12.03.2014 Views

Full Text - Journal of Theoretical and Applied Information Technology

Full Text - Journal of Theoretical and Applied Information Technology

Full Text - Journal of Theoretical and Applied Information Technology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Journal</strong> <strong>of</strong> <strong>Theoretical</strong> <strong>and</strong> <strong>Applied</strong> <strong>Information</strong> <strong>Technology</strong><br />

10 th June 2013. Vol. 52 No.1<br />

© 2005 - 2013 JATIT & LLS. All rights reserved .<br />

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195<br />

n<br />

⎞<br />

+ ∑ ∫ ∫ ∫ϒdy3<br />

dy<br />

j<br />

j=<br />

3<br />

⎟<br />

Lj−2 Lj−1 L1<br />

⎠<br />

{ t < } = { t < LG g ù }<br />

Pr 1 Pr ( , , )<br />

2 1 i2<br />

∞<br />

2<br />

{ 1<br />

G gi2 g<br />

i2 } 2<br />

| |<br />

= ∫ t < L ù = y p y dy<br />

g<br />

Pr ( , , ) | | ( )<br />

0 i 2<br />

2 2<br />

{ , −1 L<br />

−2 , } 2<br />

| g |<br />

ϒ= Pr | g | > | g | = y p ( y ) (14)<br />

i j j i j j j<br />

i,<br />

j<br />

6. CONCLUSIONS<br />

In this paper we mainly studied the throughput <strong>of</strong><br />

multi- source relay wireless sensor network based<br />

on cooperative diversity, a cooperative diversity<br />

model <strong>of</strong> sensor network, which was multi-source<br />

relay, was set up. Based on the model, the formulae<br />

<strong>of</strong> throughput was derived. So the quantitative<br />

calculation for the throughput performance <strong>of</strong><br />

multi-source relay sensor network under<br />

cooperative diversity would provide us theoretical<br />

judging rule for discussing farther the application <strong>of</strong><br />

technical proposal such as cooperative selection<br />

scheme in the actual network environment <strong>of</strong> multihop<br />

relay sensor network. On the other h<strong>and</strong>, it was<br />

proved theoretically that throughput performance <strong>of</strong><br />

multi-source relay sensor network would be<br />

improved by cooperative diversity.<br />

According to the conclusions <strong>of</strong> throughput <strong>and</strong><br />

the simulation based on cooperative diversity, a<br />

valuable judgment scale was given in the<br />

application environment <strong>of</strong> multi-hop relay wireless<br />

sensor network for balancing the relationship<br />

between the throughput <strong>and</strong> network cost.<br />

APPENDIX<br />

Prove <strong>of</strong> theorem 1: for ∀i, ji , ≠ j, A<br />

i<br />

<strong>and</strong> A<br />

j<br />

are independent <strong>of</strong> each other. Combined with the<br />

formula (9), we have:<br />

⎧ ù<br />

⎫<br />

1<br />

Pr{ t1 < 1} = Pr ⎨<br />

< 1<br />

2 ⎬<br />

⎩log(1 + | g11 | ⋅PS<br />

(<br />

1))<br />

⎭<br />

⎧ ù<br />

⎫<br />

2<br />

+ Pr ⎨<br />

< 1<br />

2 ⎬<br />

⎩ log(1 + | g21 | ⋅PS<br />

(<br />

2<br />

)) ⎭<br />

⎧ ù<br />

⎫<br />

Pr < 1⎬<br />

⎩log(1 | | ( )) ⎭<br />

1<br />

= ⎨<br />

2<br />

+ g11 ⋅PS1<br />

⎧ ù<br />

⎫<br />

2<br />

+ Pr ⎨<br />

< 1<br />

2 ⎬<br />

⎩log(1 + | g21 | ⋅PS<br />

(<br />

2<br />

)) ⎭<br />

=<br />

(17)<br />

But<br />

ù 1<br />

⎧ e −1⎫<br />

exp ⎨−<br />

⎬<br />

⎩ PS (<br />

1)<br />

⎭<br />

+<br />

(15)<br />

(16)<br />

ù 2<br />

⎧ e −1⎫<br />

exp ⎨−<br />

⎬<br />

⎩ PS (<br />

2<br />

) ⎭<br />

=<br />

∞ ⎧⎪<br />

2<br />

exp { ù<br />

i<br />

L( G, gi2, ù ) −1}<br />

2<br />

⎫⎪<br />

∫ Pr ⎨| g<br />

0<br />

i1 | > | gi2<br />

| = y⎬<br />

⎪⎩<br />

PS (<br />

i<br />

)<br />

⎪⎭<br />

p 2 ( y)<br />

dy<br />

| gi<br />

2 |<br />

(18)<br />

∞<br />

Pr | g |<br />

0<br />

1<br />

> | g | ( )<br />

2<br />

=<br />

| i 2 |<br />

∫ i<br />

L<br />

i<br />

y p y dy<br />

g<br />

2 2<br />

= { } 2<br />

(19)<br />

∞ ∞<br />

⎧ p<br />

2 2( x | y) p 2 ( y)<br />

dx dy if y <<br />

⎪∫ 0 ∫<br />

L<br />

L | gi1| | gi2|<br />

| gi<br />

2 |<br />

= ⎨<br />

∞<br />

⎪<br />

p 2 ( y)<br />

dy if y ≥<br />

⎩ ∫<br />

L<br />

0 | gi<br />

2 |<br />

(20<br />

)<br />

in which<br />

L( G, g , )<br />

2 2<br />

( g<br />

2<br />

PS G )<br />

log 1 + | | ( ) + −ù<br />

i i i<br />

i2 ù =<br />

2 2<br />

⎛1 + | gi2<br />

| PS (<br />

i)<br />

+ G ⎞<br />

log ⎜<br />

2 ⎟<br />

1 + | gi2<br />

| PS (<br />

i)<br />

⎝<br />

exp ù<br />

i<br />

L( G, gi2, ù ) −1<br />

L =<br />

PS (<br />

i<br />

)<br />

(21)<br />

{ }<br />

Combined with the conditional probability<br />

density function, we easy to know that<br />

{ }<br />

y−x −y<br />

Pr t < 1 = e dx dy + e dy<br />

0<br />

2<br />

L<br />

∫ ∫<br />

∞<br />

L<br />

∞<br />

L<br />

−L<br />

= 1− e + e<br />

(22)<br />

So we have<br />

2<br />

ipS C<br />

i<br />

throughput, m= n=<br />

2<br />

= ∑ ù<br />

( Pr( t1 < 1) + Pr( t2<br />

< 1) )<br />

2<br />

i=<br />

1<br />

i=<br />

1<br />

2 ù<br />

ipS i<br />

L<br />

= ∑ × ( 1+ e − e − L<br />

+<br />

2<br />

ù 1 ù 2<br />

⎧ e −1⎫ ⎧ e −1⎫⎞<br />

⎨ ⎬ exp ⎨ ⎬<br />

PS (<br />

1) PS (<br />

2)<br />

⎟<br />

⎩ ⎭ ⎩ ⎭⎠<br />

+ exp − + − ⎟<br />

(23)<br />

∫<br />

⎠<br />

L<br />

,<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!