29.03.2014 Views

Designing Stormwater Ponds for Water Quality - Ohio EPA

Designing Stormwater Ponds for Water Quality - Ohio EPA

Designing Stormwater Ponds for Water Quality - Ohio EPA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Count<br />

<strong>Designing</strong> <strong>Stormwater</strong><br />

<strong>Ponds</strong> <strong>for</strong> <strong>Water</strong> <strong>Quality</strong><br />

Jay Dorsey<br />

ODNR-DSWC<br />

February 13, 2008<br />

<strong>Designing</strong> <strong>Stormwater</strong> <strong>Ponds</strong><br />

<strong>for</strong> <strong>Water</strong> <strong>Quality</strong><br />

‣ <strong>Water</strong> <strong>Quality</strong> Volume<br />

‣ Outlets<br />

‣ Other Design Considerations<br />

The Purpose of <strong>Stormwater</strong><br />

Regulations/Management<br />

‣ Minimize impacts to receiving<br />

waters<br />

‣ Offset or mitigate <strong>for</strong> the changed<br />

site hydrology and the loss of<br />

natural watershed services<br />

Traditional stormwater management<br />

approaches (e.g., Critical Storm Method)<br />

were aimed at matching postdevelopment<br />

to pre-development peak<br />

discharges <strong>for</strong> infrequent (extreme)<br />

storm events, resulting in large detention<br />

basins with large outlets<br />

Long-term Rainfall Characteristics<br />

Manmade <strong>Stormwater</strong> Management Systems<br />

Dayton, OH Rain Events (1950-1999)<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 3.5 4.0 5.0<br />

Rain Depth (in)<br />

1


Cumulative Occurrence Probability<br />

%<br />

<strong>Stormwater</strong> Management<br />

Regulation in <strong>Ohio</strong><br />

Problems/concerns with peak discharge control<br />

methods (e.g., Critical Storm Method)<br />

‣ Problem 1: Too little detention time <strong>for</strong><br />

effective pollutant removal<br />

‣ Problem 2: Peak discharge control methods<br />

allow smaller rainfall events to become<br />

channel eroding events<br />

<strong>Ohio</strong> Application of WQv Formula<br />

<strong>Water</strong> <strong>Quality</strong><br />

Volume (WQv)<br />

‣ Urban Runoff <strong>Quality</strong><br />

Management, ASCE Manual<br />

of Practice No. 87, Amercan<br />

Society of Civil Engineers,<br />

Reston, VA, (1998).<br />

‣ WQv = C * P * A / 12<br />

Where:<br />

WQv = water quality volume (ac-ft)<br />

‣ C = runoff coefficient<br />

‣ P = 0.75 inch precipitation<br />

‣ A = area draining to the BMP (acres)<br />

Why 0.75” Rainfall Depth?<br />

Clarification of WQv<br />

Dayton, OH Rain Events (1950-1999)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 0.5 1 1.5 2 2.5 3<br />

