02.04.2014 Views

Modelling of hydrocarbon generation in the Cenozoic Song ... - CCOP

Modelling of hydrocarbon generation in the Cenozoic Song ... - CCOP

Modelling of hydrocarbon generation in the Cenozoic Song ... - CCOP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PERGAMON<br />

Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294<br />

<strong>Modell<strong>in</strong>g</strong> <strong>of</strong> <strong>hydrocarbon</strong> <strong>generation</strong> <strong>in</strong> <strong>the</strong> <strong>Cenozoic</strong> <strong>Song</strong> Hong<br />

Bas<strong>in</strong>, Vietnam: a highly prospective bas<strong>in</strong><br />

L.H. Nielsen a, *, A. Mathiesen a , T. Bidstrup a , O.V. Vejbñk a , P.T. Dien b , P.V. Tiem b<br />

a Geological Survey <strong>of</strong> Denmark and Greenland, GEUS, Thoravej 8, DK-2400, Denmark<br />

b Vietnam Petroleum Institute, VPI, Yen Hoa, Cau Giay, Hanoi, Vietnam<br />

Received 11 August 1998; accepted 2 November 1998<br />

Abstract<br />

The <strong>Cenozoic</strong> <strong>Song</strong> Hong Bas<strong>in</strong>, situated on <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> Vietnamese shelf, has been only sporadically explored<br />

for <strong>hydrocarbon</strong>s. A review <strong>of</strong> <strong>the</strong> results <strong>of</strong> <strong>the</strong> exploration e€orts so far shows that <strong>the</strong> distribution <strong>of</strong> potential source rocks<br />

and <strong>the</strong>ir time <strong>of</strong> <strong>hydrocarbon</strong> <strong>generation</strong> are <strong>the</strong> critical risks for ®nd<strong>in</strong>g commercial amounts <strong>of</strong> <strong>hydrocarbon</strong>s. In <strong>the</strong> <strong>Song</strong><br />

Hong Bas<strong>in</strong>, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> Hanoi Trough, <strong>the</strong> rocks most likely to have source potential are: (1) oil-prone Eocene±Lower<br />

Oligocene lacustr<strong>in</strong>e mudstones and coals, (2) oil- and gas-prone Middle Miocene coal beds, (3) gas-prone Upper Oligocene±<br />

Lower Miocene coals, and (4) gas- and oil-prone Miocene mar<strong>in</strong>e mudstones. To assess <strong>the</strong> time <strong>of</strong> <strong>hydrocarbon</strong> <strong>generation</strong><br />

from <strong>the</strong>se units, relative to <strong>the</strong> formation <strong>of</strong> traps, <strong>the</strong> <strong>generation</strong> history was modelled at 32 well and pseudo-well locations.<br />

The modell<strong>in</strong>g demonstrates that <strong>the</strong> two ®rst-mentioned source rock units are especially important. In <strong>the</strong> nor<strong>the</strong>rn and<br />

nor<strong>the</strong>astern part <strong>of</strong> <strong>the</strong> bas<strong>in</strong> and along its western marg<strong>in</strong> traps may have been charged by Eocene±Lower Oligocene source<br />

rocks. In <strong>the</strong> Hanoi Trough, <strong>the</strong> excellent Middle Miocene coal beds have probably generated <strong>hydrocarbon</strong>s with<strong>in</strong> <strong>the</strong> last few<br />

million years. Thus <strong>the</strong> huge and still underexplored <strong>Song</strong> Hong Bas<strong>in</strong> provides attractive areas for fur<strong>the</strong>r exploration. # 1999<br />

Elsevier Science Ltd. All rights reserved.<br />

1. Introduction<br />

The <strong>Cenozoic</strong> bas<strong>in</strong>s on <strong>the</strong> Vietnamese shelf are<br />

regarded as highly prospective, comparable to many<br />

o<strong>the</strong>r petroliferous bas<strong>in</strong>s <strong>in</strong> Asia. There has been a<br />

remarkable <strong>in</strong>crease dur<strong>in</strong>g <strong>the</strong> last decade <strong>in</strong> <strong>the</strong> number<br />

<strong>of</strong> signed production shar<strong>in</strong>g contracts, exploration<br />

blocks awarded, acquisition <strong>of</strong> 2D and 3D seismic<br />

data, and number <strong>of</strong> wells drilled. The yearly production<br />

<strong>of</strong> crude oil has shown a signi®cant rise from<br />

0.4 million tons <strong>in</strong> 1986 to more than 8 million tons <strong>in</strong><br />

1996, and is expected to <strong>in</strong>crease considerably <strong>in</strong> <strong>the</strong><br />

near future. The discovery rate on <strong>the</strong> Vietnam shelf<br />

has been more than 20%Ðamong <strong>the</strong> world's highestÐand<br />

recent discoveries <strong>of</strong> oil and gas <strong>in</strong> <strong>the</strong> Cuu<br />

Long and Nam Con Son bas<strong>in</strong>s, located <strong>in</strong> <strong>the</strong><br />

sou<strong>the</strong>rn shelf area, are expected to be brought on<br />

* Correspond<strong>in</strong>g author. e-mail: lhn@geus.dk.<br />

stream soon. Similarly, exploration activities <strong>in</strong> <strong>the</strong><br />

huge <strong>Song</strong> Hong Bas<strong>in</strong> (Bac Bo/Y<strong>in</strong>ggehai/Red River<br />

Bas<strong>in</strong>), located on <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> Vietnam<br />

cont<strong>in</strong>ental shelf, have shown promis<strong>in</strong>g results. The<br />

aim <strong>of</strong> this paper is to discuss <strong>the</strong> exploration potential<br />

<strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> by review<strong>in</strong>g <strong>the</strong> exploration<br />

history and present<strong>in</strong>g results from <strong>the</strong> modell<strong>in</strong>g <strong>of</strong><br />

<strong>hydrocarbon</strong> <strong>generation</strong>.<br />

2. Exploration activities <strong>in</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong><br />

The <strong>Song</strong> Hong Bas<strong>in</strong> is one <strong>of</strong> <strong>the</strong> <strong>Cenozoic</strong> bas<strong>in</strong>s<br />

located along <strong>the</strong> western marg<strong>in</strong> <strong>of</strong> <strong>the</strong> East Vietnam<br />

Sea (South Ch<strong>in</strong>a Sea; Fig. 1). Exploration for <strong>hydrocarbon</strong>s<br />

began more than 30 years ago, when <strong>the</strong> ®rst<br />

deep onshore well was drilled <strong>in</strong> 1965 <strong>in</strong> <strong>the</strong> Hanoi<br />

Trough. In 1975 <strong>the</strong> Tien Hai gas ®eld was discovered<br />

<strong>in</strong> <strong>the</strong> Miocene section, approximately 90 km sou<strong>the</strong>ast<br />

<strong>of</strong> Hanoi (Fig. 2). Several wells have tested oil, con-<br />

1367-9120/99 $ - see front matter # 1999 Elsevier Science Ltd. All rights reserved.<br />

PII: S0743-9547(98)00063-4


270<br />

L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294<br />

Fig. 1. Present-day tectonic map <strong>of</strong> sou<strong>the</strong>ast Asia (modi®ed from Lee and Lawver, 1994). BBB = Beibu Wan Bas<strong>in</strong>, BKB = Bangkok Bas<strong>in</strong>,<br />

CB = Chuxiong Bas<strong>in</strong>, EVBF = East Vietnam Boundary Fault, GTB = Gulf <strong>of</strong> Thailand Bas<strong>in</strong>, LSB = Lanp<strong>in</strong>g±Simao Bas<strong>in</strong>, MLB = Malay<br />

Bas<strong>in</strong>, MT = Manila Trench, QB = Qiongdongnan Bas<strong>in</strong> (South Ha<strong>in</strong>an Bas<strong>in</strong>), PI = Paracel Islands, RRF = Red River Fault (<strong>Song</strong> Hong<br />

Fault), SHB = <strong>Song</strong> Hong Bas<strong>in</strong>.<br />

densate and gas from siltstones and sandstones <strong>in</strong> <strong>the</strong><br />

Middle and Upper Miocene Phu Cu and Tien Hung<br />

formations (Fig. 3). Recently, <strong>in</strong> mid-1996 Anzoil is<br />

reported to have tested heavy oil and gas from carbonates,<br />

probably <strong>of</strong> Devonian age, <strong>in</strong> <strong>the</strong>ir wells B10<br />

STB-1x and D14-1x (Long, 1998) (Fig. 2). O<strong>the</strong>r direct<br />

evidence <strong>of</strong> <strong>hydrocarbon</strong>s is provided by natural asphalt<br />

<strong>in</strong> outcrops <strong>of</strong> Upper Devonian±Lower<br />

Carboniferous fractured carbonates on Cat Ba Island<br />

and at Yen Bai, and by oil and gas seepages along <strong>the</strong><br />

coasts <strong>of</strong> Vietnam and Ha<strong>in</strong>an (Chen et al., 1993,<br />

1998; Traynor and Sladen, 1997) (Fig. 2).<br />

Likewise, o€shore activities have shown encourag<strong>in</strong>g<br />

results. These activities began with acquisition <strong>of</strong> seismic<br />

data <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn shelf area by <strong>the</strong> former<br />

General Department for Oil and Gas, with assistance<br />

from <strong>the</strong> USSR. S<strong>in</strong>ce <strong>the</strong>n, more detailed seismic acquisition<br />

has been undertaken by <strong>the</strong> various licence<br />

holders, and <strong>in</strong> 1993 Geco-Prakla acquired a regional<br />

data set. Drill<strong>in</strong>g activities began with <strong>the</strong> Con Den<br />

110 well (LK 110) drilled by PetroVietnam <strong>in</strong> very<br />

shallow water <strong>in</strong> <strong>the</strong> northwestern part <strong>of</strong> block 102<br />

(Fig. 4). The French company Total drilled three wells<br />

on <strong>in</strong>version structures <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong>


L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294 271<br />

Fig. 2. Map show<strong>in</strong>g pr<strong>in</strong>cipal structural elements, exploration wells and selected localities <strong>in</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> and adjacent areas.


272<br />

L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294<br />

Fig. 3. Stratigraphic scheme <strong>of</strong> nor<strong>the</strong>rn <strong>Song</strong> Hong Bas<strong>in</strong> (modi®ed after Dien, 1997). HD = Hai Duong, KX = Kien Xuong.<br />

bas<strong>in</strong> <strong>in</strong> blocks 103 and 107, <strong>the</strong> 103 TH-1x, 103 TG-<br />

1x and 107 TPA-1x wells <strong>in</strong> 1990±1991. The 103 TH-<br />

1x tested oil, condensate and gas from Miocene sandstones,<br />

but was considered non-commercial by Total.<br />

Well 107 TPA-1x penetrated Eocene±Oligocene synrift<br />

sediments <strong>in</strong> a major <strong>in</strong>version structure east <strong>of</strong> <strong>the</strong><br />

<strong>Song</strong> Lo Fault zone, but encountered only traces <strong>of</strong><br />

gas. Far<strong>the</strong>r to <strong>the</strong> south, Shell drilled two wells <strong>in</strong><br />

block 114 and block 112 <strong>in</strong> 1990. The well 114 KT-1x<br />

was drilled on <strong>the</strong> rotated Kim Tuoc fault block<br />

(Fig. 2). The second well, 112 BT-1x was drilled to a<br />

total depth <strong>of</strong> 4114 m with oil and gas encountered <strong>in</strong>


L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294 273<br />

103<br />

104<br />

102<br />

106<br />

107<br />

108<br />

109<br />

Ha<strong>in</strong>an<br />

(Ch<strong>in</strong>a)<br />

close to Ha<strong>in</strong>an Island, a number <strong>of</strong> wells on <strong>the</strong><br />

Dong Fang structures have encountered signi®cant<br />

amounts <strong>of</strong> gas, though mostly CO 2 . Similarly, gas or<br />

oil shows were found <strong>in</strong> several <strong>of</strong> <strong>the</strong> Ledong and<br />

Y<strong>in</strong>g wells <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn and eastern part <strong>of</strong> <strong>the</strong><br />

bas<strong>in</strong> (Fig. 2). Produc<strong>in</strong>g oil ®elds are present <strong>in</strong> <strong>the</strong><br />

Beibu Wan Bas<strong>in</strong> north <strong>of</strong> Ha<strong>in</strong>an, and a gas ®eld<br />

occurs <strong>in</strong> <strong>the</strong> Qiongdongnan Bas<strong>in</strong> south <strong>of</strong> Ha<strong>in</strong>an.<br />

105<br />

110<br />

3. Potential source rocks<br />

111<br />

Vietnam<br />

112<br />

114<br />

113<br />

115<br />

116<br />

118<br />

117<br />

119<br />

Fig. 4. Block del<strong>in</strong>eation and o€shore exploration wells <strong>in</strong> <strong>the</strong> <strong>Song</strong><br />

Hong Bas<strong>in</strong> and adjacent areas.<br />

Oligocene sandstones and Devonian carbonates. Shell<br />

drilled well 112 HO-1x <strong>in</strong> <strong>the</strong> same year, with oil<br />

shows and a gas test <strong>in</strong> Lower Miocene carbonates<br />

overly<strong>in</strong>g Palaeozoic rocks. Subsequently, Shell drilled<br />

112 AV-1x at a more bas<strong>in</strong>ward position on <strong>the</strong><br />

Hoang Oanh structure, but both <strong>the</strong> Palaeozoic rocks<br />

and <strong>the</strong> Lower Miocene mixed carbonate-siliciclastic<br />

section were water-bear<strong>in</strong>g. In 1990 and 1991 <strong>the</strong> Tri<br />

Ton Horst structure was tested by <strong>the</strong> IPL well 115 A-<br />

1x, and by <strong>the</strong> BP wells 118 CVX-1x and 119 CH-1x.<br />

All three wells encountered signi®cant amounts <strong>of</strong> gas<br />

<strong>in</strong> Miocene carbonates developed over <strong>the</strong> horst<br />

(Morris, 1993). In 1993, BP drilled 118 BT-1x <strong>in</strong> <strong>the</strong><br />

Quang Ngai Graben and gas was <strong>in</strong>dicated. Later, <strong>in</strong><br />

1995 BP drilled 117 STB-1x <strong>in</strong> which gas was detected.<br />

In <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> bas<strong>in</strong>, Idemitsu drilled<br />

two wells <strong>in</strong> block 102, well 102 CQ-1x and 102 HD-<br />

1x <strong>in</strong> 1993 and 1994, <strong>of</strong> which <strong>the</strong> ®rst-mentioned<br />

encountered gas shows. Idemitsu later rel<strong>in</strong>quished <strong>the</strong><br />

block. In Block 104 on <strong>the</strong> shallow footwall <strong>of</strong> <strong>the</strong><br />

<strong>Song</strong> Chay Fault bound<strong>in</strong>g <strong>the</strong> central depocentre <strong>of</strong><br />

<strong>the</strong> bas<strong>in</strong>, OÈ MV <strong>in</strong> 1995 and 1996 drilled two wells,<br />

104 QN-1x and 104 QV-1x, to test a Miocene p<strong>in</strong>nacle<br />

reef and a buried basement hill (Dien et al., 1998;<br />

Andersen et al., 1998). With<strong>in</strong> <strong>the</strong> disputed area<br />

between Vietnam and Ch<strong>in</strong>a, many wells have encountered<br />

<strong>hydrocarbon</strong>s. In <strong>the</strong> eastern part <strong>of</strong> <strong>the</strong> bas<strong>in</strong>,<br />

Eocene±Miocene rift-lake claystones are widely distributed<br />

<strong>in</strong> many Asian bas<strong>in</strong>s, and constitute good to<br />

excellent sources for oil <strong>generation</strong> (e.g. Wu J<strong>in</strong>m<strong>in</strong>,<br />

1988; Sladen, 1993; 1997; Hao et al., 1995; Williams et<br />

al., 1995; Katz and X<strong>in</strong>gcai, 1998). In <strong>the</strong> <strong>Song</strong> Hong<br />

Bas<strong>in</strong>, organic-rich lacustr<strong>in</strong>e claystones <strong>of</strong> Eocene to<br />

Oligocene age were probably deposited <strong>in</strong> grabens and<br />

half-grabens, when sedimentation was outpaced by<br />

rift-<strong>in</strong>duced subsidence, allow<strong>in</strong>g strati®ed, oxygenpoor<br />

water columns to be established <strong>in</strong> tectonically<br />

controlled lakes. The formation <strong>of</strong> adequate source<br />

rocks <strong>in</strong> <strong>the</strong> rift-lakes may be related to <strong>the</strong> distribution<br />

<strong>of</strong> Devonian±Permian carbonates, which <strong>in</strong>itially<br />

prevented a large <strong>in</strong>put <strong>of</strong> clastic material to <strong>the</strong><br />

early rift-lakes. Several seismic sections show dist<strong>in</strong>ct,<br />

high-amplitude re¯ectors <strong>in</strong> <strong>the</strong> lower part <strong>of</strong> <strong>the</strong> synrift<br />

sequences that are <strong>in</strong>terpreted as lacustr<strong>in</strong>e organic-rich<br />

shales and coal beds. Outcrops at Dong Ho<br />

expose immature organic-rich Oligocene mudstones<br />

with fresh-water algae and land plants <strong>in</strong>terbedded<br />

with th<strong>in</strong> coals and asphaltic sandstones from a small<br />

<strong>in</strong>verted half-graben on <strong>the</strong> nor<strong>the</strong>rn marg<strong>in</strong> <strong>of</strong> <strong>the</strong><br />

