31.03.2014 Views

Current feedback op-amps

Current feedback op-amps

Current feedback op-amps

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Current</strong> <strong>feedback</strong> <strong>op</strong>-<strong>amps</strong><br />

References:<br />

National Semiconductor application notes: OA15, AN-597<br />

Texas Instruments: OpAmps for Everyone, Chapter 8: CFOA<br />

Intersil Elantec EL-5166 datasheet


What is a CFOA?<br />

A CCII- , a voltage follower, and a node impedance


How did the idea come about?<br />

Supply mirroring: CC<br />

Supply mirroring + Buffer<br />

<strong>Current</strong> conveyor<br />

<strong>Current</strong> <strong>feedback</strong> <strong>op</strong>-amp


Lo<strong>op</strong> gain calculation


Basic usage: Non inverting amplifier<br />

G<br />

NINV<br />

dV<br />

OUT<br />

= =<br />

ZF<br />

lim GNINV<br />

= 1+<br />

Z →∞ Z<br />

( + Z )<br />

Z Z<br />

dV ZZ + Z Z + Z Z + Z Z<br />

IN G F B G B F G<br />

G<br />

Note that we have not introduced explicit frequency dependence!<br />

F<br />

G


Not common usage: Inverting<br />

G INV <br />

−ZZ F<br />

ZZ G Z B Z F Z B Z G Z F Z G<br />

lim<br />

Z →∞<br />

G<br />

INV<br />

=−<br />

Z<br />

Z<br />

F<br />

G


Gain calculation – frequency response<br />

G NINV <br />

ZZ F ZZ G<br />

ZZ G Z B Z F Z B Z G Z F Z G<br />

Z B h ib <br />

R B<br />

0 1<br />

1s 0 T<br />

1s T<br />

/11/ 0 <br />

Z T <br />

Z 0<br />

1s 1 1s 2 <br />

Transimpedance Z T<br />

has two poles: due to the impedance of the high Z node<br />

and also due to the current mirror delay<br />

Z B<br />

is the output impedance of the input buffer, small but not necessarily much<br />

smaller than Z G


Gain calculation – frequency response (2)<br />

G NINV <br />

ZZ F ZZ G<br />

ZZ G Z B Z F Z B Z G Z F Z G<br />

Z T <br />

Z 0<br />

1s 1 1s 2 <br />

Neglect Z B<br />

since it is much smaller than anything else. Then,<br />

Z<br />

NINV<br />

<br />

( + ) ⎛ ⎞ 1<br />

Z ZF ZG ZF<br />

= ⎜1+<br />

⎟<br />

ZZG + ZFZG ⎝ ZG ⎠1 + ZF<br />

/ Z<br />

<br />

Gain<br />

Bandwidth<br />

Observe that the gain and bandwidth have been decoupled.<br />

The bandwidth depends only on Z F<br />

(and Z B<br />

, really), while the<br />

gain depends on both Z F<br />

and Z G<br />

There is no magic involved. The CFOA is a dominant pole<br />

transimpedance amplifier, while the voltage and current buffers have<br />

poles at much higher frequencies.


Gain vs. frequency with R F (EL5166)


Gain vs frequency with R G (EL5166)<br />

Notice that despite what our approximations say the BW still depends on gain!


Gain bandwidth product – example


Frequency response of transimpedance<br />

The transimpedance has a dominant pole at 100kHz


Slew rate: VFOA vs CFOA<br />

• VFOA:<br />

• CFOA:<br />

IoutVFOA<br />

∝tanh<br />

( V<br />

+<br />

−V−<br />

)<br />

IoutCFOA<br />

∝ exp( Vy<br />

)<br />

dIout<br />

0<br />

dV<br />

→<br />

in<br />

dIout<br />

Iout<br />

dV →∝<br />

In the limit of large input voltages,<br />

in the VFOA:<br />

While in the CFOA we get:<br />

in<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 2 4 6 8 10<br />

The slew rate in the CFOA is power limited


Re-visit the non inverting amplifier<br />

V IN<br />

Y G<br />

+Y F<br />

Z<br />

V OUT<br />

Y F<br />

The CFOA is a transimpedance amplifier, i.e. equivalent to the block diagram<br />

The response is, in terms of the transimpedance Z is the usual FB expression:<br />

G<br />

NINV<br />

( + )<br />

Z Y Y Y Z<br />

= ⇒ lim GNINV<br />

= 1+ = 1+<br />

1+<br />

ZY Z →∞ Y Z<br />

G F G F<br />

F F G<br />

Notice that the lo<strong>op</strong> gain is ZZ F<br />

and that Z is typically second order beyond<br />

the first pole, so that, for a parallel RC in the <strong>feedback</strong> path we get a second<br />

order underdamped system.


Avoid capacitances!


Effect of Feedback capacitance<br />

INSTABILITY unless we introduce extra pole!


Input capacitance


Brute force compensation<br />

Low pass the non-inverting input to<br />

compensate for stray capacitance,<br />

i.e. brute force compensation


Effect of input (stray) capacitance


Output (load) capacitance


Applications I<br />

Inverting receiver<br />

Non-inverting receiver


Applications II<br />

Differential amplifier<br />

Differential line driver


Antenna circuits<br />

Coax cable driver<br />

Distribution amplifier


CFOA can be combined with other stages…<br />

With emitter follower<br />

With <strong>op</strong>-<strong>amps</strong>


Adjust BW by increasing inverting<br />

input impedance!<br />

Bandwidth and stability


Integrator<br />

Integrating capacitance NOT in<br />

<strong>feedback</strong> path.<br />

Capacitance must be lossy enough!


Implementation note:<br />

Supply bypassing is NOT <strong>op</strong>tional!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!