Rain Depth (in)<br />

‣ Runoff Coefficient<br />

‣ Drawdown Requirement<br />

2


Runoff Coefficient<br />

Runoff Coefficient<br />

WQv Runoff Coefficient<br />

WQv Runoff Coefficient<br />

1.00<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

WQv Runoff Coefficent<br />

C<br />

C = runoff coefficient<br />

i = watershed<br />

imperviousness ratio<br />

(percent total<br />

imperviousness<br />

divided by 100)<br />

C<br />

0.858i<br />

3<br />

C = runoff coefficient<br />

0.78i<br />

2<br />

0.774i<br />

i = watershed imperviousness ratio (percent total<br />

imperviousness divided 100)<br />

0.04<br />

0.20<br />

0.10<br />

0.00<br />

0.0 20.0 40.0 60.0 80.0 100.0<br />

Impervious Area (%)<br />

C<br />

0.858i<br />

3<br />

0.78i<br />

2<br />

0.774i<br />

0.04<br />

Source: Urban Runoff<br />

<strong>Quality</strong> Management,<br />

ASCE, 1998, p. 175.<br />

Example<br />

WQv Formula<br />

Determine the Runoff Coefficient, C, <strong>for</strong>:<br />

‣ 100 acre residential development, 0.5 acre<br />

lots, with 20% impervious area (i = 0.20)<br />

C = 0.17<br />

WQv = C * P * A / 12 = (0.17*0.75*100)/12 = 1.06 ac-ft<br />

From Example 1, using Table 1 value of C = 0.8,<br />

WQv = C * P * A / 12 = (0.3*0.75*100)/12 = 1.88 ac-ft<br />

‣ WQv = C * P * A / 12<br />

Where:<br />

WQv = water quality volume (ac-ft)<br />

‣ P = 0.75 inch precipitation<br />

‣ A = area draining to the BMP (acres)<br />

‣ C = runoff coefficient - ????<br />

Runoff Coefficient Comparison<br />

Runoff Coefficient Comparison<br />

Runoff Coefficent Comparison<br />

Calculated<br />

Published<br />

1.000<br />

0.900<br />

0.800<br />

0.700<br />

0.600<br />

0.500<br />

0.400<br />

0.300<br />

0.200<br />

0.100<br />

0.000<br />

0.0 20.0 40.0 60.0 80.0 100.0<br />

Impervious Area (%)<br />

CGP-C<br />

C<br />

Impervious Runoff Runoff Calc Publ Increase<br />

Area Coefficient Coefficient WQv WQv WQv<br />

SLU - Standard Land Use % C C acre-ft acre-ft %<br />

Urban Open Space 4.9 0.08 0.20 0.5 1.25 163<br />

Urban Parks 9.6 0.11 0.20 0.7 1.25 85<br />

Low Density Residential 20.3 0.17 0.30 1.1 1.875 74<br />

Med Density Res no alleys 37.7 0.27 0.40 1.7 2.5 50<br />

Duplex 39.1 0.27 0.50 1.7 3.125 82<br />

High Density Res no alleys 53.0 0.36 0.50 2.2 3.125 39<br />

Multi-Family Res no alleys 53.1 0.36 0.50 2.2 3.125 39<br />

Medium Industrial 68.5 0.48 0.80 3.0 5 67<br />

Office Park 73.1 0.52 0.80 3.3 5 53<br />

Strip Commercial 90.7 0.74 0.80 4.6 5 8<br />

3


Runoff Coefficient Comparison<br />

C Determination Method<br />

Land Use % Impervious Runoff Coefficient Wqv Increase TSS<br />

TSS<br />

(ac-ft) in Wqv (lb/ac/yr) Reduction<br />

(%)<br />

(%)<br />

No Pond 54.3 -<br />

‣ Recommendation – Use the <strong>for</strong>mula, not the<br />

Table<br />

Urban Open Space 4.9<br />

Calc 0.08 0.5 - 9.0 83.5<br />

Publ 0.20 1.25 163 9.3 83.0<br />

Duplex 39.1<br />

No Pond 280 -<br />

Calc 0.27 1.7 - 59.5 78.8<br />

C<br />

0.858i<br />

3<br />

0.78i<br />

2<br />

0.774i<br />

0.04<br />

Publ 0.50 3.12 82 57.3 79.6<br />

No Pond 703 -<br />

Medium Industrial 68.5<br />

Calc 0.48 3.0 - 139 80.3<br />

Publ 0.80 5.0 67 132 81.2<br />

Adjustments to WQv Formula<br />

Wet <strong>Ponds</strong><br />

Adjustments to WQv Formula<br />

Structural BMPs (excl Wet <strong>Ponds</strong>)<br />

O<strong>EPA</strong>-CGP p22<br />

O<strong>EPA</strong>-CGP p22<br />

Discharge Rate<br />

Sediment Settling Process<br />

‣ How quickly do we release the WQv to<br />

meet our stormwater management goals?<br />

Pond<br />

Inflow<br />

v w<br />

v s<br />

Permanent Pool/Sediment Storage<br />

Pond<br />

Discharge<br />

4


Volume (cu ft)<br />

Volume (cu ft)<br />

Pond<br />

Inflow<br />

Sediment Settling Process<br />

Sediment Settling Process<br />

Pond<br />

Inflow<br />

v w<br />

v w<br />

v s<br />

v s<br />

Pond<br />

Pond<br />

Permanent Pool/Sediment Storage<br />

Discharge<br />

Discharge<br />

v sand v silt v clay<br />

O<strong>EPA</strong> CGP Drawdown Requirements<br />

‣ The O<strong>EPA</strong> CGP lists drain time<br />

(or drawdown) requirements <strong>for</strong><br />

structural BMPs (CGP – Table 2)<br />