Hanoi Trough (Fig. 2). These rocks show TOC values<br />

<strong>of</strong> 6±42%, S2 values <strong>of</strong> 30±94 kg/tonne and HI values<br />

520±670, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong>y are strongly oil prone<br />

(Traynor and Sladen, 1997). These facies are similar to<br />

<strong>the</strong> prime sources for oil <strong>in</strong> <strong>the</strong> bas<strong>in</strong>s north <strong>of</strong> Ha<strong>in</strong>an<br />

Island and <strong>the</strong> Pearl River Bas<strong>in</strong>, and are probably<br />

ra<strong>the</strong>r widespread (e.g. Allen et al., 1988; Zu Jiaqi,<br />

1985; Zhang Qim<strong>in</strong>g and Kou Caixiu, 1989; Jishu et<br />

al., 1994, Sladen, 1997). In <strong>the</strong> southwestern part <strong>of</strong><br />

<strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong>, Oligocene sediments with type<br />

III/II kerogen and TOC vary<strong>in</strong>g between 1±7% occur<br />

<strong>in</strong> well 112 BT-1x. In <strong>the</strong> western part <strong>of</strong> <strong>the</strong><br />

Qiongdongnan Bas<strong>in</strong> at <strong>the</strong> marg<strong>in</strong> to <strong>the</strong> <strong>Song</strong> Hong<br />

Bas<strong>in</strong>, gas is produced from Oligocene and Lower<br />

Miocene sandstones <strong>in</strong> <strong>the</strong> Yacheng 13-1 ®eld conta<strong>in</strong><strong>in</strong>g<br />

estimated reserves <strong>of</strong> 3.5 TCF <strong>of</strong> gas (Asian Oil &<br />

Gas, 1996). The ®eld has been charged by Oligocene<br />

gas-prone type III kerogen from both <strong>the</strong><br />

Qiongdongnan Bas<strong>in</strong> and <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> (Chen<br />

et al., 1998; Hao et al., 1998).<br />

Ano<strong>the</strong>r excellent source <strong>of</strong> <strong>hydrocarbon</strong>s is <strong>the</strong><br />

Miocene coal beds that occur abundantly <strong>in</strong> <strong>the</strong> Hanoi


274<br />

L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294<br />

Trough. They show both high TOC and HI values <strong>in</strong><br />

many wellsections. Several coal beds found <strong>in</strong> <strong>the</strong> o€shore<br />

wells 102 CQ-1x and 102 HD-1x show HI values<br />

<strong>of</strong> more than 400, and are thus highly oil-prone (Fig. 5)<br />

(e.g. Mukhopadhyay et al., 1991; Scott and Fleet,<br />

1994). In addition, Upper Oligocene coaly shales were<br />

drilled <strong>in</strong> well 112 BT-1x, and <strong>the</strong> oil and gas encountered<br />

<strong>in</strong> <strong>the</strong> wells 112 HQ-1x, 112 BT-1x and 114 KT-<br />

1x was probably sourced from similar beds. In <strong>the</strong><br />

sou<strong>the</strong>astern part <strong>of</strong> <strong>the</strong> bas<strong>in</strong>, Middle±Upper Miocene<br />

o€shore mar<strong>in</strong>e mudstones with 0.2±3.0% TOC dom<strong>in</strong>ated<br />

by type III kerogen are a likely source <strong>of</strong> <strong>hydrocarbon</strong>s<br />

<strong>in</strong> <strong>the</strong> Ledong and Dong Fang structures<br />

(Hao et al., 1995).<br />

Thus, potential source rocks <strong>in</strong> <strong>the</strong> <strong>Song</strong> Hong<br />

Bas<strong>in</strong> may <strong>in</strong>clude: (1) oil-prone Eocene±Lower<br />

Oligocene lacustr<strong>in</strong>e mudstones; (2) oil- and gas-prone<br />

Middle Miocene coal beds; (3) gas-prone Upper<br />

Oligocene±Lower Miocene coal beds; and (4) gas- and<br />

oil-prone Miocene o€shore mar<strong>in</strong>e mudstones.<br />

A review <strong>of</strong> <strong>the</strong> exploration history and available <strong>in</strong>formation<br />

from neighbour<strong>in</strong>g bas<strong>in</strong>s shows that <strong>the</strong><br />

Fig. 5. Geochemical plots <strong>of</strong> TOC, S2, HI and %Ro from <strong>the</strong> wells 102 CQ-1 and 102HD-1 (partly after Ha, 1998).


L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294 275<br />

ma<strong>in</strong> geological risks associated with ®nd<strong>in</strong>g commercial<br />

amounts <strong>of</strong> <strong>hydrocarbon</strong>s <strong>in</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong><br />

are: (1) distribution <strong>of</strong> source rocks; (2) tim<strong>in</strong>g <strong>of</strong> <strong>hydrocarbon</strong><br />

<strong>generation</strong> from <strong>the</strong> source rocks relative to<br />

formation <strong>of</strong> potential structures; and (3) presence <strong>of</strong><br />

seal<strong>in</strong>g shales <strong>in</strong> <strong>the</strong> sandstone-dom<strong>in</strong>ated sections. In<br />

an attempt to assess <strong>the</strong> tim<strong>in</strong>g <strong>of</strong> <strong>hydrocarbon</strong> <strong>generation</strong><br />

relative to formation <strong>of</strong> potential traps, <strong>the</strong> <strong>hydrocarbon</strong><br />

<strong>generation</strong> history <strong>of</strong> <strong>the</strong> ma<strong>in</strong> source rock<br />

units was evaluated us<strong>in</strong>g <strong>the</strong> YuÈ kler 1D model<br />

(YuÈ kler et al., 1978).<br />

4. Geological sett<strong>in</strong>g and development <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong<br />

Bas<strong>in</strong>: framework for <strong>the</strong> modell<strong>in</strong>g<br />

The <strong>Song</strong> Hong Bas<strong>in</strong> is an elongated geological<br />

structure, approximately 500 km long and 50±60 km<br />

wide, strik<strong>in</strong>g NW±SE. It consists <strong>of</strong> an onshore part,<br />

<strong>the</strong> Hanoi Trough, that reaches <strong>in</strong>to <strong>the</strong> Hanoi area <strong>in</strong><br />

<strong>the</strong> <strong>Song</strong> Hong river valley, and a much larger o€shore<br />

part (Figs. 1 and 2). The development <strong>of</strong> <strong>the</strong> <strong>Song</strong><br />

Hong Bas<strong>in</strong> is related to <strong>the</strong> large-scale evolution <strong>of</strong><br />

<strong>the</strong> East Vietnam Sea bas<strong>in</strong>. This great bas<strong>in</strong> is<br />

bounded by <strong>the</strong> cont<strong>in</strong>ental marg<strong>in</strong>s <strong>of</strong> South Ch<strong>in</strong>a to<br />

<strong>the</strong> north, Vietnam to <strong>the</strong> west, Borneo to <strong>the</strong> south<br />

and <strong>the</strong> Manila Trench to <strong>the</strong> east. Its development<br />

s<strong>in</strong>ce <strong>the</strong> Early Cretaceous has been governed ma<strong>in</strong>ly<br />

by two or three stages <strong>of</strong> extension, rift<strong>in</strong>g and sea-<br />

¯oor spread<strong>in</strong>g (Taylor and Hayes, 1983; Pigott and<br />

Ru, 1994; Lee and Lawver, 1994).<br />

4.1. Basement <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> and thickness <strong>of</strong><br />

<strong>the</strong> <strong>Cenozoic</strong> bas<strong>in</strong>-®ll<br />

The basement <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> is complex.<br />

The onshore shallow part comprises Proterozoic schists<br />

and gneiss, and Palaeozoic and Mesozoic clastics, carbonates,<br />

and volcanics (Tien et al., 1991; Bao et al.,<br />

1994; Dien, 1996, 1997). The deep o€shore part is<br />

poorly known, but presumably consists <strong>of</strong> similar<br />

rocks. In some areas seismic pro®les <strong>in</strong>dicate well-strati®ed<br />

sections that are <strong>in</strong>terpreted as Mesozoic lowgrade<br />

metamorphic sedimentary rocks. The depth to<br />

<strong>the</strong> base <strong>of</strong> <strong>the</strong> <strong>Cenozoic</strong> bas<strong>in</strong>-®ll <strong>in</strong> <strong>the</strong> central part<br />

<strong>of</strong> <strong>the</strong> bas<strong>in</strong> is well below <strong>the</strong> base <strong>of</strong> conventional<br />

seismic, <strong>in</strong> excess <strong>of</strong> 8 sec TWT, which corresponds<br />

to more than 15 km. Estimates, based on gravity<br />

<strong>in</strong>version and isostatic models, suggest a maximum<br />

depth <strong>of</strong> 14 km (Vu and Rabitnowitz, 1996), whereas<br />

o<strong>the</strong>r estimates suggest as much as 15±20 km<br />

(Hirayama, 1991; D<strong>in</strong>h and Troung, 1995; Hao et al.,<br />

1995, 1998).<br />

4.2. Regional extension phases<br />

Late Cretaceous to Paleocene±Early Eocene NW±<br />

SE regional extension caused <strong>the</strong> formation <strong>of</strong> a NE±<br />

SW trend<strong>in</strong>g proto-East Vietnam Sea, as well as regional<br />

uplift and a series <strong>of</strong> rift bas<strong>in</strong>s along <strong>the</strong><br />

sou<strong>the</strong>rn marg<strong>in</strong> <strong>of</strong> Ch<strong>in</strong>a. Cretaceous and/or<br />

Paleocene±Lower Eocene sediments, predom<strong>in</strong>antly<br />

terrestrial redbeds and lacustr<strong>in</strong>e mudstones, were<br />

deposited <strong>in</strong> <strong>the</strong>se bas<strong>in</strong>s (Ru and Pigott, 1986; Sun<br />

Shu et al., 1989; Pigott and Ru, 1994; Zhou et al.,<br />

1995). However, <strong>the</strong> ages <strong>of</strong> <strong>the</strong> oldest <strong>Cenozoic</strong> deposits<br />

<strong>in</strong> nor<strong>the</strong>rn Vietnam, and <strong>the</strong>ir genetic relation to<br />

Mesozoic and younger <strong>Cenozoic</strong> rocks, are uncerta<strong>in</strong>.<br />

Accord<strong>in</strong>g to Dien and Dzung (1994) and Dien (1997),<br />

molasse-type deposits, dom<strong>in</strong>ated by alluvial and ¯uvial<br />

conglomerates and sandstones, were deposited <strong>in</strong><br />

Paleocene±Early Eocene time <strong>in</strong> residual depressions<br />

formed dur<strong>in</strong>g earlier cont<strong>in</strong>ental convergence (Fig. 3).<br />

O<strong>the</strong>r authors attribute <strong>the</strong> formation <strong>of</strong> <strong>the</strong> oldest<br />

<strong>Cenozoic</strong> sediments to <strong>in</strong>itial rift<strong>in</strong>g <strong>in</strong> Eocene time<br />

(e.g. D<strong>in</strong>h and Truong, 1995; D<strong>in</strong>h, 1998).<br />

A second phase <strong>of</strong> regional N±S extension, <strong>in</strong>itiated<br />

by collision <strong>of</strong> <strong>the</strong> Indian Plate with <strong>the</strong> Eurasian<br />

Plate, lasted from Mid±Late Eocene to Early Miocene<br />

(Tapponnier et al., 1986, 1990; Huchon et al., 1994;<br />

Lee and Lawver, 1994). This collision caused tectonic<br />

escape <strong>of</strong> <strong>the</strong> Indoch<strong>in</strong>a Block toward <strong>the</strong> sou<strong>the</strong>ast,<br />

subsequent clockwise rotation <strong>of</strong> 18±308 (<strong>of</strong><br />

Indoch<strong>in</strong>a) and open<strong>in</strong>g <strong>of</strong> <strong>the</strong> East Vietnam Sea. Leftlateral<br />

movements along <strong>the</strong> <strong>Song</strong> Hong Fault system<br />

(Red River Fault) <strong>in</strong>itiated <strong>the</strong> formation <strong>of</strong> <strong>the</strong> <strong>Song</strong><br />

Hong Bas<strong>in</strong>. The net displacement may amount to<br />

more than 200 km, and possibly up to 500 km (Peltzer<br />

and Tapponnier, 1988; Briais et al., 1993; Leloup et<br />

al., 1995). However, <strong>the</strong> amount <strong>of</strong> displacement and<br />

<strong>the</strong> relationship <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Fault to <strong>the</strong> major<br />

shear zone o€shore Vietnam and <strong>the</strong> open<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

East Vietnam Sea is still debatable (e.g. Roques et al.,<br />

1997; Thi and Giang, 1998). The strike-slip movements<br />

occurred ma<strong>in</strong>ly along <strong>the</strong> <strong>Song</strong> Chay and <strong>Song</strong> Lo<br />

fault zones (Fig. 2). Dur<strong>in</strong>g <strong>the</strong> rift<strong>in</strong>g phase, grabens<br />

and half-grabens were formed <strong>in</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong><br />

and adjacent bas<strong>in</strong>s (Figs. 6±8). With<strong>in</strong> <strong>the</strong>se grabens<br />

thick rift-sequences <strong>of</strong> dom<strong>in</strong>antly ¯uvial and lacustr<strong>in</strong>e<br />

deposits are preserved (e.g. Wu J<strong>in</strong>m<strong>in</strong>, 1994).<br />

These deposits are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> D<strong>in</strong>h Cao<br />

Formation <strong>in</strong> <strong>the</strong> Hanoi Trough (Fig. 3) and <strong>in</strong> <strong>the</strong><br />

Hue Group <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn <strong>Song</strong> Hong Bas<strong>in</strong> (Dien,<br />

1997).<br />

4.3. Drift<strong>in</strong>g and sagg<strong>in</strong>g phase<br />

Cont<strong>in</strong>ued regional N±S extension led to <strong>the</strong> establishment<br />

<strong>of</strong> a spread<strong>in</strong>g axis <strong>in</strong> <strong>the</strong> central East<br />

Vietnam Sea and formation <strong>of</strong> oceanic crust <strong>in</strong> <strong>the</strong>


276<br />

L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294<br />

Fig. 6. Part <strong>of</strong> seismic l<strong>in</strong>e 89-1-36A from SP 100 to 1600. The l<strong>in</strong>e is located at <strong>the</strong> nor<strong>the</strong>astern marg<strong>in</strong> <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong>, and shows<br />

Eocene±Early Oligocene half-grabens overla<strong>in</strong> by Upper Oligocene-Recent post-rift deposits. The top syn-rift unconformity, Re¯ector B, is correlated<br />

to <strong>the</strong> break-up unconformity associated with <strong>the</strong> open<strong>in</strong>g <strong>of</strong> <strong>the</strong> East Vietnam Sea <strong>in</strong> late Early Oligocene time (32 Ma). Re¯ector A is<br />

Early Oligocene (Fig. 9) (Taylor and Hayes, 1980,<br />

1983; Briais et al., 1993; Lee and Lawver, 1994, 1995;<br />

Pigott and Ru, 1994). A major break-up unconformity<br />

separat<strong>in</strong>g <strong>the</strong> syn-rift and post-rift sections was<br />

formed <strong>in</strong> late Early Oligocene time <strong>in</strong> many <strong>of</strong> <strong>the</strong><br />

bas<strong>in</strong>s along <strong>the</strong> marg<strong>in</strong> <strong>of</strong> <strong>the</strong> South Ch<strong>in</strong>a Block,<br />

and a similar unconformity is also evident <strong>in</strong> <strong>the</strong> <strong>Song</strong><br />

Hong Bas<strong>in</strong> (Rang<strong>in</strong> et al., 1995; Vejbñk et al., 1996)<br />

(Figs. 6±8). The age <strong>of</strong> <strong>the</strong> top syn-rift unconformity<br />

may be variable, however, along <strong>the</strong> South Ch<strong>in</strong>a marg<strong>in</strong>,<br />

<strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> rift<strong>in</strong>g phase ended at di€erent<br />

time <strong>in</strong> <strong>the</strong> various bas<strong>in</strong>s (Zhou et al., 1995; Chen et<br />

al., 1998).<br />

The left-lateral transtension along <strong>the</strong> <strong>Song</strong> Hong<br />

Fault system cont<strong>in</strong>ued dur<strong>in</strong>g <strong>the</strong> Early Miocene,<br />

caus<strong>in</strong>g rapid subsidence <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong>. The<br />

Fig. 7. Part <strong>of</strong> seismic l<strong>in</strong>e 90-1-065 from SP 3030 to 4080. This l<strong>in</strong>e follows <strong>the</strong> strike <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> along <strong>the</strong> nor<strong>the</strong>astern marg<strong>in</strong>.<br />

The break-up unconformity associated with <strong>the</strong> open<strong>in</strong>g <strong>of</strong> <strong>the</strong> East Vietnam Sea (Re¯ector B) is only moderately a€ected by <strong>the</strong> NW±SE<br />

oriented strike-slip movements associated with <strong>the</strong> <strong>Song</strong> Hong Fault zone. For location see Fig. 10.


