05.04.2014 Views

Image potential states on metal surfaces - Euskal Herriko ...

Image potential states on metal surfaces - Euskal Herriko ...

Image potential states on metal surfaces - Euskal Herriko ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Surface Science 437 (1999) 330–352<br />

www.elsevier.nl/locate/susc<br />

<str<strong>on</strong>g>Image</str<strong>on</strong>g> <str<strong>on</strong>g>potential</str<strong>on</strong>g> <str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong> <strong>metal</strong> <strong>surfaces</strong>: binding<br />

energies and wave functi<strong>on</strong>s<br />

E.V. Chulkov a,*, V.M. Silkin a,b, P.M. Echenique a<br />

a Departamento de Física de Materiales y Centro Mixto CSIC-UPV/EHU, Universidad del País Vasco/<strong>Euskal</strong> <strong>Herriko</strong> Unibertsitatea,<br />

Apdo. 1072, 20018 San Sebastian/D<strong>on</strong>ostia, Spain<br />

b Institute of Strength Physics and Materials Science, Russian Academy of Sciences, pr. Academicheskii 2/1, 634021 Tomsk, Russia<br />

Received 4 March 1999; accepted for publicati<strong>on</strong> 11 May 1999<br />

Abstract<br />

We present self-c<strong>on</strong>sistent pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong>s of both surface and image <str<strong>on</strong>g>potential</str<strong>on</strong>g> <str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong> simple <strong>metal</strong><br />

<strong>surfaces</strong>: Li(110), Na(110), Be(0001), Mg(0001), Al(100), and Al(111). The local density approximati<strong>on</strong> (LDA) is<br />

used to describe the <strong>on</strong>e-electr<strong>on</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> inside the film and in the surface regi<strong>on</strong>. In the vacuum space (at z>z im<br />

)<br />

the LDA <str<strong>on</strong>g>potential</str<strong>on</strong>g> is replaced by the image <str<strong>on</strong>g>potential</str<strong>on</strong>g>. A <strong>on</strong>e-dimensi<strong>on</strong>al <str<strong>on</strong>g>potential</str<strong>on</strong>g> proposed recently is c<strong>on</strong>structed<br />

for 14 simple and noble <strong>metal</strong> <strong>surfaces</strong>. By using this model <str<strong>on</strong>g>potential</str<strong>on</strong>g> we study wave functi<strong>on</strong>s and binding energies<br />

of the image <str<strong>on</strong>g>states</str<strong>on</strong>g> and also image plane positi<strong>on</strong> trends for these <strong>metal</strong> <strong>surfaces</strong>. © 1999 Elsevier Science B.V. All<br />

rights reserved.<br />

Keywords: Alkali <strong>metal</strong>s; Alkaline earth <strong>metal</strong>s; Aluminium; Copper; Density functi<strong>on</strong>al calculati<strong>on</strong>s; Semi-empirical models and<br />

model calculati<strong>on</strong>s; Silver; Surface electr<strong>on</strong>ic phenomena<br />

1. Introducti<strong>on</strong> vacuum regi<strong>on</strong> of <strong>metal</strong> <strong>surfaces</strong> (bey<strong>on</strong>d the<br />

image plane positi<strong>on</strong> z ) [3,4]. In a hydrogenic<br />

im<br />

A <strong>metal</strong> surface generates electr<strong>on</strong> <str<strong>on</strong>g>states</str<strong>on</strong>g> that model these <str<strong>on</strong>g>states</str<strong>on</strong>g> form a Rydberg-like series with<br />

do not exist in a bulk <strong>metal</strong>. These <str<strong>on</strong>g>states</str<strong>on</strong>g> can be energies [3,4]<br />

classified into two groups according to their charge<br />

density localizati<strong>on</strong> relative to the surface atomic −0.85 eV<br />

E = , (1)<br />

layer: intrinsic surface <str<strong>on</strong>g>states</str<strong>on</strong>g> and image <str<strong>on</strong>g>potential</str<strong>on</strong>g> n (n+a)2<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g>. The intrinsic surface <str<strong>on</strong>g>states</str<strong>on</strong>g>, predicted by<br />

Tamm [1] and Shockley [2], are localized mainly c<strong>on</strong>verging toward the vacuum level E =0. The V<br />

at the surface atomic layer. The image <str<strong>on</strong>g>potential</str<strong>on</strong>g> lifetime t of these <str<strong>on</strong>g>states</str<strong>on</strong>g> scales asymptotically with<br />

n<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> are generated by a <str<strong>on</strong>g>potential</str<strong>on</strong>g> well formed by the quantum number n t 3n3 [3,4]. In Eq. (1) a<br />

n<br />

the Coulomb-like attractive image <str<strong>on</strong>g>potential</str<strong>on</strong>g> barof<br />

interest. In particular, it depends <strong>on</strong> the width<br />

is a quantum defect that depends <strong>on</strong> the surface<br />

rier V(z)=−1 (z−z ) and the repulsive surface<br />

4 im<br />

barrier [3–9]. This <str<strong>on</strong>g>potential</str<strong>on</strong>g> well gives rise to the of the energy gap and its positi<strong>on</strong> relative to the<br />

image <str<strong>on</strong>g>potential</str<strong>on</strong>g> <str<strong>on</strong>g>states</str<strong>on</strong>g> localized mostly in the vacuum level.<br />

The binding energies of the image <str<strong>on</strong>g>states</str<strong>on</strong>g> have<br />