Select an appropriate outlet to<br />

meet drawdown requirement <strong>for</strong><br />

wet ponds and dry ponds<br />

Volume vs Drawdown Time<br />

Volume vs Drawdown Time<br />

45,000<br />

45,000<br />

40,000<br />

40,000<br />

35,000<br />

35,000<br />

30,000<br />

30,000<br />

25,000<br />

4.5" Outlet<br />

25,000<br />

4.5" Outlet<br />

20,000<br />

8" Outlet<br />

20,000<br />

8" Outlet<br />

15,000<br />

15,000<br />

10,000<br />

10,000<br />

5,000<br />

5,000<br />

0<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

0 10 20 30 40 50 60 70 80<br />

Drawdown Time (hr)<br />

Drawdown Time (hr)<br />

5


Volume (cu ft)<br />

Volume (cu ft)<br />

Volume (cu ft)<br />

Volume (cu ft)<br />

Volume vs Drawdown Time<br />

Volume vs Drawdown Time<br />

45,000<br />

WQv<br />

The WQv orifice should be sized to release no more<br />

than one-half the WQv (0.5*WQv) in the first one-third<br />

of the target drawdown period (0.333*Td)<br />

40,000<br />

35,000<br />

30,000<br />

The drawdown curve<br />

should fall above and to<br />

the right of the ½ volume<br />

in 1/3 drawdown time<br />

target<br />

0.5xWQv<br />

25,000<br />

4.5" Outlet<br />

Target<br />

20,000<br />

8" Outlet<br />

15,000<br />

10,000<br />

5,000<br />

0.333xTd<br />

Td<br />

Drawdown Time (hr)<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

Drawdown Time (hr)<br />

WQv Outlet - Primary Considerations<br />

‣Per<strong>for</strong>mance<br />

‣Maintenance<br />

<strong>Water</strong> <strong>Quality</strong> Volume (WQv) Outlet<br />

‣ For most detention<br />

pond designs, an<br />

orifice needs to be<br />

used to meet the<br />

drawdown<br />

requirements of the<br />

<strong>Water</strong> <strong>Quality</strong> Volume<br />

(WQv).<br />

WQv Outlet - Per<strong>for</strong>mance<br />

WQv Geometry (Surface Area, Depth) and Orifice Size<br />

‣ Use an appropriately sized orifice<br />

45,000<br />

Volume vs Drawdown Time<br />

WQv = 40,000 cu ft, td = 24 hr<br />

40,000<br />

60 Ac MDR (1/4 ac lots)<br />

Volume vs Drawdown Time<br />

40 Ac Multi-family<br />

35,000<br />

30 Ac Office Park<br />

20 Ac Strip Commercial<br />

WQv<br />

30,000<br />

The WQv orifice should be sized to release no more<br />

than one-half the WQv (0.5*WQv) in the first one-third<br />

of the target drawdown period (0.333*Td)<br />

25,000<br />

20,000<br />

A=1.8 Ac<br />

D=0.5 ft<br />

dia=12 in<br />

A=3.7 Ac<br />

D=0.25 ft<br />

dia=24 in<br />

0.5xWQv<br />

15,000<br />

Target<br />

10,000<br />

A= 0.5Ac<br />

D=2 ft<br />

dia=4.5 in<br />

A=0.9 Ac<br />

D=1.0 ft<br />

dia=6 in<br />

0.333xTd<br />

Td<br />

5,000<br />

A=0.2 Ac<br />

D=4 ft<br />

dia=3.5 in<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

Drawdown Time (hr)<br />

Drawdown Time (hr)<br />

6


TSS - % Reduction<br />

Orifice Diameter (in)<br />

% TSS Reduction by Pond Area<br />

Sediment Settling Process<br />

100<br />

80<br />

30<br />

25<br />

60<br />

20<br />

15<br />

40<br />

10<br />

20<br />

5<br />

0<br />

0<br />

0 1 2 3 4<br />

Pond<br />

Inflow<br />

v s<br />

v w<br />

Permanent Pool/Sediment Storage<br />

Pond<br />

Discharge<br />

Average Pond Area (Ac)<br />

TSS Reduction<br />

Orifice Size<br />

Multi-Stage Outlets<br />

Multi-Stage Outlets<br />

‣ Most detention basins that include a <strong>Water</strong><br />

<strong>Quality</strong> Volume (WQv) require separate outlets<br />

<strong>for</strong> the WQv and the peak discharge control.<br />

‣ The exception is very shallow extended<br />

detention volumes in large surface area wet<br />

detention basins.<br />

Unprotected WQv Outlets<br />

Unprotected WQv Outlets<br />

7


WQv Outlet - Maintenance<br />

WQv Outlet – Reverse Slope Pipe<br />

‣ Protect the orifice<br />

‣ Protected orifice options:<br />

• Reverse slope pipe<br />

• Per<strong>for</strong>ated tile/pipe with gravel filter<br />

WQv Outlet – Per<strong>for</strong>ated Riser/Gravel Filter<br />

9


WQv Outlet – Per<strong>for</strong>ated Pipe/Gravel Filter<br />

10


Other Design Considerations<br />

‣ Discuss issues related to BMP<br />

selection<br />

‣ Highlight other issues<br />