L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294 277<br />

Fig. 8. Part <strong>of</strong> seismic l<strong>in</strong>e 89-1-62 from SP 1580 to 3080. The l<strong>in</strong>e shows position <strong>of</strong> 103 TH-1x and 103 TG-1x drilled by Total centrally <strong>in</strong> <strong>the</strong><br />

northwestern part <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong>. The conspicuous reverse faults <strong>in</strong> <strong>the</strong> axis <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> are related to strike-slip movements.<br />

Re¯ector A is near top basement, Re¯ector B is <strong>the</strong> late Early Oligocene break-up unconformity (32 Ma), Re¯ector C is near base<br />

Middle Miocene, Re¯ector D is <strong>in</strong>tra-Upper Miocene, and Re¯ector E is base Pliocene. At <strong>the</strong> well locations Re¯ector E corresponds to a major<br />

erosional hiatus due to <strong>in</strong>version <strong>in</strong> Late Miocene times. For location see Fig. 10.<br />

depositional environments dur<strong>in</strong>g Late Oligocene±<br />

Early Miocene times vary widely, from ¯uvial, estuar<strong>in</strong>e,<br />

and deltaic to o€shore mar<strong>in</strong>e, with <strong>the</strong> deposition<br />

<strong>of</strong> sandstones and mudstones. The deposits are<br />

<strong>in</strong>cluded <strong>in</strong> <strong>the</strong> Thuy Anh and Phong Chau formations<br />

<strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part (Fig. 3), which correspond to <strong>the</strong><br />

Da Nang Group <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> bas<strong>in</strong><br />

(Morris, 1993; Wu J<strong>in</strong>m<strong>in</strong>, 1994; Dien, 1997).<br />

By Middle Miocene time sea-¯oor spread<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

East Vietnam Sea, and left-lateral movements on <strong>the</strong><br />

<strong>Song</strong> Hong Fault ceased (Briais et al., 1993; Huchon<br />

et al., 1994; Lee and Lawver, 1994, 1995; Leloup et al.,<br />

1993, 1995; Hall, 1996). The relative movements along<br />

<strong>the</strong> <strong>Song</strong> Hong Fault changed to right-lateral as <strong>the</strong><br />

sou<strong>the</strong>astward drift <strong>of</strong> Indoch<strong>in</strong>a was blocked by <strong>the</strong><br />

Sundaland Plate, while <strong>the</strong> Ch<strong>in</strong>a Block cont<strong>in</strong>ued its<br />

drift to <strong>the</strong> east, as <strong>the</strong> Indian Plate cont<strong>in</strong>ued its<br />

northward penetration (Fig. 9). This change <strong>in</strong> relative<br />

displacement along <strong>the</strong> fault probably occurred <strong>in</strong> <strong>the</strong><br />

mid-Miocene (Lee and Lawver, 1994, 1995; Hall,<br />

1996), lead<strong>in</strong>g to <strong>the</strong> current right-lateral displacement<br />

(Allen et al., 1984). The change <strong>of</strong> displacement direction<br />

is expressed <strong>in</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> by <strong>the</strong> formation<br />

<strong>of</strong> a dist<strong>in</strong>ct unconformity near <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

Middle Miocene (Re¯ector C <strong>in</strong> Figs. 6±8), which <strong>in</strong><br />

places shows deep channel <strong>in</strong>cision, and a conspicuous<br />

lateral shift <strong>of</strong> depocenters (Vejbñk et al., 1996). Weak<br />

compression and tectonic <strong>in</strong>version <strong>in</strong> <strong>the</strong> Middle<br />

Miocene <strong>of</strong> <strong>the</strong> Pearl River Bas<strong>in</strong>, probably relate to<br />

this change <strong>in</strong> movement along <strong>the</strong> fault (X. Wang et<br />

al., 1989, cited from Lee and Lawver, 1994; P<strong>in</strong>glu and<br />

Chuntao, 1994). However, o<strong>the</strong>r workers have<br />

suggested that <strong>the</strong> change from left- to right-lateral<br />

displacement occurred dur<strong>in</strong>g <strong>the</strong> Late Miocene to earliest<br />

Pliocene time (Phach, 1994; Pigott and Ru, 1994;<br />

Rang<strong>in</strong> et al., 1995). Thick prograd<strong>in</strong>g deltaic units <strong>of</strong><br />

sandstones, siltstones, mudstones, and brown coals<br />

were deposited <strong>in</strong> Middle±Late Miocene times <strong>in</strong> <strong>the</strong><br />

nor<strong>the</strong>rn <strong>Song</strong> Hong Bas<strong>in</strong>. These deposits are<br />

grouped <strong>in</strong>to <strong>the</strong> Phu Cu and Tien Hung formations<br />

(Fig. 3) (Tien et al., 1991; Wu J<strong>in</strong>m<strong>in</strong>, 1994; Dien,<br />

1997). The correspond<strong>in</strong>g deposits <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part<br />

<strong>of</strong> <strong>the</strong> bas<strong>in</strong> are dom<strong>in</strong>ated by shallow mar<strong>in</strong>e clastics,<br />

grouped <strong>in</strong>to <strong>the</strong> <strong>Song</strong> Huong and Quang Ngai formations,<br />

or <strong>the</strong> Bac Bo Group, which partly <strong>in</strong>ter®ngers<br />

with various carbonates, <strong>in</strong>clud<strong>in</strong>g platform<br />

carbonates, barrier and p<strong>in</strong>nacle reefs <strong>of</strong> <strong>the</strong> Middle<br />

Miocene Tri Ton Group (Morris, 1993; Dien, 1997).<br />

4.4. Late Miocene bas<strong>in</strong> <strong>in</strong>version and renewed sagg<strong>in</strong>g<br />

The strike-slip activity, caus<strong>in</strong>g reversal <strong>of</strong> faults and<br />

<strong>the</strong> formation <strong>of</strong> signi®cant <strong>in</strong>version structures and<br />

several m<strong>in</strong>or unconformities <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong><br />

<strong>the</strong> bas<strong>in</strong>, culm<strong>in</strong>ated <strong>in</strong> Late Miocene time, with <strong>the</strong><br />

formation <strong>of</strong> a signi®cant and widespread unconformity<br />

that deeply truncates <strong>the</strong> <strong>in</strong>version structures<br />

(Fig. 8). Renewed and <strong>in</strong>creased subsidence <strong>of</strong> <strong>the</strong><br />

<strong>Song</strong> Hong Bas<strong>in</strong> is witnessed by <strong>the</strong> thick, drap<strong>in</strong>g,<br />

and virtually undisturbed latest Miocene to Pliocene±


Fig. 9. Oligocene reconstruction (30 Ma, above) and Middle to Late Miocene reconstruction (10 Ma, below) accord<strong>in</strong>g to Lee and Lawver<br />

(1994). Prior to Late Oligocene times, <strong>the</strong> area was dom<strong>in</strong>ated by N±S to NW±SE tension. Note <strong>the</strong> reversion to dextral movements along <strong>the</strong><br />

<strong>Song</strong> Hong Fault Zone.


L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294 279<br />

Quaternary section that overlies <strong>the</strong> Upper Miocene<br />

unconformity (Figs. 6±8). South <strong>of</strong> Ha<strong>in</strong>an, <strong>the</strong> thickness<br />

<strong>of</strong> <strong>the</strong> Pliocene shelfal to bathyal mudstones is up<br />

to 5 km, <strong>in</strong>dicat<strong>in</strong>g an extremely rapid subsidence rate<br />

<strong>of</strong> up to 1400 m/Ma (Wu J<strong>in</strong>m<strong>in</strong>, 1994; Hao et al.,<br />

1995). The deposits <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> bas<strong>in</strong><br />

are dom<strong>in</strong>ated by o€shore mar<strong>in</strong>e to shallow-mar<strong>in</strong>e<br />

mudstones, siltstones, and sandstones, with m<strong>in</strong>or proportions<br />

<strong>of</strong> lagoonal and possibly ¯uvial deposits.<br />

These deposits are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> Dong Hoan, V<strong>in</strong>h<br />

Bao, Hai Duong and Kien Xuong formations (Fig. 3).<br />

The dom<strong>in</strong>ant mar<strong>in</strong>e mudstones <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn part<br />

<strong>of</strong> <strong>the</strong> bas<strong>in</strong> are grouped <strong>in</strong>to <strong>the</strong> Bien Dong<br />

Formation (Dien, 1997).<br />

5. Model concept<br />

The exploration potential <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong><br />

has been assessed by stratigraphic analysis <strong>of</strong> well data<br />

and seismic data, and <strong>the</strong> use <strong>of</strong> <strong>the</strong> YuÈ kler 1D bas<strong>in</strong><br />

model (YuÈ kler et al., 1978). The YuÈ kler model is a forward<br />

determ<strong>in</strong>istic model that quanti®es <strong>the</strong> geological<br />

evolution <strong>of</strong> a sedimentary bas<strong>in</strong> by calculat<strong>in</strong>g compaction,<br />

pressure, temperature, <strong>the</strong>rmal maturity and<br />

<strong>hydrocarbon</strong> <strong>generation</strong>.<br />

Geological <strong>in</strong>formation and <strong>in</strong>put data for <strong>the</strong><br />

model (thickness, age, lithology, porosity, palaeotemperature,<br />

heat ¯ow and palaeo water depth) are syn<strong>the</strong>sised<br />

<strong>in</strong>to model events <strong>in</strong> such a way that <strong>the</strong><br />

model can handle deposition, nondeposition, and erosion<br />

<strong>in</strong> <strong>the</strong> bas<strong>in</strong>.<br />

Computed values represent<strong>in</strong>g present time can be<br />

compared with measured values <strong>of</strong> thickness, porosity,<br />

temperature and <strong>the</strong>rmal maturity obta<strong>in</strong>ed <strong>in</strong> wells<br />

from <strong>the</strong> bas<strong>in</strong>. The geological model and <strong>in</strong>put parameters<br />

are optimised by m<strong>in</strong>imis<strong>in</strong>g <strong>the</strong> di€erences<br />

between computed and measured values. The lithological<br />

properties such as compressibility, <strong>the</strong>rmal conductivity<br />

etc. are assigned accord<strong>in</strong>g to <strong>the</strong> lithology<br />

speci®ed for each model event. Thickness is optimised<br />

automatically by <strong>the</strong> programme, by chang<strong>in</strong>g <strong>the</strong> porosity<br />

<strong>of</strong> <strong>the</strong> depositional unit. In some cases it may be<br />

necessary to change <strong>the</strong> assigned lithology to give a<br />

reasonable match.<br />

The <strong>the</strong>rmal history <strong>of</strong> each sedimentary unit is<br />

determ<strong>in</strong>ed from an equation that describes <strong>the</strong> heat<br />

movement as a function <strong>of</strong> heat ¯ow <strong>in</strong>to <strong>the</strong> bas<strong>in</strong>,<br />

and surface temperature at time <strong>of</strong> deposition (sea bottom<br />

for mar<strong>in</strong>e, or surface for cont<strong>in</strong>ental sediments).<br />

Heat is transported by conduction and by compaction<br />

¯uids mov<strong>in</strong>g up through <strong>the</strong> sediments as <strong>the</strong>y compact.<br />

The <strong>hydrocarbon</strong> <strong>generation</strong> history is determ<strong>in</strong>ed<br />

from k<strong>in</strong>etic equations based on <strong>the</strong> work <strong>of</strong> Tissot<br />

and Espitalie (1975). The orig<strong>in</strong>al frequency factors<br />

and pseudo-activation energies used <strong>in</strong> <strong>the</strong>se equations<br />

have later been modi®ed by YuÈ kler (unpublished<br />

data). The amount <strong>of</strong> generated <strong>hydrocarbon</strong>s is calculated<br />

for each model event and presented as empirical<br />

modi®ed transformation ratios <strong>in</strong> grams <strong>of</strong> <strong>hydrocarbon</strong><br />

per gram <strong>of</strong> orig<strong>in</strong>al total organic carbon<br />

(TOC). Values are calculated as if <strong>the</strong> orig<strong>in</strong>al organic<br />

matter type was ei<strong>the</strong>r type I, II or III kerogen. An<br />

empirical approach divides <strong>the</strong> <strong>hydrocarbon</strong> <strong>generation</strong><br />

<strong>in</strong>to zones, each <strong>of</strong> which is de®ned as a percentage or<br />

degree <strong>of</strong> alteration. These zones describe <strong>the</strong> ma<strong>in</strong><br />

types <strong>of</strong> <strong>hydrocarbon</strong> generated.<br />

6. Event de®nition<br />

The geological <strong>in</strong>formation for <strong>the</strong> modell<strong>in</strong>g was<br />

compiled from sources at <strong>the</strong> Vietnam Petroleum<br />

Institute <strong>in</strong> Hanoi, supplemented by <strong>in</strong>terpretation <strong>of</strong><br />

seismic pro®les and n<strong>in</strong>e onshore and ®ve o€shore well<br />

sections (Fig. 10). The well sections were extrapolated<br />

down to <strong>the</strong> basement us<strong>in</strong>g seismic data. The data<br />

have been comb<strong>in</strong>ed to model 18 pseudo-wells located<br />

at strategic positions <strong>in</strong> <strong>the</strong> bas<strong>in</strong> (Fig. 10). The term<br />

pseudo-well is used as a po<strong>in</strong>t <strong>of</strong> compiled <strong>in</strong>formation<br />

with<strong>in</strong> a given area, and is <strong>the</strong>refore not a real well location.<br />

The thicknesses <strong>of</strong> <strong>the</strong> model events <strong>in</strong> <strong>the</strong><br />

pseudo-wells are estimated from seismic sections us<strong>in</strong>g<br />

a modi®ed velocity function based on <strong>in</strong>formation<br />

from well 103 TH-1x and assum<strong>in</strong>g a maximum depth<br />

to <strong>the</strong> base <strong>of</strong> <strong>the</strong> bas<strong>in</strong> <strong>of</strong> approximately 17 km. This<br />

assumption is based on <strong>the</strong> likelihood <strong>of</strong> overpressure<br />

<strong>in</strong> <strong>the</strong> deeper part <strong>of</strong> <strong>the</strong> bas<strong>in</strong> due to rapid load<strong>in</strong>g, as<br />

<strong>in</strong>dicated by mud-diapirism and pressures measured <strong>in</strong><br />

wells (e.g. Hao et al., 1995, 1998; Chen et al., 1998).<br />

The history <strong>of</strong> <strong>the</strong> bas<strong>in</strong> is subdivided <strong>in</strong>to model<br />

events, each <strong>of</strong> which represents deposition, non-deposition,<br />

or erosion (Table 1). Lithostratigraphic units<br />

such as formations or <strong>in</strong>formal members de®ned <strong>in</strong><br />

wellsections <strong>in</strong> <strong>the</strong> Hanoi Trough form <strong>the</strong> basis for<br />

<strong>the</strong> event de®nitions. The approach has been to use<br />

subdivisions not shorter than 0.5 Ma. The events are<br />

extrapolated from <strong>the</strong> Hanoi Trough <strong>in</strong>to <strong>the</strong> deeper<br />

o€shore part <strong>of</strong> <strong>the</strong> bas<strong>in</strong> by correlat<strong>in</strong>g <strong>the</strong> pr<strong>in</strong>cipal<br />

seismic sequence boundaries to known unconformities<br />

<strong>in</strong> <strong>the</strong> Hanoi Trough. The known, or <strong>in</strong>ferred, stratigraphic<br />

ages have been transferred <strong>in</strong>to absolute ages<br />

(Ma) us<strong>in</strong>g <strong>the</strong> time scale <strong>of</strong> Harland et al. (1989).<br />

6.1. Base <strong>of</strong> <strong>the</strong> model and <strong>the</strong> syn-rift sequenceÐmodel<br />

events 1 and 2±7<br />

Based on palynomorphs, <strong>the</strong> age <strong>of</strong> <strong>the</strong> ®rst<br />

<strong>Cenozoic</strong> bas<strong>in</strong>-®ll<strong>in</strong>g deposits seems to be Eocene<br />

(Tien et al., 1991; Bat et al., 1993; Trung et al., 1997),<br />

possibly Middle±Late Eocene (Bao et al., 1994). The


Fig. 10. Position <strong>of</strong> modelled wells and pseudo-wells; seismic l<strong>in</strong>es (Figs. 6±8) and cross-sections (Figs. 14 and 15).


