: the path index was | g<br />

ij<br />

| , the<br />

2<br />

cooperation index was G , the power <strong>of</strong> source<br />

node was PS ( i<br />

) , the rate <strong>of</strong> sending information<br />

was ù<br />

i<br />

, i, j = 1, 2 . Then the throughput <strong>of</strong> sensor<br />

network was:<br />

2<br />

i S<br />

C<br />

throughput, m= n= 2<br />

= ∑<br />

i<br />

(<br />

i=<br />

1 2<br />

ù<br />

p<br />

L<br />

× 1+ e − e − L<br />

+<br />

ù 1 ù 2<br />

⎧ ⎫ ⎧ ⎫⎞<br />

e −1 e −1<br />

+ exp ⎨− ⎬+ exp ⎨− ⎬ PS ( ) PS ( ) ⎟<br />

In which<br />

⎩ 1 ⎭ ⎩ 2 ⎭⎠<br />

{ ù L G g ù − }<br />

exp<br />

i<br />

( ,<br />

i2, ) 1<br />

L =<br />

,<strong>and</strong><br />

PS ( )<br />

L( G, g , )<br />

i<br />

2 2<br />

( g<br />

2<br />

PS G )<br />

log 1 + | | ( ) + −ù<br />

i i i<br />

i2 ù =<br />

2 2<br />

⎛1 + | gi2<br />

| PS (<br />

i)<br />

+ G ⎞<br />

log ⎜<br />

2 ⎟<br />

1 + | gi2<br />

| PS (<br />

i)<br />

The pro<strong>of</strong> <strong>of</strong> thoerem 1 see appendix.<br />

⎝<br />

⎠<br />

(13)<br />

Obviously, it included the throughput under the<br />

condition <strong>of</strong> non-cooperation relay in the formula<br />

(23), this emphasizes the fact that the throughput<br />

could be improved by cooperative diversity. For the<br />

common m <strong>and</strong> n , similar to the mark mentioned<br />

above, we have<br />

L( G, gi2, g<br />

i3, ù ) ,…, L( G, gi2, gi3,..., g<br />

ij<br />

, , ù )<br />

<strong>and</strong> L1,..., L<br />

j−2<br />

,thereby, we have the following<br />

corollary.<br />

Corollary: For the other m <strong>and</strong> n , Under the<br />

condition <strong>of</strong> theorem 1, the calculation formula <strong>of</strong><br />

throughput <strong>of</strong> multi-hop relay sensor network based<br />

on cooperative diversity technology was<br />

C<br />

throughput<br />

=<br />

⎛ ⎧ 1⎫⎪<br />

⎜ + − + − ⎬+<br />

⎝<br />

⎪⎩<br />

( ) ⎪⎭<br />

m<br />

n<br />

ù j<br />

ù<br />

i<br />

L −L<br />

⎪ e −<br />

∑ pS<br />

1 e e exp ⎨<br />

i<br />

i= 1 n ⎜ ∑<br />

j=<br />

1 PSj<br />

−x<br />

p| | , | |( xy , ) = e e<br />

2 2<br />

gi1 gi2<br />

−y<br />

, ( i = 1, 2) ,<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!