• Health and safety<br />

• Maintenance<br />

• Per<strong>for</strong>mance<br />

WQv BMP Selection<br />

BMP Selection – Drainage Area<br />

‣ Drainage area<br />

‣ Soil type<br />

‣ Per<strong>for</strong>mance (Source area/pollutants?<br />

Local TMDL? Target pollutants? Runoff<br />

temperature?)<br />

‣ State/Local Regulations<br />

‣ Outlet<br />

‣ Depth/High <strong>Water</strong> Table<br />

‣ Soil type<br />

BMP Selection – Soil Type<br />

• HSG-A – 1.2%<br />

• HSG-B – 18%<br />

• HSG-C – 61.2%<br />

• HSG-D – 19.5%<br />

Detention Basin Selection<br />

‣ Wet pond (or wetland ED basin)<br />

• Usually the best choice in <strong>Ohio</strong> given the<br />

predominance of C & D soils, water quality<br />

treatment per<strong>for</strong>mance, maintenance/<br />

aesthetics.<br />

‣ Dry ED basin<br />

• May be a reasonable choice <strong>for</strong> smaller<br />

development sites (


Dry Basins?<br />

Other Design Considerations<br />

Health and Safety<br />

‣ Discuss issues related to BMP selection<br />

‣ Highlight other issues<br />

• Health and safety<br />

• Maintenance<br />

• Per<strong>for</strong>mance<br />

‣ Sideslopes<br />

‣ Safety benches<br />

‣ Inlets/outlets<br />

‣ Mosquitos/West Nile virus<br />

‣ Flood Routing<br />

‣ Freeboard<br />

‣ Emergency spillways<br />

‣ Earthwork (embankments)<br />

Maintenance<br />

Sediment Forebays/Maintenance Access<br />

‣ Sediment pre-treatment (filters and<br />

<strong>for</strong>ebays)<br />

‣ Maintenance access<br />

‣ Pond drains<br />

‣ Inlets/outlets<br />

‣ Dry basins<br />

‣ Permanent <strong>Stormwater</strong> Maintenance Plan<br />

‣ Responsible Management Entity (RME)<br />

12


Pond Drains<br />

Outlet Maintenance<br />

Poor outlet<br />

designs require<br />

constant attention<br />

to work as<br />

designed<br />

Pond drains allow<br />

rapid draining of wet<br />

ponds (and dry ponds)<br />

to allow maintenance<br />

Dry Basins?<br />

Are Pilot Channels the Answer?<br />

How Big a Concern Is the Wet Spot?<br />

An Attractive Dry Basin?<br />

13


Per<strong>for</strong>mance<br />

Pretreatment Opportunities<br />

‣ Tailwater elevations/tailwater analysis<br />

‣ Pretreatment/treatment trains<br />

‣ Sediment <strong>for</strong>ebays<br />

‣ Dry basins – <strong>for</strong>ebays and micropools<br />

‣ Flow path length<br />

‣ Surface area<br />

‣ Outlets that work<br />

‣ Conversion from sed-pond to detention pond<br />

Pretreatment Opportunities?<br />

Pretreatment Opportunities?<br />

Sediment Forebays<br />

Micropools<br />

14


Flow Path Length<br />

Sediment Settling Process<br />

Pond<br />

Inflow<br />

v w<br />

v s<br />

Permanent Pool/Sediment Storage<br />

Pond<br />

Discharge<br />

Flow Path Length<br />

Flow Path Length<br />

Outlets and Per<strong>for</strong>mance<br />

Having a<br />

functional <strong>Water</strong><br />

<strong>Quality</strong> pond<br />

depends on<br />

functional outlets<br />

Detention Pond as Sediment Pond<br />

Sed basins must have<br />

appropriate outlet to<br />

drain dewatering<br />

volume in 48-72 hours –<br />

see RLD <strong>for</strong> guidance<br />

15


Sediment Pond to Detention Pond Conversion<br />

References<br />

- Detention Basin Design -<br />

‣ Rainwater and Land Development, <strong>Ohio</strong> DNR, Division of Soil &<br />

<strong>Water</strong> Conservation (2006).<br />

http://www.dnr.state.oh.us/soilandwater/default/water/default/tabid/9185/Default.aspx<br />

‣ Design and Construction of Urban <strong>Stormwater</strong> Management<br />

Systems, ASCE Manual of Practice No. 77, Amercan Society of Civil<br />

Engineers, Reston, VA, (1992).<br />

Sediment basin to postconstruction<br />

basin outlets<br />

and conversion timing<br />

should be specified in<br />

SWPPP, checked during<br />

inspections<br />

‣ Design of Detention Systems, J.N. Paine and A. Osman Akan,<br />

Chapter 7 in L.W. Mays (ed.), <strong>Stormwater</strong> Collection Systems<br />

Design Handbook, McGraw-Hill, New York (2001)<br />

‣ <strong>Ponds</strong> – Planning, Design, Construction, USDA-NRCS Ag<br />

Handbook 590, 1997.<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!