L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294 281<br />

Table 1<br />

Model events <strong>of</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong><br />

No. Type <strong>of</strong> model event Duration (Ma) Age (Ma)<br />

27 Pleistocene, deposition (``Kien Xuong Fm'') 0.5 0.5<br />

26 Pleistocene, deposition (``Hai Duong Fm'') 1.0 1.5<br />

25 Late Pliocene erosion/non-deposition 0.5 2.0<br />

24 Late Pliocene erosion/non-deposition 0.5 2.5<br />

23 Pliocene deposition (V<strong>in</strong>h Bao Fm, upper part) 1.0 3.5<br />

22 Pliocene deposition (V<strong>in</strong>h Bao Fm, lower part) 1.5 5.0<br />

21 Late Miocene (to earliest Pliocene) erosion on highs, deposition <strong>in</strong> depressions and 1.5 6.5<br />

<strong>in</strong> <strong>the</strong> ma<strong>in</strong> part <strong>of</strong> <strong>the</strong> bas<strong>in</strong> (Dong Hoang Fm)<br />

20 Late Miocene erosion on highs, (Re¯ector D). Deposition <strong>in</strong> depressions and <strong>in</strong><br />

1.5 8.0<br />

<strong>the</strong> ma<strong>in</strong> part <strong>of</strong> <strong>the</strong> bas<strong>in</strong> (Dong Hoang Fm)<br />

19 Late Miocene deposition (Tien Hung Fm, upper part) 1.0 9.0<br />

18 Late Miocene deposition (Tien Hung Fm, middle part) 1.0 10.0<br />

17 Late Mid-Late Miocene deposition (Tien Hung Fm, lower part) 1.5 11.5<br />

16 Late Mid Miocene, m<strong>in</strong>or erosion 0.5 12.0<br />

15 Mid Miocene deposition (Phu Cu Fm, upper part) 1.0 13.0<br />

14 Mid Miocene deposition (Phu Cu Fm, middle part) 1.0 14.0<br />

13 Mid Miocene deposition (Phu Cu Fm, lower part) 1.0 15.0<br />

12 Early Mid Miocene erosion (Re¯ector C). Stop <strong>of</strong> sea-¯oor spread<strong>in</strong>g 1.0 16.0<br />

11 Early Miocene deposition (Phong Chau Fm, upper part) 7.5 23.5<br />

10 Late Oligocene m<strong>in</strong>or erosion, ridge jump and change <strong>of</strong> spread<strong>in</strong>g axis <strong>in</strong> <strong>the</strong> East 0.5 24.0<br />

Vietnam Sea<br />

9 Late Oligocene deposition (Thuy Anh/Phong Chau Fm, lower part) 6.0 30.0<br />

8 Early Oligocene erosion (Re¯ector B). Break-up unconformity, onset <strong>of</strong> sea-¯oor<br />

2.0 32.0<br />

spread<strong>in</strong>g <strong>in</strong> East Vietnam Sea<br />

7 Late Eocene-Early Oligocene syn-rift deposition (D<strong>in</strong>h Cao Fm, 2) 2.5 34.5<br />

6 Late Eocene-Early Oligocene syn-rift deposition (D<strong>in</strong>h Cao Fm, 1) 2.5 37.0<br />

5 Late Eocene erosion 1.0 38.0<br />

4 Late Eocene (``Phu Tien Fm, upper part 2'') 1.5 39.5<br />

3 Late Eocene (``Phu Tien Fm, upper part 1'') 1.5 41.0<br />

2 Mid Eocene, pre to early rift deposition (``Phu Tien Fm, lower part''). Mid Eocene 3.0 44.0<br />

onset <strong>of</strong> s<strong>in</strong>istral movement on <strong>the</strong> <strong>Song</strong> Hong Fault, <strong>in</strong>itiation <strong>of</strong> <strong>the</strong> bas<strong>in</strong><br />

1 ``Pre-<strong>Cenozoic</strong>'' seismic acoustic basement (Re¯ector A) (Palaeozoic-Mesozoic) 1.0 45.0<br />

age <strong>of</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> <strong>Cenozoic</strong> bas<strong>in</strong> ®ll is thus arbitrarily<br />

set at 44 Ma (Table 1), assum<strong>in</strong>g that deposition<br />

began dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>itial tectonic phases <strong>of</strong> <strong>the</strong><br />

left-lateral rift<strong>in</strong>g which probably started <strong>in</strong> Mid-<br />

Eocene time (44 Ma; Lee and Lawver, 1994).<br />

The dom<strong>in</strong>antly Upper Eocene±Lower Oligocene<br />

syn-rift sequence was subdivided <strong>in</strong>to six model events<br />

(2±7, Table 1), consist<strong>in</strong>g ma<strong>in</strong>ly <strong>of</strong> <strong>the</strong> deposition <strong>of</strong><br />

conglomerates, sandstones, and shales <strong>in</strong> alluvial, ¯uvial,<br />

lacustr<strong>in</strong>e, and paralic environments.<br />

Occasionally, seismic data from <strong>the</strong> lower part <strong>of</strong> <strong>the</strong><br />

syn-rift prisms show a dist<strong>in</strong>ct unit that subparallels<br />

<strong>the</strong> acoustic basement and is unconformably overla<strong>in</strong><br />

by onlapp<strong>in</strong>g deposits. This unit, which <strong>of</strong>ten shows a<br />

chaotic re¯ection pattern, is <strong>in</strong>terpreted as composed<br />

<strong>of</strong> alluvial deposits. At o<strong>the</strong>r places high-amplitude,<br />

parallel and cont<strong>in</strong>uous re¯ectors <strong>in</strong>dicate a uniform<br />

depositional environment, such as a lake. The syn-rift<br />

prisms are occasionally more than 5 km thick. The<br />

well 107 TPA drilled more than 2.5 km <strong>of</strong> Eocene±<br />

Oligocene syn-rift sediments compris<strong>in</strong>g conglomerates<br />

and sandstones overla<strong>in</strong> by an unit <strong>of</strong> alternat<strong>in</strong>g sandstones,<br />

siltstones, mudstones and th<strong>in</strong> coal beds deposited<br />

<strong>in</strong> a mixed alluvial and lacustr<strong>in</strong>e environment.<br />

6.2. End <strong>of</strong> rift<strong>in</strong>g and start <strong>of</strong> post-rift sagg<strong>in</strong>g phaseÐ<br />

model events 8 and 9±19<br />

The rift<strong>in</strong>g phase is <strong>in</strong>terpreted to have ended <strong>in</strong> <strong>the</strong><br />

late Early Oligocene, based on <strong>the</strong> correlation <strong>of</strong> <strong>the</strong><br />

signi®cant unconformity topp<strong>in</strong>g <strong>the</strong> rift-sequence, to<br />

<strong>the</strong> regional unconformity present <strong>in</strong> many o<strong>the</strong>r<br />

bas<strong>in</strong>s along <strong>the</strong> marg<strong>in</strong> <strong>of</strong> South Ch<strong>in</strong>a. A similar <strong>in</strong>terpretation<br />

is presented by Lee and Watk<strong>in</strong>s (1998)<br />

from <strong>the</strong> Phu Khanh Bas<strong>in</strong> o€shore central Vietnam.<br />

An age <strong>of</strong> 32 Ma, correspond<strong>in</strong>g to magnetic anomaly<br />

11, is assigned to this break-up unconformity (Taylor<br />

and Hayes, 1980, 1983; Briais et al., 1993; Lee and<br />

Lawver, 1994). This age conforms well with biostratigraphic<br />

data from a mar<strong>in</strong>e horizon overly<strong>in</strong>g <strong>the</strong><br />

unconformity <strong>in</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong>. That horizon is<br />

penetrated by <strong>the</strong> wells 103 TH and 103 TG and is<br />

correlated to <strong>the</strong> Upper Oligocene Chattian NP 25<br />

zone, correspond<strong>in</strong>g to approximately 27±28 Ma


282<br />

L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294<br />

(Rang<strong>in</strong> et al., 1995). In well 112 BT <strong>in</strong> <strong>the</strong> southwestern<br />

part <strong>of</strong> <strong>the</strong> bas<strong>in</strong>, biostratigraphic data likewise<br />

suggest an Oligocene age for <strong>the</strong> unconformity (Trung,<br />

1997). Although <strong>the</strong> time represented by <strong>the</strong> unconformity<br />

may be highly variable, even on a local scale, for<br />

<strong>the</strong> modell<strong>in</strong>g it is arbitrarily set at 2 million years<br />

(Table 1, event 8).<br />

The unconformity is overla<strong>in</strong> by a thick post-rift<br />

succession composed <strong>of</strong> several seismic sequences that<br />

ma<strong>in</strong>ly conta<strong>in</strong> paralic or deltaic to marg<strong>in</strong>al mar<strong>in</strong>e<br />

sandstones, mudstones, and coals along <strong>the</strong> bas<strong>in</strong> marg<strong>in</strong>s<br />

(Thuy Anh and Phong Chau formations <strong>in</strong> <strong>the</strong><br />

Hanoi Trough; Fig. 3), grad<strong>in</strong>g <strong>in</strong>to fully mar<strong>in</strong>e mudstones<br />

toward <strong>the</strong> central and sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong><br />

bas<strong>in</strong> (<strong>the</strong> Da Nang Group). A marked seismic unconformity<br />

<strong>in</strong> <strong>the</strong> lower part <strong>of</strong> <strong>the</strong> post-rift succession<br />

above <strong>the</strong> 27±28 Ma mar<strong>in</strong>e horizon probably corresponds<br />

to <strong>the</strong> unconformity recognised from <strong>the</strong><br />

Hanoi Trough between <strong>the</strong> Thuy Anh Formation/<br />

lower part <strong>of</strong> Phong Chau Formation and <strong>the</strong> upper<br />

Phong Chau Formation (Table 1, event 10). The<br />

unconformity may be related to <strong>the</strong> reorientation <strong>of</strong><br />

<strong>the</strong> spread<strong>in</strong>g <strong>in</strong> <strong>the</strong> East Vietnam Sea, which seems to<br />

have occurred <strong>in</strong> <strong>the</strong> Late Oligocene as a result <strong>of</strong> a<br />

ridge jump (24 Ma, Briais et al., 1993; or 23 Ma,<br />

Huchon et al., 1994), possibly as a consequence <strong>of</strong> <strong>the</strong><br />

collision <strong>of</strong> <strong>the</strong> Australian Plate with <strong>the</strong> Philipp<strong>in</strong>e<br />

Sea Plate arc (25 Ma, Hall, 1996).<br />

The most pronounced unconformity with<strong>in</strong> <strong>the</strong> postrift<br />

succession, show<strong>in</strong>g large <strong>in</strong>cised valleys, is dated<br />

to <strong>the</strong> Middle Miocene by biostratigraphic evidence<br />

from <strong>the</strong> o€shore wells and by correlation to onshore<br />

sections, where it is overla<strong>in</strong> by <strong>the</strong> Phu Cu<br />

Formation. The unconformity (Table 1, event 12) may<br />

be related to <strong>the</strong> cessation <strong>of</strong> <strong>the</strong> spread<strong>in</strong>g activity <strong>in</strong><br />

<strong>the</strong> East Vietnam Sea, which happened at approximately<br />

16 Ma (Briais et al., 1993; Lee and Lawver,<br />

1994). Morris (1993) assigned an age <strong>of</strong> 17 Ma to <strong>the</strong><br />

correlative surface <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Song</strong><br />

Hong Bas<strong>in</strong>, and from <strong>the</strong> Phu Khanh Bas<strong>in</strong>, Lee and<br />

Watk<strong>in</strong>s (1998) likewise related <strong>the</strong>ir SB 4 to <strong>the</strong> 16<br />

Ma cessation <strong>of</strong> <strong>the</strong> sea-¯oor spread<strong>in</strong>g. Rang<strong>in</strong> et al.<br />

(1995) assigned an age <strong>of</strong> ei<strong>the</strong>r 16.5 Ma or 15.5 Ma<br />

to <strong>the</strong> unconformity, based on <strong>the</strong> assumption that it<br />

can be correlated to regressive events <strong>of</strong> Haq et al.<br />

(1988). However, <strong>the</strong> unconformity clearly has a tectonic<br />

component, and precise correlation to regressive<br />

events on an assumed eustatic chart is uncerta<strong>in</strong>, without<br />

strong biostratigraphic control.<br />

Dur<strong>in</strong>g Middle and Late Miocene times thick prograd<strong>in</strong>g<br />

deltaic units were formed. In <strong>the</strong> nor<strong>the</strong>rn part<br />

<strong>of</strong> <strong>the</strong> bas<strong>in</strong>, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> Hanoi Trough, large variations<br />

<strong>in</strong> both thickness and lithology occur due to<br />

strong structural <strong>in</strong>¯uence. The deposits are grouped<br />

<strong>in</strong>to <strong>the</strong> Phu Cu and Tien Hung formations separated<br />

by a m<strong>in</strong>or unconformity (Table 1, event 16).<br />

Inversion occurred along some <strong>of</strong> <strong>the</strong> half-graben<br />

faults, and signi®cant structures were formed.<br />

Concurrently, deposition occurr<strong>in</strong>g between <strong>the</strong> grow<strong>in</strong>g<br />

structures caused a complicated development.<br />

Toward <strong>the</strong> central and sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> bas<strong>in</strong>, <strong>the</strong><br />

prograd<strong>in</strong>g units show a pronounced downlapp<strong>in</strong>g pattern,<br />

and parts <strong>of</strong> <strong>the</strong> Middle±Upper Miocene section<br />

seem to be th<strong>in</strong>ly developed.<br />

6.3. Truncation <strong>of</strong> <strong>in</strong>version structures and renewed<br />

sagg<strong>in</strong>gÐmodel events 20±21 and 22±27<br />

A very pronounced Late Miocene unconformity deeply<br />

truncates palaeo-highs developed over <strong>in</strong>version structures<br />

(Figs. 7 and 8; Table 1, events 20 and 21). In <strong>the</strong><br />

areas around wells 103 TG, 103 TH and 107 TPA<br />

<strong>the</strong> unconformity corresponds to <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

Pliocene. Ages <strong>of</strong> approximately 5.5 Ma and 6 Ma<br />

have been assigned to <strong>the</strong> surface by Rang<strong>in</strong> et al.<br />

(1995) and Morris (1993), respectively. Lateral trac<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> unconformity <strong>in</strong>to more conformable successions<br />

<strong>in</strong>dicates that it occurs with<strong>in</strong> <strong>the</strong> Upper<br />

Miocene. However, <strong>the</strong> surface is clearly <strong>of</strong> composite<br />

nature and re¯ects a long period <strong>of</strong> erosion over<br />

palaeo-highs, while contemporaneous sedimentation<br />

(<strong>the</strong> Dong Hoang Formation) occurred <strong>in</strong> lows. The<br />

overly<strong>in</strong>g thick and virtually undisturbed Late<br />

Miocene±Recent sequence comprises <strong>in</strong>terbedded o€shore<br />

mar<strong>in</strong>e to shallow mar<strong>in</strong>e and lagoonal mudstones,<br />

siltstones and sandstones belong<strong>in</strong>g to <strong>the</strong> V<strong>in</strong>h<br />

Bao, Hai Duong and Kien Xuong formations (Fig. 3;<br />

Table 1 events 22±27).<br />

7. Strategy for <strong>the</strong> modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong><br />

The strategy for <strong>the</strong> modell<strong>in</strong>g is based on <strong>the</strong><br />

assumption that basal heat ¯ow development has been<br />

similar all over <strong>the</strong> bas<strong>in</strong>, with a gradual <strong>in</strong>crease at<br />

<strong>the</strong> onset <strong>of</strong> <strong>the</strong> rift<strong>in</strong>g phase (Mid Eocene), reach<strong>in</strong>g a<br />

maximum <strong>of</strong> 1.2 heat ¯ow units (HFU) dur<strong>in</strong>g <strong>the</strong><br />

active rift<strong>in</strong>g phase (Early Oligocene). Dur<strong>in</strong>g <strong>the</strong> subsequent<br />

post-rift phases (Late Oligocene±Late<br />

Miocene) <strong>of</strong> relatively uniform subsidence, lower and<br />

gradually decreas<strong>in</strong>g heat ¯ow values reach<strong>in</strong>g a m<strong>in</strong>imum<br />

<strong>of</strong> 1.0 were used. In order to match present-day<br />

temperatures and vitr<strong>in</strong>ite re¯ectance data, a gradual<br />

<strong>in</strong>crease <strong>in</strong> heat ¯ow dur<strong>in</strong>g <strong>the</strong> latest Miocene±<br />

Pleistocene was used (Figs. 11 and 12). The <strong>in</strong>crease is<br />

supported by temperatures up to 568C at <strong>the</strong> surface<br />

<strong>in</strong> several onshore wells, presence <strong>of</strong> hot spr<strong>in</strong>gs along<br />

bas<strong>in</strong> marg<strong>in</strong> faults, and warm water from shallow<br />

wells used for ®sh-breed<strong>in</strong>g farms sou<strong>the</strong>ast <strong>of</strong> Hanoi.<br />

Dao and Huyen (1995) also suggest high heat ¯ows,<br />

based on calculations us<strong>in</strong>g <strong>the</strong>rmal conductivities<br />

measured on core samples and temperature gradients


L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294 283<br />

Fig. 11. Plots display<strong>in</strong>g <strong>the</strong> results <strong>of</strong> <strong>the</strong> optimisation process for well position LK 200 (onshore) and 103 TG (o€shore). Left plots compare<br />

measured vitr<strong>in</strong>ite re¯ectance (crosses) with <strong>the</strong> results <strong>of</strong> <strong>the</strong> modell<strong>in</strong>g (®lled dots). Right plots compare modelled and measured temperatures.<br />

The temperature plot for LK 200 and <strong>the</strong> vitr<strong>in</strong>ite plot for 103 TG shows a good ®t between measured and modelled results, whereas <strong>the</strong> o<strong>the</strong>r<br />

plots show some discrepancies. Note that <strong>the</strong> <strong>hydrocarbon</strong> <strong>generation</strong> zones on <strong>the</strong> vitr<strong>in</strong>ite re¯ectance plots only refer to general guidel<strong>in</strong>es,<br />

whereas <strong>the</strong> zonations shown on <strong>the</strong> subsidence plots (Fig. 12) are those used by <strong>the</strong> modell<strong>in</strong>g programme. Emphasised layers are <strong>the</strong> model<br />

events 6, 11, 14 and 15.


284<br />

L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294<br />

Fig. 12. Plots show<strong>in</strong>g subsidence history and development with time <strong>of</strong> <strong>hydrocarbon</strong> <strong>generation</strong> zones at <strong>the</strong> position <strong>of</strong> well LK 200 and 103<br />

TG. Model event 1 began to subside at 45 Ma and is at present day at approximately 5000 m and 6400 m depths, respectively. The subsidence<br />

history <strong>of</strong> <strong>the</strong> four selected model events (6, 11, 14 and 15 correspond<strong>in</strong>g to D<strong>in</strong>h Cao Fm, 1; Phong Chau Fm, upper; Phu Cu Fm, middle; and<br />

Phu Cu Fm, upper) with possible source rocks are marked with thick stippled l<strong>in</strong>es. The <strong>hydrocarbon</strong> <strong>generation</strong> zones are <strong>in</strong>dicated accord<strong>in</strong>g<br />

to <strong>the</strong> legend to <strong>the</strong> left. The used heat ¯ow history is annotated (relative to 1 heat ¯ow unit) <strong>in</strong> <strong>the</strong> lower part <strong>of</strong> <strong>the</strong> ®gures.


L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294 285<br />

from wells. Likewise, Chen et al. (1998) suggested a<br />

high heat ¯ow <strong>in</strong> <strong>the</strong> last stage <strong>of</strong> <strong>the</strong> bas<strong>in</strong> development.<br />

The late <strong>Cenozoic</strong>±Recent high heat ¯ows may be<br />

related to <strong>the</strong> volcanic activity <strong>in</strong> <strong>the</strong> region and <strong>the</strong><br />

suggested presence <strong>of</strong> a mantle plume beneath<br />

Indoch<strong>in</strong>a (Ru and Pigott, 1986; Bat et al., 1994;<br />

Flower and Hoang, 1994). Thick basaltic volcanic<br />

rocks and <strong>in</strong>trusives <strong>of</strong> Late Miocene±Pliocene age<br />

occur <strong>in</strong> <strong>the</strong> Quang Ngai Graben at <strong>the</strong> sou<strong>the</strong>rnmost<br />

tip <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> (Morris, 1993) and are<br />

clearly shown by magnetic anomaly data. Young oliv<strong>in</strong>e<br />

basalts crop out on Con Co Island <strong>in</strong> <strong>the</strong> southwestern<br />

part <strong>of</strong> block 112, and Pliocene±Pleistocene<br />

basalts are known from outcrops close to <strong>the</strong> 17th<br />

Parallel (<strong>in</strong> Phy Quy District, Khe Sanh, and Cua<br />

Tung) and from <strong>the</strong> west Nghe An prov<strong>in</strong>ce approximately<br />

200 km south <strong>of</strong> Hanoi (Fig. 2) (Ru and<br />

Pigott, 1986; Tien et al., 1991; Bao et al., 1994).<br />

Likewise, 5±13 Ma basalts are present along <strong>the</strong> <strong>Song</strong><br />

Hong Fault northwest <strong>of</strong> Hanoi (Phan Truong Thi,<br />

personal communication, 1996).<br />

Quantitative data on palaeo-surface temperatures<br />

such as oxygen isotopes, are not available from <strong>the</strong><br />

<strong>Song</strong> Hong Bas<strong>in</strong>. Thus, <strong>the</strong> estimates on palaeo-surface<br />

temperatures are based on general palaeoclimatic<br />

models and palaeolatitude provided by Habicht (1979)<br />

and Scotese et al. (1988), and <strong>the</strong> <strong>in</strong>terpreted palaeobathymetry.<br />

For model events 1±3 that represent a<br />

cont<strong>in</strong>ental pre- to early-rift phase, a surface temperature<br />

<strong>of</strong> 258C is used. For <strong>the</strong> rema<strong>in</strong><strong>in</strong>g events, that<br />

mostly represent periods with mar<strong>in</strong>e to deltaic sedimentation,<br />

an average surface temperature <strong>of</strong> 208C is<br />

used. However, <strong>in</strong> order to match <strong>the</strong> present-day high<br />

temperatures that are measured at very shallow depths<br />

<strong>in</strong> <strong>the</strong> onshore area, <strong>the</strong> surface temperature for <strong>the</strong><br />

youngest model event is typically given a value <strong>of</strong><br />

308C. In some cases, a higher or lower temperature is<br />

chosen to ®t <strong>the</strong> actual measurements <strong>in</strong> wells, where<br />

<strong>the</strong>y are considered to represent true formation temperatures.<br />

For <strong>the</strong> youngest model event <strong>in</strong> o€shore<br />

and pseudo-wells, a value <strong>of</strong> 28.58C is used as based<br />

on measurements from 102 CQ and 102 HD.<br />

Calculated sea-bottom temperatures based on oxygen<br />

isotope ratios from <strong>the</strong> Qiongdongnan Bas<strong>in</strong> <strong>in</strong>dicate a<br />

change from 208C <strong>in</strong> <strong>the</strong> Oligocene to 308C <strong>in</strong> <strong>the</strong><br />

Quaternary (Chen et al., 1998).<br />

The lithologies assigned to <strong>the</strong> model events are<br />

based on <strong>in</strong>-house descriptions from onshore wells by<br />

<strong>the</strong> Vietnam Petroleum Institute, evaluation <strong>of</strong> welllogs<br />

and <strong>in</strong>terpretations <strong>of</strong> lateral variation <strong>of</strong> <strong>the</strong><br />

depositional facies. Thicknesses and amounts <strong>of</strong> erosion<br />

<strong>of</strong> <strong>the</strong> units <strong>in</strong> <strong>the</strong> Hanoi Trough are primarily<br />

based on lithostratigraphic tops picked by <strong>the</strong> Vietnam<br />

Petroleum Institute, and on <strong>in</strong>terpretation <strong>of</strong> cross-sections<br />

prepared by Hoai (1985). The stratigraphic column,<br />

from <strong>the</strong> basement to <strong>the</strong> base <strong>of</strong> <strong>the</strong> drilled<br />

sections, is <strong>in</strong>corporated <strong>in</strong> <strong>the</strong> modell<strong>in</strong>g by us<strong>in</strong>g <strong>the</strong><br />

<strong>in</strong>formation from neighbour<strong>in</strong>g well sections and by<br />

<strong>the</strong> <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> general bas<strong>in</strong> history. Depth<br />

to basement is estimated from <strong>the</strong> top basement map<br />

<strong>of</strong> Dung et al. (1995). The thicknesses <strong>of</strong> o€shore units<br />

are based on <strong>in</strong>terpretations <strong>of</strong> well-logs and seismic<br />

pro®les.<br />

In general, <strong>the</strong> amount <strong>of</strong> erosion decreases from<br />

<strong>the</strong> northwestern Hanoi Trough toward <strong>the</strong> sou<strong>the</strong>ast<br />

along <strong>the</strong> length <strong>of</strong> <strong>the</strong> bas<strong>in</strong>, and <strong>the</strong> section shows a<br />

general <strong>in</strong>crease <strong>in</strong> thickness. This trend is accompanied<br />

by a general change <strong>of</strong> lithology toward<br />

larger proportions <strong>of</strong> mar<strong>in</strong>e mudstones and fewer<br />

sandstones towards <strong>the</strong> sou<strong>the</strong>ast. Coal beds are common<br />

<strong>in</strong> <strong>the</strong> central Hanoi Trough and <strong>in</strong> <strong>the</strong> 102 CQ<br />

and 102 HD wells, whereas coals disappear toward <strong>the</strong><br />

marg<strong>in</strong>s <strong>of</strong> <strong>the</strong> Hanoi Trough and toward <strong>the</strong> central<br />

part <strong>of</strong> <strong>the</strong> bas<strong>in</strong>.<br />

8. Discussion <strong>of</strong> <strong>the</strong> modell<strong>in</strong>g results<br />

The 1D forward model used <strong>in</strong> this study calculates<br />

amounts <strong>of</strong> <strong>hydrocarbon</strong>s available for expulsion<br />

through time. The model calculates values <strong>in</strong> <strong>the</strong> past<br />

as a function <strong>of</strong> <strong>the</strong> <strong>in</strong>put parameters. Thus, optimisation<br />

is <strong>of</strong> fundamental importance for calculation <strong>of</strong><br />

<strong>the</strong> <strong>hydrocarbon</strong> <strong>generation</strong> history, especially <strong>of</strong> those<br />

parameters that a€ect <strong>the</strong> <strong>the</strong>rmal maturity calculations.<br />

The s<strong>in</strong>gle most critical parameter for <strong>the</strong><br />

modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>hydrocarbon</strong> <strong>generation</strong> has been <strong>the</strong><br />

heat ¯ow history. However, as a given layer has<br />

reached its highest temperature <strong>in</strong> recent times <strong>in</strong> most<br />

cases, temperature log data and bottom hole temperatures<br />

provide good constra<strong>in</strong>ts for <strong>the</strong> recent part <strong>of</strong><br />

<strong>the</strong> temperature history. In order to optimise <strong>the</strong> modell<strong>in</strong>g,<br />

all available measurements <strong>of</strong> vitr<strong>in</strong>ite re¯ectance<br />

and subsurface temperatures were used.<br />

Relatively few vitr<strong>in</strong>ite re¯ectance data were available<br />

from <strong>the</strong> wells <strong>in</strong> <strong>the</strong> Hanoi Trough, but detailed temperature<br />

pro®les, measured long after (up to two<br />

years) <strong>the</strong> term<strong>in</strong>ation <strong>of</strong> <strong>the</strong> drill<strong>in</strong>g activities, supplemented<br />

<strong>the</strong> optimisation (e.g. LK 200, Fig. 11,<br />

upper part). From <strong>the</strong> o€shore wells, vitr<strong>in</strong>ite re¯ectance<br />

data were more numerous and reliable, while<br />

temperature data were more scarce (Fig. 11, lower<br />

part). Vitr<strong>in</strong>ite re¯ectance ma<strong>in</strong>ly records maximum<br />

temperatures and <strong>the</strong>refore does not constra<strong>in</strong> <strong>the</strong><br />

palaeo-heat ¯ow very well. However, vitr<strong>in</strong>ite re¯ectance<br />

data from Late Miocene <strong>in</strong>version structures<br />

gives some constra<strong>in</strong>ts on <strong>the</strong> pre<strong>in</strong>version heat ¯ow<br />

history. Suppression <strong>of</strong> vitr<strong>in</strong>ite re¯ectance <strong>in</strong> <strong>the</strong><br />

sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> bas<strong>in</strong> has been suggested by e.g.<br />

Hao et al. (1995) due to overpressur<strong>in</strong>g. However,<br />

overpressure seems not to be signi®cant <strong>in</strong> wells from


286<br />

L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294<br />

<strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> bas<strong>in</strong>, but may <strong>in</strong>crease <strong>in</strong><br />

importance toward <strong>the</strong> deep sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong><br />

bas<strong>in</strong>.<br />

The modell<strong>in</strong>g was conducted for type II and III kerogen<br />

(Nielsen and Dien, 1997). Comparison <strong>of</strong> <strong>the</strong> modell<strong>in</strong>g<br />

<strong>of</strong> type II and III for <strong>the</strong> Hanoi Trough shows that<br />

<strong>the</strong> ma<strong>in</strong> di€erence is <strong>the</strong> time <strong>of</strong> onset <strong>of</strong> early oil <strong>generation</strong>.<br />

This time di€erence is, however, negligible, as<br />

compared to <strong>the</strong> overall uncerta<strong>in</strong>ty <strong>in</strong> onset time, related<br />

to uncerta<strong>in</strong>ties <strong>of</strong> <strong>the</strong> o<strong>the</strong>r <strong>in</strong>put parameters.<br />

Thus, emphasis was placed on type III kerogen as this is<br />

<strong>the</strong> dom<strong>in</strong>at<strong>in</strong>g organic matter <strong>in</strong> <strong>the</strong> bas<strong>in</strong> (Hao et al.,<br />

1995, 1998; Chen et al., 1998; Ha, 1998).<br />

Scenarios with a variety <strong>of</strong> heat ¯ow histories were<br />

calculated to <strong>in</strong>vestigate which heat ¯ow history gave<br />

<strong>the</strong> best ®t. It appears that a scenario with a relatively<br />

low heat ¯ow <strong>of</strong> 1.2 HFU dur<strong>in</strong>g <strong>the</strong> Late Eocene±<br />

Early Oligocene rift<strong>in</strong>g phase and a stable low heat<br />

¯ow <strong>of</strong> 1 HFU dur<strong>in</strong>g <strong>the</strong> ma<strong>in</strong> part <strong>of</strong> <strong>the</strong> post-rift<strong>in</strong>g<br />

phase, followed by a slight <strong>in</strong>crease <strong>in</strong> late <strong>Cenozoic</strong><br />

times, shows <strong>the</strong> best ®t with <strong>the</strong> available control<br />

po<strong>in</strong>ts. The values <strong>in</strong> this heat ¯ow history are relatively<br />

low as compared to typical rift-bas<strong>in</strong>s. The<br />

reason for this is that <strong>the</strong> early development <strong>of</strong> <strong>the</strong><br />

<strong>Song</strong> Hong Bas<strong>in</strong> was caused ma<strong>in</strong>ly by strike-slip tectonics<br />

ra<strong>the</strong>r that extensional rift<strong>in</strong>g over a <strong>the</strong>rmal<br />

dome. In addition, <strong>the</strong> rapid deposition caused considerable<br />

blanket<strong>in</strong>g e€ects (e.g. Lucazeau and Le<br />

Douaran, 1985). Us<strong>in</strong>g this heat ¯ow history, <strong>the</strong> subsidence<br />

history and <strong>the</strong> development <strong>of</strong> <strong>the</strong> <strong>hydrocarbon</strong><br />

<strong>generation</strong> zones with time was modelled for<br />

each well and pseudo-well location (Fig. 12). In addition,<br />

<strong>the</strong> present-day positions <strong>of</strong> <strong>the</strong> <strong>hydrocarbon</strong><br />

zones were modelled (Fig. 13, left part). Examples <strong>of</strong><br />

<strong>the</strong> <strong>generation</strong> history <strong>of</strong> model event 6 are shown <strong>in</strong><br />

Fig. 13 (right part). A higher heat ¯ow dur<strong>in</strong>g <strong>the</strong> rift<strong>in</strong>g<br />

phase would have accelerated <strong>the</strong> maturation and<br />

caused an earlier <strong>generation</strong> <strong>of</strong> <strong>hydrocarbon</strong>s. Early<br />

<strong>generation</strong> <strong>of</strong> <strong>hydrocarbon</strong>s would reduce <strong>the</strong> potential<br />

<strong>in</strong> some areas due to erosion subsequent to <strong>the</strong> charg<strong>in</strong>g<br />

<strong>of</strong> potential traps, such as <strong>the</strong> <strong>in</strong>version structures.<br />

A number <strong>of</strong> cross-sections comb<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>hydrocarbon</strong><br />

<strong>generation</strong> zones modelled at well and pseudowell<br />

locations were constructed (e.g. Figs. 14 and 15).<br />

In addition, <strong>hydrocarbon</strong> <strong>generation</strong> maps <strong>of</strong> <strong>the</strong> three<br />

most important source rocks, <strong>the</strong> Upper Eocene±<br />

Lower Oligocene syn-rift lacustr<strong>in</strong>e shales and coals,<br />

<strong>the</strong> Lower Miocene coal beds, and <strong>the</strong> Middle<br />

Miocene coal beds, were constructed to illustrate <strong>the</strong><br />

situation at present day and at 5 Ma (Nielsen and<br />

Dien, 1997).<br />

The modell<strong>in</strong>g results demonstrate that source rocks<br />

<strong>in</strong> model event 6 are <strong>in</strong> a favourable position for <strong>hydrocarbon</strong><br />

<strong>generation</strong>, as <strong>the</strong>y are presently with<strong>in</strong> <strong>the</strong><br />

gas w<strong>in</strong>dow <strong>in</strong> large parts <strong>of</strong> <strong>the</strong> Hanoi Trough<br />

(Fig. 16, left). In <strong>the</strong> shallow part <strong>of</strong> <strong>the</strong> trough, event<br />

6 is <strong>in</strong> <strong>the</strong> condensate to oil w<strong>in</strong>dow. In <strong>the</strong> o€shore<br />

areas at <strong>the</strong> well locations 103 TG, 103 TH, 102 CQ<br />

and 102 HD, <strong>the</strong> top <strong>of</strong> event 6 passed out <strong>of</strong> <strong>the</strong> oil<br />

w<strong>in</strong>dow between 15±17 Ma and is currently gas generat<strong>in</strong>g,<br />

to overmature. Thus oil <strong>generation</strong> stopped<br />

before <strong>the</strong> Late Miocene <strong>in</strong>version structures were<br />

developed and ready to trap <strong>hydrocarbon</strong>s. The lack<br />

<strong>of</strong> proven commercial amounts <strong>of</strong> <strong>hydrocarbon</strong>s by<br />

<strong>the</strong>se four exploration wells drilled on <strong>in</strong>version structures<br />

is <strong>the</strong>refore <strong>in</strong> accordance with <strong>the</strong> results <strong>of</strong> <strong>the</strong><br />

modell<strong>in</strong>g. Far<strong>the</strong>r to <strong>the</strong> south and centrally <strong>in</strong> <strong>the</strong><br />

bas<strong>in</strong>, model event 6 reached <strong>the</strong> ma<strong>in</strong> oil w<strong>in</strong>dow at<br />

approximately 34 Ma and was already overmature at<br />

approximately 25 Ma. Towards <strong>the</strong> nor<strong>the</strong>ast, model<br />

event 6 is currently rang<strong>in</strong>g from immature to <strong>the</strong><br />

beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> gas <strong>generation</strong> (Fig. 16, left).<br />

Lower Miocene coal beds with high HI and S2<br />

(model event 11) occur <strong>in</strong> well sections <strong>in</strong> <strong>the</strong> Hanoi<br />

Trough and <strong>in</strong> well 103 TG. The coal beds disappear<br />

toward <strong>the</strong> <strong>in</strong>termediate and central parts <strong>of</strong> <strong>the</strong> <strong>Song</strong><br />

Hong Bas<strong>in</strong>. However, <strong>in</strong> <strong>the</strong> deeper part <strong>of</strong> <strong>the</strong> bas<strong>in</strong><br />

contemporaneous mar<strong>in</strong>e sediments with a signi®cant<br />

amount <strong>of</strong> kerogen type III may occur (e.g., Hao et<br />

al., 1995). In <strong>the</strong> Hanoi Trough, event 11 is <strong>in</strong> a very<br />

favourable position. It ranges from immature <strong>in</strong> <strong>the</strong><br />

western and nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> trough (well LK 104<br />

and LK 100, Fig. 14), through <strong>the</strong> ma<strong>in</strong> oil to condensate<br />

and gas w<strong>in</strong>dow <strong>in</strong> <strong>the</strong> eastern part <strong>of</strong> <strong>the</strong> trough<br />

(well LK 102). Event 11 is immature <strong>in</strong> <strong>the</strong> nor<strong>the</strong>astern<br />

part <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> (PW 2, 3, 4, 10;<br />

Fig. 2), and is miss<strong>in</strong>g <strong>in</strong> 107 TPA, PW 5 and PW 6.<br />

In <strong>the</strong> o€shore areas at wells 102 CQ, 102 HD, 103<br />

TH, 103 TG and PW 1, event 11 ranges from immature<br />

over ma<strong>in</strong> oil to dry gas. In 102 CQ and 102 HD<br />

<strong>hydrocarbon</strong>s were generated prior to <strong>the</strong> formation <strong>of</strong><br />

<strong>the</strong> Late Miocene <strong>in</strong>version structures, conform<strong>in</strong>g<br />

with <strong>the</strong> lack <strong>of</strong> signi®cant amounts <strong>of</strong> <strong>hydrocarbon</strong> <strong>in</strong><br />

those wells. In <strong>the</strong> central part <strong>of</strong> <strong>the</strong> bas<strong>in</strong>, <strong>the</strong> base<br />

<strong>of</strong> model event 11 reached <strong>the</strong> ma<strong>in</strong> oil w<strong>in</strong>dow<br />

between 15±20 Ma, and <strong>the</strong> top <strong>of</strong> event 11 passed out<br />

<strong>of</strong> <strong>the</strong> oil w<strong>in</strong>dow at 3 Ma.<br />

Middle Miocene coal beds (Phu Cu Fm., middle<br />

part, model event 14) occur abundantly <strong>in</strong> <strong>the</strong> Hanoi<br />

Trough, but are immature <strong>in</strong> <strong>the</strong> ma<strong>in</strong> part <strong>of</strong> <strong>the</strong><br />

trough (Fig. 16, right). In well LK 101, <strong>the</strong> base <strong>of</strong><br />

model event 14 entered <strong>the</strong> early oil w<strong>in</strong>dow at 1 Ma.<br />

In well LK 102 and LK 110, <strong>the</strong> base <strong>of</strong> model event<br />

14 passed <strong>in</strong>to <strong>the</strong> ma<strong>in</strong> oil w<strong>in</strong>dow at 2 Ma, and is<br />

currently near to <strong>the</strong> condensate-oil boundary. The<br />

ma<strong>in</strong> part <strong>of</strong> <strong>the</strong> coal beds <strong>in</strong> <strong>the</strong>se two wells is now<br />

situated <strong>in</strong> <strong>the</strong> ma<strong>in</strong> oil w<strong>in</strong>dow, thus be<strong>in</strong>g <strong>in</strong> a very<br />

favourable and actively produc<strong>in</strong>g position (Fig. 14).<br />

In <strong>the</strong> o€shore area at well 102 CQ, <strong>the</strong> coal beds are<br />

immature. In well 102 HD, <strong>the</strong> base <strong>of</strong> <strong>the</strong> model<br />

event entered <strong>the</strong> early oil w<strong>in</strong>dow at 13 Ma, and <strong>the</strong>


L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294 287<br />

Fig. 13. Plots show<strong>in</strong>g <strong>hydrocarbon</strong> <strong>generation</strong> zones at well positions LK 200 and 103 TG. Left plots display <strong>the</strong> depths <strong>of</strong> <strong>the</strong> <strong>generation</strong> zones<br />

at present day. The positions <strong>of</strong> <strong>the</strong> four selected model events, with possible source rocks, are shown along <strong>the</strong> depth scale to <strong>the</strong> right for direct<br />

comparison with <strong>the</strong> <strong>generation</strong> zones. The plots to <strong>the</strong> right show <strong>the</strong> <strong>generation</strong> history <strong>of</strong> model event 6 (geological time versus degree <strong>of</strong> organic<br />

matter alteration). The time when <strong>the</strong> base <strong>of</strong> <strong>the</strong> event entered <strong>the</strong> various <strong>hydrocarbon</strong> zones is <strong>in</strong>dicated by numbers. The black l<strong>in</strong>e <strong>in</strong>dicates<br />

peak <strong>generation</strong>.


288<br />

L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294<br />

Fig. 14. Two pro®les illustrat<strong>in</strong>g <strong>the</strong> results <strong>of</strong> <strong>the</strong> modell<strong>in</strong>g <strong>in</strong> <strong>the</strong> present-day situation. The upper pro®le approximates a dip section, and <strong>the</strong><br />

lower pro®le approximates a strike section (for position refer to Fig. 10). Each pro®le shows <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> four selected model events,<br />

with possible source rocks, and <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> <strong>hydrocarbon</strong> <strong>generation</strong> zones modelled at well and pseudo-well locations (same code as<br />

<strong>in</strong> Figs. 12 and 13).<br />

ma<strong>in</strong> oil and condensate w<strong>in</strong>dows at 8 Ma and 1 Ma,<br />

respectively. The top <strong>of</strong> <strong>the</strong> coals is immature at present<br />

time (Fig. 14). After 11 Ma, <strong>hydrocarbon</strong> <strong>generation</strong><br />

did not occur, because <strong>of</strong> <strong>the</strong> lack <strong>of</strong> fur<strong>the</strong>r<br />

signi®cant subsidence. In <strong>the</strong> wells 103 TG and 103<br />

TH, model event 14 is immature. It is miss<strong>in</strong>g <strong>in</strong> 107<br />

TPA and seems to be absent or very th<strong>in</strong>ly developed<br />

<strong>in</strong> most <strong>of</strong> <strong>the</strong> pseudo-wells.<br />

The coal beds <strong>in</strong> <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> Phu Cu<br />

Formation, model event 15, are immature <strong>in</strong> all <strong>the</strong>


L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294 289<br />

Fig. 15. The same two pro®les as shown <strong>in</strong> Fig. 14, backstripped at 5 Ma to illustrate <strong>the</strong> situation closely after <strong>the</strong> formation <strong>of</strong> <strong>the</strong> major structural<br />

traps formed by Late Miocene <strong>in</strong>version tectonics.<br />

onshore wells and <strong>the</strong> o€shore wells 102 CQ, 102 HD<br />

and 103 TH (Fig. 14). Model event 15 is absent <strong>in</strong><br />

most <strong>of</strong> <strong>the</strong> pseudo-wells, and seems to be absent or<br />

very th<strong>in</strong> <strong>in</strong> <strong>the</strong> central and sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> bas<strong>in</strong><br />

(Fig. 14, lower part).<br />

8.1. Possible plays<br />

Late Miocene <strong>in</strong>version structures are common <strong>in</strong><br />

<strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> and to <strong>the</strong><br />

nor<strong>the</strong>ast. In drilled sections <strong>the</strong>se structures conta<strong>in</strong>


290<br />

L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294<br />

Fig. 16. Map show<strong>in</strong>g <strong>the</strong> <strong>hydrocarbon</strong> <strong>generation</strong> zones (same code as <strong>in</strong> Figs. 12 and 13) for top and base <strong>of</strong> <strong>the</strong> D<strong>in</strong>h Cao Fm, model event 6 (left) and Phu Cu Fm, upper, model event 14<br />

(right) at present day.


L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294 291<br />

various Oligocene±Miocene reservoir sandstones. The<br />

structures are sealed by overly<strong>in</strong>g Pliocene transgressive<br />

mar<strong>in</strong>e claystones, and form good structural traps.<br />

However, <strong>the</strong> tim<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>hydrocarbon</strong> <strong>generation</strong> is<br />

critical, because migration and trapp<strong>in</strong>g should occur<br />

after <strong>the</strong> deeply truncat<strong>in</strong>g Upper Miocene unconformity<br />

was draped by a suciently thick and seal<strong>in</strong>g<br />

layer <strong>of</strong> Pliocene claystones. Due to <strong>the</strong> relatively slow<br />

subsidence <strong>in</strong> <strong>the</strong> nor<strong>the</strong>astern part <strong>of</strong> <strong>the</strong> study area<br />

s<strong>in</strong>ce Late Oligocene time, <strong>the</strong> precise time <strong>of</strong> <strong>hydrocarbon</strong><br />

<strong>generation</strong> is highly dependent on <strong>the</strong> heat ¯ow<br />

history, and <strong>the</strong> position <strong>of</strong> <strong>the</strong> potential source rocks<br />

with<strong>in</strong> <strong>the</strong> tilted, syn-rift sequences.<br />

The modell<strong>in</strong>g <strong>in</strong>dicates that potential source rocks <strong>in</strong><br />

model event 6 may have generated <strong>hydrocarbon</strong>s after<br />

Late Miocene time at locations PW 2, PW 3, PW 4,<br />

PW 5 and PW 10 (Fig. 10), although <strong>the</strong> <strong>generation</strong><br />

began earlier <strong>in</strong> <strong>the</strong> Miocene. This means that structural<br />

traps may have been <strong>in</strong> a favourable position <strong>in</strong> <strong>the</strong>se<br />

areas for trapp<strong>in</strong>g <strong>hydrocarbon</strong>s produced after Late<br />

Miocene time. In <strong>the</strong> deeper and central part <strong>of</strong> bas<strong>in</strong><br />

(e.g. at PW 14±17), <strong>the</strong> source rocks were mature<br />

already at approximately 25 Ma, and potential traps<br />

would have had to have been <strong>in</strong> place at that time, <strong>in</strong><br />

order to accumulate <strong>hydrocarbon</strong>s generated from<br />

model event 6. However, oil <strong>in</strong> a reservoir from this time<br />

would have cracked to condensate or gas at <strong>the</strong>ir present<br />

depths, and it seems unlikely that a gas accumulation <strong>in</strong><br />

<strong>the</strong> deeper part <strong>of</strong> <strong>the</strong> bas<strong>in</strong> would have rema<strong>in</strong>ed e€ectively<br />

sealed until present day. Generated <strong>hydrocarbon</strong>s<br />

may, however have migrated updip and <strong>in</strong>to reservoirs<br />

at shallower depths along <strong>the</strong> bas<strong>in</strong> marg<strong>in</strong>. Potential<br />

reservoirs could be draped, fractured basement<br />

rocks, alluvial and submar<strong>in</strong>e fan sandstones, shallow<br />

mar<strong>in</strong>e sandstones, and carbonate build-ups. This<br />

play was <strong>in</strong> part tested with some success <strong>in</strong> block 112.<br />

In <strong>the</strong> sou<strong>the</strong>astern part <strong>of</strong> <strong>the</strong> area, detailed geochemical<br />

analyses from <strong>the</strong> Yacheng gas ®eld <strong>in</strong>dicate<br />

that Oligocene coal-bear<strong>in</strong>g strata, with type III kerogen<br />

<strong>in</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> (correspond<strong>in</strong>g to model<br />

event 7 or 9), <strong>in</strong> part charged <strong>the</strong> ®eld (Chen et al.,<br />

1998; Hao et al., 1998). Peak gas <strong>generation</strong> occurred<br />

probably <strong>in</strong> Pliocene time, and <strong>the</strong> major bas<strong>in</strong> bound<strong>in</strong>g<br />

fault, <strong>the</strong> sou<strong>the</strong>rn extension <strong>of</strong> <strong>the</strong> <strong>Song</strong> Lo Fault<br />

(also called No. 1 fault) functioned as a conduit for<br />

gas migration <strong>in</strong>to <strong>the</strong> ®eld.<br />

The coal beds <strong>in</strong> <strong>the</strong> Lower Miocene section (model<br />

event 11) <strong>in</strong> <strong>the</strong> central part <strong>of</strong> <strong>the</strong> Hanoi Trough may<br />

have generated both oil and gas after <strong>the</strong> formation <strong>of</strong><br />

<strong>the</strong> Late Miocene <strong>in</strong>version structures. The gas, condensate<br />

and oil encountered <strong>in</strong> wells from this area<br />

may thus have been produced from <strong>the</strong>se coal beds.<br />

Model event 11 does not have potential <strong>in</strong> <strong>the</strong> areas <strong>of</strong><br />

<strong>the</strong> o€shore wells 103 TG and 103 TH, whereas some<br />

potential for gas should be present at <strong>the</strong> wells 102 CQ<br />

and 102 HD, although gas <strong>generation</strong> may have<br />

started already <strong>in</strong> <strong>the</strong> Miocene. Mar<strong>in</strong>e sediments, with<br />

organic matter dom<strong>in</strong>ated by kerogen type III, are present<br />

<strong>in</strong> <strong>the</strong> model event <strong>in</strong> <strong>the</strong> deep and central part <strong>of</strong><br />

bas<strong>in</strong> (e.g. Hao et al., 1995). In this area, peak oil <strong>generation</strong><br />

began after <strong>the</strong> formation <strong>of</strong> stratigraphic<br />

traps, such as lowstand deltas and <strong>in</strong>cised ¯uvial-estuar<strong>in</strong>e<br />

sandstones, overly<strong>in</strong>g <strong>the</strong> pronounced near-<strong>the</strong>base<br />

Middle Miocene unconformity. In addition, <strong>the</strong><br />

<strong>hydrocarbon</strong> <strong>generation</strong> occurred contemporaneously<br />

with <strong>the</strong> formation <strong>of</strong> traps with Upper Miocene±<br />

Lower Pliocene mud-draped submar<strong>in</strong>e fans and bas<strong>in</strong><br />

¯oor turbidites. Generated <strong>hydrocarbon</strong>s may fur<strong>the</strong>rmore<br />

have migrated updip and <strong>in</strong>to reservoirs at shallower<br />

depths along <strong>the</strong> bas<strong>in</strong> marg<strong>in</strong>.<br />

The excellent Middle Miocene coal beds <strong>in</strong> model<br />

event 14 may have produced signi®cant amounts <strong>of</strong><br />

oil, gas, and condensate with<strong>in</strong> <strong>the</strong> last few million<br />

years <strong>in</strong> <strong>the</strong> deepest part <strong>of</strong> <strong>the</strong> Hanoi Trough. It is<br />

thus likely that <strong>the</strong> coal beds are <strong>the</strong> ma<strong>in</strong> source <strong>of</strong><br />

<strong>the</strong> <strong>hydrocarbon</strong>s encountered <strong>in</strong> <strong>the</strong> onshore wells.<br />

Hydrocarbons may have migrated updip and <strong>in</strong>to<br />

reservoirs at shallower depths, and may account for<br />

<strong>the</strong> <strong>hydrocarbon</strong>s <strong>in</strong> <strong>the</strong> B10-STB and D14 wells<br />

recently drilled by Anzoil. In <strong>the</strong> ma<strong>in</strong> part <strong>of</strong> <strong>the</strong><br />

<strong>Song</strong> Hong Bas<strong>in</strong> coal beds are unlikely to occur at<br />

this stratigraphic level.<br />

9. Conclusions<br />

<strong>Modell<strong>in</strong>g</strong> <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong> has been carried<br />

out us<strong>in</strong>g all available geological, geophysical, temperature<br />

and maturity data. The optimised results have<br />

been used to estimate <strong>the</strong> depth <strong>of</strong> <strong>hydrocarbon</strong> <strong>generation</strong><br />

zones, and to calculate <strong>the</strong> tim<strong>in</strong>g <strong>of</strong> <strong>hydrocarbon</strong><br />

<strong>generation</strong> for <strong>in</strong>tervals that are expected to<br />

conta<strong>in</strong> <strong>the</strong> pr<strong>in</strong>cipal source rocks. The modell<strong>in</strong>g<br />

results are <strong>in</strong> good agreement with <strong>the</strong> exploration history<br />

<strong>of</strong> <strong>the</strong> bas<strong>in</strong>, and <strong>in</strong>dicate several areas for fur<strong>the</strong>r<br />

exploration activities. These are primarily <strong>the</strong> Hanoi<br />

Trough, <strong>the</strong> nor<strong>the</strong>rn and nor<strong>the</strong>astern part <strong>of</strong> <strong>the</strong> o€shore<br />

bas<strong>in</strong>, and <strong>the</strong> western bas<strong>in</strong> marg<strong>in</strong>. The modell<strong>in</strong>g<br />

shows that plays with Eocene(?)±Oligocene, synrift<br />

lacustr<strong>in</strong>e source rocks (shales and coals) are most<br />

promis<strong>in</strong>g <strong>in</strong> <strong>the</strong> nor<strong>the</strong>astern part <strong>of</strong> <strong>the</strong> bas<strong>in</strong>, and<br />

along <strong>the</strong> bas<strong>in</strong> marg<strong>in</strong>s. Plays sourced from Lower<br />

Miocene coals are most promis<strong>in</strong>g <strong>in</strong> <strong>the</strong> central part<br />

<strong>of</strong> <strong>the</strong> Hanoi Trough and <strong>the</strong> area sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong><br />

Hanoi Trough. Contemporary mar<strong>in</strong>e deposits <strong>in</strong> <strong>the</strong><br />

central and sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong><br />

may be possible sources for several play types <strong>in</strong> <strong>the</strong>se<br />

areas. Coals from <strong>the</strong> middle part <strong>of</strong> <strong>the</strong> Phu Cu<br />

Formation are very <strong>in</strong>terest<strong>in</strong>g source rocks, for both<br />

oil and gas, <strong>in</strong> <strong>the</strong> central and south-eastern part <strong>of</strong><br />

<strong>the</strong> Hanoi Trough.


292<br />

L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294<br />

Based on <strong>the</strong> occurrence <strong>of</strong> potential source rock<br />

units, reservoirs and structures <strong>in</strong> <strong>the</strong> <strong>Song</strong> Hong<br />

Bas<strong>in</strong>, and occurrences <strong>of</strong> <strong>hydrocarbon</strong> accumulations<br />

<strong>in</strong> <strong>the</strong> adjacent bas<strong>in</strong>s, a large number <strong>of</strong> plays may be<br />

proposed. The plays <strong>in</strong>clude among o<strong>the</strong>rs: fractured<br />

basement highs <strong>of</strong> Devonian±Permian carbonates;<br />

Late Miocene <strong>in</strong>version structures with Upper<br />

Oligocene and Miocene ¯uvial, coastal and mar<strong>in</strong>e<br />

sandstones; stratigraphic p<strong>in</strong>ch-out <strong>of</strong> various Upper<br />

Oligocene±Miocene sandstones; Miocene carbonate<br />

build-ups; Pliocene turbidite sand over mud-diapirs;<br />

and mudstone-draped bas<strong>in</strong>-¯oor fans. In addition,<br />

various types <strong>of</strong> lowstand depositional units with sandstones,<br />

such as mud-encased lowstand deltas and<br />

<strong>in</strong>cised valley-®lls, are likely to form stratigraphic<br />

traps, especially with<strong>in</strong> <strong>the</strong> Miocene section.<br />

Acknowledgements<br />

The results presented here<strong>in</strong> were obta<strong>in</strong>ed from an<br />

ongo<strong>in</strong>g research project on <strong>the</strong> development and <strong>hydrocarbon</strong><br />

potential <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong>. The project<br />

is carried out by <strong>the</strong> Geological Survey <strong>of</strong><br />

Denmark and Greenland (GEUS) toge<strong>the</strong>r with <strong>the</strong><br />

Vietnam Petroleum Institute, a subsidiary <strong>of</strong> <strong>the</strong> stateowned<br />

Vietnam Oil and Gas Corporation<br />

(PetroVietnam). The Danish Energy Agency and<br />

Danida (Danish International Development<br />

Assistance) are thanked for fund<strong>in</strong>g <strong>the</strong> project.<br />

PetroVietnam and Vietnam Petroleum Institute provided<br />

data, manpower, and support, and are thanked<br />

for permission to publish <strong>the</strong> results. The project is<br />

carried out under <strong>the</strong> auspices <strong>of</strong> <strong>CCOP</strong> (Coord<strong>in</strong>at<strong>in</strong>g<br />

Committee for Coastal and O€shore Geoscience<br />

Programmes <strong>in</strong> East and Sou<strong>the</strong>ast Asia) and <strong>the</strong> technical<br />

secretariat <strong>in</strong> Bangkok is thanked for support.<br />

The two referees P. Abol<strong>in</strong>s and D. Waples are<br />

thanked for constructive reviews.<br />

References<br />

Allen, C.R., Gillespie, A.R., Yuan, H., Sieh, K.E., Buchun, Z.,<br />

Chengnan, Z., 1984. Red River and associated faults, Yunnan<br />

Prov<strong>in</strong>ce, Ch<strong>in</strong>a: Quaternary geology, slip rates, and seismic hazard.<br />

Bullet<strong>in</strong> <strong>of</strong> <strong>the</strong> Geological Society <strong>of</strong> America 95, 686±700.<br />

Allen, G.P., Laurier, D., Gendrot, G., 1988. Applications <strong>of</strong> subsurface<br />

sedimentology for <strong>hydrocarbon</strong> exploration and development<br />

<strong>in</strong> <strong>the</strong> Beibu Gulf, Ch<strong>in</strong>a. In: Wagner, H.C., Wagner, L.C., Wang,<br />

F.F.H., Wong, F.L. (Eds.), Petroleum, Resources <strong>of</strong> Ch<strong>in</strong>a and<br />

Related Subjects. Houston, Texas, Circum-Paci®c Council for<br />

Energy and M<strong>in</strong>eral Resources Earth Science Series 10, pp. 589±602.<br />

Andersen, C., Tiem, P.V., Mathiesen, A., Neilsen, L.H., 1998. Some<br />

new <strong>the</strong>rmal maturity modell<strong>in</strong>g results us<strong>in</strong>g <strong>the</strong> YuÈ kler 1D s<strong>of</strong>tware<br />

and seismic facies mapp<strong>in</strong>g <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Song</strong><br />

Hong Bas<strong>in</strong>. In: Toan, T.N., Quy, N.H. (Eds.), Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong><br />

Conference on Vietnam Petroleum Institute 20 years Development<br />

and Prospects, Hanoi, pp. 273±284.<br />

Asian, Oil, Gas, 1996. Yacheng 13-1: The mak<strong>in</strong>g <strong>of</strong> a gas bus<strong>in</strong>ess.<br />

Asian Oil & Gas, 8±12.<br />

Bao, N.X., Luong, T.D., Trung, H., 1994. Explanatory note to <strong>the</strong><br />

geological map <strong>of</strong> Vietnam on 1:500,000 scale. Geological Survey<br />

<strong>of</strong> Vietnam.<br />

Bat, D., Quynh, P.H., Que, P.H., Dong, T.L., 1993. Tertiary stratigraphy<br />

<strong>of</strong> <strong>the</strong> cont<strong>in</strong>ental shelf <strong>of</strong> Vietnam. In: Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> First<br />

International Sem<strong>in</strong>ar on <strong>the</strong> Stratigraphy <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn Shelf <strong>of</strong><br />

Vietnam, Ho Chi M<strong>in</strong>h City, Dalat.<br />

Bat, D.V., Tan, M.T., Toat, D.D., 1994. <strong>Cenozoic</strong> volcanic activities <strong>in</strong><br />

Vietnam. In: International Symposium/Workshop on Geology,<br />

Exploration and Development Potential <strong>of</strong> Energy and M<strong>in</strong>eral<br />

Resources <strong>of</strong> Vietnam and Adjo<strong>in</strong><strong>in</strong>g Regions. Abstracts, Hanoi,<br />

Vietnam, p. 59.<br />

Briais, A., Patriat, P., Tapponnier, P., 1993. Updated <strong>in</strong>terpretation <strong>of</strong><br />

magnetic anomalies and sea ¯oor spread<strong>in</strong>g stages <strong>in</strong> <strong>the</strong> East<br />

Vietnam Sea: implications for <strong>the</strong> Tertiary tectonics <strong>of</strong> Sou<strong>the</strong>ast<br />

Asia. Journal <strong>of</strong> Geophysical Research 98 (B4), 6229±6328.<br />

Chen, P.P.H., Chen, Z.Y., Zhang, Q.M., 1993. Sequence stratigraphy<br />

and cont<strong>in</strong>ental marg<strong>in</strong> development <strong>of</strong> <strong>the</strong> north-western shelf <strong>of</strong><br />

<strong>the</strong> South Ch<strong>in</strong>a Sea. American Association <strong>of</strong> Petroleum<br />

Geologists Bullet<strong>in</strong> 77 (5), 842±862.<br />

Chen, H., Li, S., Sun, Y., Zhang, Q., 1998. Two petroleum systems<br />

charge <strong>the</strong> YA13-1 gas ®eld <strong>in</strong> Y<strong>in</strong>ggehai and Qiondongnan<br />

Bas<strong>in</strong>s, South Ch<strong>in</strong>a Sea. American Association <strong>of</strong> Petroleum<br />

Geologists Bullet<strong>in</strong> 82 (5A), 757±772.<br />

Dao, D.V., Huyen, T., 1995. Heat ¯ow <strong>in</strong> <strong>the</strong> oil bas<strong>in</strong>s <strong>of</strong> Vietnam.<br />

<strong>CCOP</strong> Technical Bullet<strong>in</strong> 25, 55±61.<br />

Dien, P.T., 1996. Some pre-<strong>Cenozoic</strong> petroleum plays on <strong>the</strong> cont<strong>in</strong>ental<br />

shelf <strong>of</strong> Vietnam. PetroVietnam Review 1, 7±20.<br />

Dien, P.T., 1997. General stratigraphic schemes <strong>of</strong> <strong>the</strong> <strong>Cenozoic</strong> <strong>of</strong> <strong>the</strong><br />

nor<strong>the</strong>rn and sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong>. Unpublished<br />

Internal Note, Vietnam Petroleum Institute.<br />

Dien, P.T., Dzung, N.V., 1994. Bas<strong>in</strong> analysis for <strong>the</strong> <strong>Cenozoic</strong> formations<br />

<strong>of</strong> Vietnam. In: International Symposium/Workshop on<br />

Geology, Exploration and Development Potential <strong>of</strong> Energy and<br />

M<strong>in</strong>eral Resources <strong>of</strong> Vietnam and Adjo<strong>in</strong><strong>in</strong>g Regions. Abstracts,<br />

Hanoi, Vietnam, p. 71.<br />

Dien, P.T., Nielsen, L.H., Andersen, C., Nhuan, D.V., 1998.<br />

Late-Mesozoic and <strong>Cenozoic</strong> bas<strong>in</strong> development along <strong>the</strong><br />

northwest marg<strong>in</strong> <strong>of</strong> Vietnam. American Association <strong>of</strong><br />

Petroleum Geologists Annual Convention, Abstract, Salt Lake<br />

City, Utah. 1±6.<br />

D<strong>in</strong>h, N.V., Truong, L.V., 1995. Geological structure and <strong>hydrocarbon</strong><br />

potential <strong>of</strong> <strong>Song</strong> Hong Bas<strong>in</strong>. In: Tri, T.V. (Ed.),<br />

Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> IGCP Symposium on Geology <strong>of</strong> SE Asia,<br />

Hanoi, No. 5±6. Journal <strong>of</strong> Geology Series B, pp. 377±379.<br />

D<strong>in</strong>h, N.V., 1998. Structural features, tectonic evolution and petroleum<br />

systems <strong>of</strong> Tertiary bas<strong>in</strong>s o€shore Vietnam. In: Toan,<br />

T.N., Quy, N.H., (Eds.), Proceed<strong>in</strong>gs from <strong>the</strong> Conference on<br />

Vietnam Petroleum Institute 20 years Development and Prospects,<br />

Hanoi. pp. 258±272.<br />

Dung, L.V., D<strong>in</strong>h, N.V., Quan, H.Q., 1995. Depth structure map <strong>of</strong><br />

Top Basement, <strong>Song</strong> Hong Bas<strong>in</strong>, Hanoi Trough, 1:200.000.<br />

Vietnam Petroleum Institute.<br />

Flower, M.F., Hoang, N., 1994. Geochemical evidence for a mantle<br />

plume beneath Indoch<strong>in</strong>a. In: International Symposium/Workshop<br />

on Geology, Exploration and Development Potential <strong>of</strong> Energy<br />

and M<strong>in</strong>eral Resources <strong>of</strong> Vietnam and Adjo<strong>in</strong><strong>in</strong>g Regions,<br />

Abstracts Hanoi, Vietnam, pp. 38±39.<br />

Ha, N.B., 1998. Study<strong>in</strong>g source rocks <strong>in</strong> <strong>the</strong> <strong>Song</strong> Hong sedimentary<br />

bas<strong>in</strong>. In: Toan, T.N., Quy, N.H., (Eds.), Proceed<strong>in</strong>gs from <strong>the</strong><br />

Conference on Vietnam Petroleum Institute 20 years Development<br />

and Prospects, Hanoi, May 1998, pp. 186±204.


L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294 293<br />

Habicht, J.K.A., 1979. Paleoclimate, paleomagnetism, and cont<strong>in</strong>ental<br />

drift. American Association <strong>of</strong> Petroleum Geologists, Studies <strong>in</strong><br />

Geology, No. 9. AAPG, Tulsa, Oklahoma, 74101, USA.<br />

Hall, R., 1996. Reconstruct<strong>in</strong>g <strong>Cenozoic</strong> SE Asia. In: Hall, R.,<br />

Blundell, D., (Eds.), Tectonic Evolution <strong>of</strong> Sou<strong>the</strong>ast Asia.<br />

Geological Society <strong>of</strong> London Special Publication 106, pp. 153±184.<br />

Hao Fang, Sun Yongchuan, Li Sitian, Zhan Qim<strong>in</strong>g, 1995.<br />

Overpressure retardation <strong>of</strong> organic-matter maturation and petroleum<br />

<strong>generation</strong>: a case study from <strong>the</strong> Y<strong>in</strong>ggehai and<br />

Qiongdongnan bas<strong>in</strong>s, East Vietnam Sea. American Association <strong>of</strong><br />

Petroleum Geologists Bullet<strong>in</strong> 79 (4) 551±562.<br />

Hao Fang, Li Sitian, Sun Yongchuan, Zhan Qim<strong>in</strong>g, 1998. Geology,<br />

compositional heterogeneities, and geochemical orig<strong>in</strong> <strong>of</strong> <strong>the</strong><br />

Yacheng gas ®eld, Qiongdongnan Bas<strong>in</strong>, South Ch<strong>in</strong>a Sea.<br />

American Association <strong>of</strong> Petroleum Geologists Bullet<strong>in</strong> 82 (7),<br />

1372±1384.<br />

Haq, B.U., Hardenbol, J., Vail, P., 1988. Mesozoic and <strong>Cenozoic</strong><br />

chronostratigraphy and cycles <strong>of</strong> sea-level change. In: Wilgus,<br />

C.K., Hast<strong>in</strong>gs, B.S., Posamentier, H.W., van Wagoner, J., Ross,<br />

C.A., Kendall, C.G.St.C. (Eds.), Sea-Level Changes: an Integrated<br />

Approach. Society <strong>of</strong> Economic Palaeontologists and<br />

M<strong>in</strong>eralogists Special Publication 42, pp. 71±108.<br />

Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G.,<br />

Smith, D.G., 1989. A Geologic Time Scale. Cambridge University<br />

Press, Cambridge.<br />

Hirayama, J. (Ed.), 1991. Total sedimentary isopach maps o€shore<br />

east Asia. <strong>CCOP</strong> Technical Bullet<strong>in</strong> 23.<br />

Hoai, H.D., 1985. Well cross-section diagrams with seismic horizons,<br />

Hanoi Trough. Unpublished Internal report, Vietnam Petroleum<br />

Institute.<br />

Huchon, P., Le Pichon, X., Rang<strong>in</strong>, C., 1994. Indoch<strong>in</strong>a Pen<strong>in</strong>sula and<br />

<strong>the</strong> collision <strong>of</strong> India and Eurasia. Geology 22, 27±30.<br />

Jishu, C., Shice, X., J<strong>in</strong>yu, S., 1994. The depositional characteristics<br />

and oil potential <strong>of</strong> Palaeo-Pearl river delta systems <strong>in</strong> <strong>the</strong> Pearl<br />

River Mouth bas<strong>in</strong>, South Ch<strong>in</strong>a Sea. Tectonophysics 235, 1±11.<br />

Katz, B.J., X<strong>in</strong>gcai, L., 1998. Summary <strong>of</strong> <strong>the</strong> AAPG research symposium<br />

on lacustr<strong>in</strong>e bas<strong>in</strong> exploration <strong>in</strong> Ch<strong>in</strong>a and Sou<strong>the</strong>ast<br />

Asia. American Association <strong>of</strong> Petroleum Geologists Bullet<strong>in</strong> 82<br />

(7), 1300±1307.<br />

Lee, G.H., Watk<strong>in</strong>s, J.S., 1998. Seismic sequence stratigraphy and <strong>hydrocarbon</strong><br />

potential <strong>of</strong> <strong>the</strong> Phu Khanh Bas<strong>in</strong>, O€shore Central<br />

Vietnam, South Ch<strong>in</strong>a Sea. American Association <strong>of</strong> Petroleum<br />

Geologists Bullet<strong>in</strong> 82 (9), 171±1735.<br />

Lee, T-Y., Lawver, L.A., 1994. <strong>Cenozoic</strong> plate reconstruction <strong>of</strong> <strong>the</strong><br />

East Vietnam Sea region. Tectonophysics 235, 149±180.<br />

Lee, T-Y., Lawver, L.A., 1995. <strong>Cenozoic</strong> plate reconstruction <strong>of</strong><br />

Sou<strong>the</strong>ast Asia. Tectonophysics 251, 85±138.<br />

Leloup, P.H., Harrison, T.M., Ryerson, F.J., Chen Wenji, Li Qi,<br />

Tapponnier, P., Lacass<strong>in</strong>, R., 1993. Structural, petrological and<br />

<strong>the</strong>rmal evolution <strong>of</strong> a Tertiary ductile shear zone, Diancang<br />

Shan, Yunnan. Journal <strong>of</strong> Geophysical Research 98, 6715±6744.<br />

Leloup, P.H., Lacass<strong>in</strong>, R., Tapponnier, P., SchaÈ rer, U., Dalai, Z.,<br />

Xiaohan, L., Liangshang, Z., Shaocheng, J., Tr<strong>in</strong>h, P.T., 1995.<br />

The Ailo-Red River shear zone (Yunnan, Ch<strong>in</strong>a), Tertiary transform<br />

boundary <strong>of</strong> Indoch<strong>in</strong>a. Tectonophysics 251, 3±88.<br />

Long, P.G., 1998. Reservoir and caprock characterisation <strong>in</strong> <strong>the</strong> <strong>Song</strong><br />

Hong Bas<strong>in</strong>. In: Toan, T.N., Quy, N.H. (Eds.), Proceed<strong>in</strong>gs from <strong>the</strong><br />

Conference on Vietnam Petroleum Institute 20 years Development<br />

and Prospects, Hanoi, May 1998, pp. 258±272.<br />

Lucazeau, F., Le Douaran, S., 1985. The blanket<strong>in</strong>g e€ect <strong>of</strong> sediments<br />

<strong>in</strong> bas<strong>in</strong>s formed by extension: a numerical model: Application to<br />

<strong>the</strong> Gulf <strong>of</strong> Lion and Vik<strong>in</strong>g graben. Earth and Planetary Science<br />

Letters 74, 92±102.<br />

Morris, J.C., 1993. The <strong>Cenozoic</strong> stratigraphy <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn Bac Bo<br />

Bas<strong>in</strong>, o€shore Vietnam. In: Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> First International<br />

Sem<strong>in</strong>ar on <strong>the</strong> Stratigraphy <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn Shelf <strong>of</strong> Vietnam, Ho<br />

Chi M<strong>in</strong>h City, Dalat, 14±17 January 1993.<br />

Mukhopadhyay, P.K., Fowler, M.G., Dow, W.G. (Eds.), 1991.<br />

Selected papers from <strong>the</strong> Symposium on Coal and Terrestrial<br />

Organic Matter as a Source Rock for Petroleum, Boston<br />

Massachusetts. Organic Geochemistry. 17(6) 671±872.<br />

Nielsen, L.H., Dien, P.T. (Eds.), 1997. Bas<strong>in</strong> analysis and modell<strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> <strong>Cenozoic</strong> <strong>Song</strong> Hong Bas<strong>in</strong>, nor<strong>the</strong>rn Vietnam. Unpublished<br />

Con®dential Report. Geological Survey <strong>of</strong> Denmark and<br />

Greenland (GEUS) and Vietnam Petroleum Institute.<br />

Peltzer, G., Tapponnier, P., 1988. Formation and evolution <strong>of</strong> strikeslip<br />

faults, rifts, and bas<strong>in</strong>s dur<strong>in</strong>g <strong>the</strong> India-Asia collision: an experimental<br />

approach. Journal <strong>of</strong> Geophysical Research 93, 15085±<br />

15117.<br />

Phach, P.V., 1994. Development history <strong>of</strong> <strong>the</strong> Red River <strong>Cenozoic</strong><br />

Bas<strong>in</strong> <strong>in</strong> Neogene and Quaternary periods. In: International<br />

Symposium/Workshop on Geology, Exploration and Development<br />

Potential <strong>of</strong> Energy and M<strong>in</strong>eral Resources <strong>of</strong> Vietnam and<br />

Adjo<strong>in</strong><strong>in</strong>g Regions, Hanoi, Abstracts, Vietnam, pp. 38±39.<br />

Pigott, J.D., Ru, K., 1994. Bas<strong>in</strong> superposition on <strong>the</strong> nor<strong>the</strong>rn marg<strong>in</strong><br />

<strong>of</strong> <strong>the</strong> South Ch<strong>in</strong>a Sea. Tectonophysics 235, 27±50.<br />

P<strong>in</strong>glu, L., Chuntao, R., 1994. Tectonic characteristics and evolution<br />

history <strong>of</strong> <strong>the</strong> Pearl River Mouth Bas<strong>in</strong>. Tectonophysics 235, 13±25.<br />

Rang<strong>in</strong>, C., Kle<strong>in</strong>, M., Roques, D., Le Pichon, X., Truong, L.V., 1995.<br />

The Red River fault system <strong>in</strong> <strong>the</strong> Tongk<strong>in</strong>g Gulf, Vietnam.<br />

Tectonophysics 243, 209±222.<br />

Roques, D., Mat<strong>the</strong>ws, S.J., Rang<strong>in</strong>, C., 1997. Constra<strong>in</strong>ts on strikeslip<br />

motion from seismic and gravity data along <strong>the</strong> Vietnam marg<strong>in</strong><br />

o€shore Da Nang; implications for <strong>hydrocarbon</strong> prospectivity and<br />

open<strong>in</strong>g <strong>of</strong> <strong>the</strong> East Vietnam Sea. In: Fraser, A.J., Mat<strong>the</strong>ws, S.J.,<br />

Murphy, R.W. (Eds.), Petroleum Geology <strong>of</strong> Sou<strong>the</strong>ast Asia.<br />

Geological Society <strong>of</strong> London Special Publication 126, pp. 341±<br />

353.<br />

Ru, K., Pigott, J.D., 1986. Episodic Rift<strong>in</strong>g and subsidence <strong>in</strong> <strong>the</strong><br />

South Ch<strong>in</strong>a Sea. American Association <strong>of</strong> Petroleum Geologists<br />

Bullet<strong>in</strong> 70 (9), 1136±1155.<br />

Scott, A.C., Fleet, A.J. (Eds.), 1994. Coal and Coal-bear<strong>in</strong>g Strata as<br />

Oil-prone Source Rocks? Geological Society <strong>of</strong> London Special<br />

Publication, 77.<br />

Scotese, C.R., Gahagan, L.M., Larson, R.L., 1988. Plate tectonic<br />

reconstructions <strong>of</strong> <strong>the</strong> Cretaceous and <strong>Cenozoic</strong> ocean bas<strong>in</strong>s.<br />

Tectonophysics 55, 27±48.<br />

Sladen, C.P., 1993. Lake sequences <strong>in</strong> Tertiary <strong>hydrocarbon</strong> bas<strong>in</strong>s <strong>of</strong><br />

Vietnam. In: Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> First International Sem<strong>in</strong>ar on <strong>the</strong><br />

Stratigraphy <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn Shelf <strong>of</strong> Vietnam, Ho Chi M<strong>in</strong>h<br />

City, Dalat, p. 16.<br />

Sladen, C.P., 1997. Explor<strong>in</strong>g <strong>the</strong> lake bas<strong>in</strong>s <strong>of</strong> east and sou<strong>the</strong>ast<br />

Asia. In: Fraser, A.J., Mat<strong>the</strong>ws, S.J., Murphy, R.W. (Eds.),<br />

Petroleum Geology <strong>of</strong> Sou<strong>the</strong>ast Asia. Geological Society <strong>of</strong><br />

London Special Publication 126, pp. 49±76.<br />

Sun Shu, Li Jilang, Chen Haihong, Peng Haipo, Hs, K.J., Shelton,<br />

J.W., 1989. Mesozoic and <strong>Cenozoic</strong> sedimentary history <strong>of</strong> South<br />

Ch<strong>in</strong>a. American Association <strong>of</strong> Petroleum Geologists Bullet<strong>in</strong> 73<br />

(10), 1247±1269.<br />

Tapponnier, P., Peltzer, G., Armijo, R., 1986. On <strong>the</strong> mechanisms <strong>of</strong><br />

<strong>the</strong> collision between India and Asia. In: Coward, M.P., Ries,<br />

A.C. (Eds.), Collision Tectonics. Geological Society <strong>of</strong> London<br />

Special Publication 19, pp. 115±157.<br />

Tapponnier, P., Lacass<strong>in</strong>, R., Leloup, P.H., SchaÈ rer, U., Zhou, D.,<br />

Wu, H., Liu, X., Ji, S., Zhang, L., Zhong, J., 1990. The Ailo<br />

Shan/Red River metamorphic belt: Tertiary left-lateral shear<br />

between Indoch<strong>in</strong>a and South Ch<strong>in</strong>a. Nature, London 343, 431±<br />

437.<br />

Taylor, B., Hayes, D.E., 1980. The tectonic evolution <strong>of</strong> <strong>the</strong> South<br />

Ch<strong>in</strong>a Sea. In: Hayes, D.E., (Ed.), The Tectonic and Geological<br />

Evolution <strong>of</strong> Sou<strong>the</strong>ast Asian Seas and Islands Part 1. American<br />

Geophysical Union Monograph 22, pp. 89±104.<br />

Taylor, B., Hayes, D.E., 1983. Orig<strong>in</strong> and history <strong>of</strong> <strong>the</strong> South Ch<strong>in</strong>a<br />

Sea bas<strong>in</strong>. In: Hayes, D.E. (Ed.), The Tectonic and Geologic


294<br />

L.H. Nielsen et al. / Journal <strong>of</strong> Asian Earth Sciences 17 (1999) 269±294<br />

Evolution <strong>of</strong> Sou<strong>the</strong>ast Asian Seas and Islands, Part 2. American<br />

Geophysica Union Monograph 27, pp. 23±56.<br />

Thi, P.T., Giang, P.T., 1998. The mechanism <strong>of</strong> formation <strong>of</strong><br />

Fansipan, Con Voi mounta<strong>in</strong> ranges and bas<strong>in</strong>s <strong>in</strong> Bac Bo Gulf:<br />

<strong>the</strong> role <strong>of</strong> <strong>the</strong> Red River Fault. In: Toan, T.N., Quy, N.H. (Eds.),<br />

Proceed<strong>in</strong>gs from <strong>the</strong> Conference on Vietnam Petroleum Institute<br />

20 years Development and Prospects, Hanoi. pp. 37±52.<br />

Tien, P.C. et al. (Eds.), 1991. Geology <strong>of</strong> Cambodia, Laos and Vietnam.<br />

Explanatory note to <strong>the</strong> geological map <strong>of</strong> Cambodia, Laos and<br />

Vietnam at 1:1,000,000 scale. The Geological Survey <strong>of</strong> Vietnam,<br />

Hanoi.<br />

Tissot, B., Espatilie , J., 1975. Thermal evolution <strong>of</strong> organic material <strong>in</strong><br />

sediments: applications <strong>of</strong> a ma<strong>the</strong>matical simulation. Revue de<br />

l'Institut Francais du Petrole 30, 743±777.<br />

Traynor, J.J., Sladen, C., 1997. Seepage <strong>in</strong> VietnamÐonshore and o€shore<br />

examples. Mar<strong>in</strong>e and Petroleum Geology 14, 345±362.<br />

Trung, P.Q., 1997. Biostratigraphic charts <strong>of</strong> well-sections from <strong>the</strong><br />

<strong>Song</strong> Hong Bas<strong>in</strong>. In: Nielsen, L.H., Dien, P.T., (Eds), Bas<strong>in</strong> analysis<br />

and modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Cenozoic</strong> <strong>Song</strong> Hong Bas<strong>in</strong>, Vietnam.<br />

Unpublished Con®dential Report, Geological Survey <strong>of</strong> Denmark<br />

and Greenland (GEUS) and Vietnam Petroleum Institute.<br />

Trung, P.Q., An, N.Q., Dien, P.T., Tiem, P.V., Nielsen, L.H. 1997.<br />

Stratigraphy <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong>,<br />

Vietnam. In: Nielsen, L.H., Dien, P.T., (Eds.), Bas<strong>in</strong> analysis and<br />

modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> Tertiary <strong>Song</strong> Hong Bas<strong>in</strong>, North Vietnam.<br />

Unpublished Con®dential Report Geological Survey <strong>of</strong> Denmark<br />

and Greenland (GEUS) and Vietnam Petroleum Institute.<br />

Vejbñk, O.V., Madsen, L., Tiem, P.V. 1996. Seismic <strong>in</strong>terpretation<br />

<strong>of</strong> <strong>the</strong> <strong>Song</strong> Hong Bas<strong>in</strong>, Vietnam. In: Nielsen, L.H., Dien, P.T.<br />

(Eds.), Bas<strong>in</strong> analysis and modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Cenozoic</strong> <strong>Song</strong><br />

Hong Bas<strong>in</strong>, Vietnam. Unpublished Con®dential Report,<br />

Geological Survey <strong>of</strong> Denmark and Greenland (GEUS) and<br />

Vietnam Petroleum Institute.<br />

Vu, Nguyen Giang, Rabitnowitz, P.D., 1996. Gravity modell<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

Hanoi Bas<strong>in</strong>: an <strong>in</strong>sight <strong>in</strong>to its crustal structure and implication for<br />

<strong>the</strong> formation <strong>of</strong> <strong>the</strong> bas<strong>in</strong>. International workshop and Exhibition<br />

on Geophysics, Abstracts, Hanoi, pp. 125±126.<br />

Williams, H.H., Fowler, M., Eubank, R.T., 1995. Characteristics <strong>of</strong><br />

selected Palaeogene and Cretaceous lacustr<strong>in</strong>e source bas<strong>in</strong>s <strong>of</strong><br />

Sou<strong>the</strong>ast Asia. In: Lambiase, J.J. (Ed.), Hydrocarbon Habitat <strong>in</strong><br />

Rift Bas<strong>in</strong>s. Geological Society <strong>of</strong> London Special Publication 80,<br />

pp. 241±282.<br />

Wu J<strong>in</strong>m<strong>in</strong>, 1988. <strong>Cenozoic</strong> Bas<strong>in</strong>s <strong>of</strong> <strong>the</strong> South Ch<strong>in</strong>a Sea Episodes<br />

11, 91±96.<br />

Wu J<strong>in</strong>m<strong>in</strong>, 1994. Evaluation and models <strong>of</strong> <strong>Cenozoic</strong> sedimentation <strong>in</strong><br />

<strong>the</strong> South Ch<strong>in</strong>a Sea Tectonophysics 235, 77±98.<br />

YuÈ kler, M.A., Cornford, C., Welte, J., 1978. One-dimensional model<br />

to simulate geologic, hydrodynamic and <strong>the</strong>rmodynamic development<br />

<strong>of</strong> a sedimentary bas<strong>in</strong>. Geologische Rundschau 67, 960±979.<br />

Zhang Qim<strong>in</strong>g, Kou Caixiu, 1989. Petroleum geology <strong>of</strong> <strong>Cenozoic</strong><br />

bas<strong>in</strong>s <strong>in</strong> North-western Cont<strong>in</strong>ental Shelf, South Ch<strong>in</strong>a Sea. In:<br />

Zhu, X. (Ed.), Ch<strong>in</strong>ese Sedimentary Bas<strong>in</strong>s. Elsevier, New York,<br />

pp. 197±206.<br />

Zhou, D., Ru, K., Chen, H-Z., 1995. K<strong>in</strong>ematics <strong>of</strong> <strong>Cenozoic</strong> extension<br />

on <strong>the</strong> South Ch<strong>in</strong>a Sea cont<strong>in</strong>ental marg<strong>in</strong> and its implications<br />

for <strong>the</strong> tectonic evolution <strong>of</strong> <strong>the</strong> region. Tectonophysics 251, 161±<br />

177.<br />

Zu Jiaqi, 1985. Summary <strong>of</strong> oil and gas development <strong>in</strong> Beibu Gulf<br />

Ch<strong>in</strong>a Oil, 92±96.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!