* Corresp<strong>on</strong>ding author. Fax: +34-943-212236.<br />

been extensively measured by inverse photoemis-<br />

E-mail address: waptctce@sq.ehu.es (E.V. Chulkov)<br />

si<strong>on</strong> (IPE) [5,6,8–11], two-phot<strong>on</strong> photoemissi<strong>on</strong><br />

0039-6028/99/$ – see fr<strong>on</strong>t matter © 1999 Elsevier Science B.V. All rights reserved.<br />

PII: S0039-6028 ( 99 ) 00668-8


E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

331<br />

(2PPE) [12–14] and time-resolved two-phot<strong>on</strong> embedded method and the layer KKR method)<br />

photoemissi<strong>on</strong> (TR2PPE) [15–18] techniques. [39,44,47] for Al(100) [38–40,45], Al(111)<br />

These measurements have provided highly accu- [40,41,45], Fe(110) [47], and Fe(100) [44].<br />

rate data of image <str<strong>on</strong>g>states</str<strong>on</strong>g> binding energies at <strong>surfaces</strong><br />

Despite extensive measurements of image <str<strong>on</strong>g>states</str<strong>on</strong>g><br />

of many noble and transiti<strong>on</strong> <strong>metal</strong>s, such as <strong>on</strong> noble and transiti<strong>on</strong> <strong>metal</strong> <strong>surfaces</strong>, there is<br />

Cu(100), Cu(111), Ag(100), Ag(111), Au(100), <strong>on</strong>ly <strong>on</strong>e surface of simple <strong>metal</strong>s <strong>on</strong> which the<br />

Au(111), Ni(100), Ni(111), Pd(111), Fe(110), first image state has been studied experimentally,<br />

Co(0001), Ru(0001). Informati<strong>on</strong> <strong>on</strong> the namely Al(111) [48–50]. Both IPE [48,49] and<br />

exchange splitting of such <str<strong>on</strong>g>states</str<strong>on</strong>g> has also been 2PPE [50] measurements give a binding energy of<br />

obtained [11,19–21]. Intrinsic line widths of image ~−0.5 eV. Simple model calculati<strong>on</strong>s [33,34] and<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> associated with electr<strong>on</strong>-hole pair excitati<strong>on</strong>s recent a first-principles evaluati<strong>on</strong> [45] reproduce<br />

have been measured by means of 2PPE [14] and the experimental observati<strong>on</strong>. At the same time a<br />

TR2PPE [16–18,22]. 2PPE measurements give a larger value E ≈−0.9 eV has been obtained in<br />

1<br />

value of 5–25 fs for the lifetime of the first image Refs. [28,36,41]. Finocchi et al. [41] argued that<br />

state <strong>on</strong> many noble and transiti<strong>on</strong> <strong>metal</strong> <strong>surfaces</strong> the origin of such large difference between theoretical<br />

[14]. The most recent TR2PPE measurements have<br />

[41] and experimental values is the low reso-<br />

given 40–50 fs for the first image state <strong>on</strong> Cu(100) luti<strong>on</strong> of IPE. The single structure at −0.54 eV<br />

and Ag(100) [17,23], 15–18 fs for Cu(111) observed in IPE probably c<strong>on</strong>tains both the n=1<br />

[16,23], and 30 fs for Ag(111) [24]. Moreover, and n=2 image res<strong>on</strong>ances. An interpretati<strong>on</strong> of<br />

Höfer et al. [17] have measured the lifetime of the other IPE experiment [49] was based <strong>on</strong> a calculafirst<br />

six image <str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong> Cu(100) using TR2PPE ti<strong>on</strong> by Papadia et al. [26] who obtained<br />

in combinati<strong>on</strong> with coherent excitati<strong>on</strong> of several E =−0.47 eV. A more accurate calculati<strong>on</strong> per-<br />

1<br />

quantum <str<strong>on</strong>g>states</str<strong>on</strong>g>. formed recently by the same group gave<br />

Many model and first-principles calculati<strong>on</strong>s E ≈−1 eV [28]. Bulovič et al. [50] have found an<br />

1<br />

have been performed to obtain binding energies extremely weak feature in their 2PPE spectra<br />

and wave functi<strong>on</strong>s of image <str<strong>on</strong>g>states</str<strong>on</strong>g> [3,4,9,25–45]. around −0.45 eV and interpreted this feature as<br />

In particular, it was shown that for <strong>surfaces</strong> like the first image state.<br />

Cu(100) and Cu(111), <strong>on</strong> which the first image There are several calculati<strong>on</strong>s for the Al(100)<br />

state is located in the middle and at the top of the surface [36–41,45]. As in the case of Al(111),<br />

s–p energy gap respectively, different parametrized these calculati<strong>on</strong>s give very different results lying<br />

models give the binding energies in quantitative in an energy interval 0.4–0.95 eV below the<br />

agreement with experimental results [9,30,46], vacuum level. So, up to now, there has been no<br />

whereas wave functi<strong>on</strong>s of these <str<strong>on</strong>g>states</str<strong>on</strong>g> are repro- clear theoretical or experimental evidence as to<br />

duced <strong>on</strong>ly semi-quantitatively. First-principles what value of the first image state binding energy<br />

calculati<strong>on</strong>s of the electr<strong>on</strong>ic structure of <strong>metal</strong> is the correct <strong>on</strong>e. Apart from aluminium <strong>surfaces</strong>,<br />

<strong>surfaces</strong> give an accurate descripti<strong>on</strong> of wave functi<strong>on</strong>s<br />

theoretical calculati<strong>on</strong>s have <strong>on</strong>ly been performed<br />

and binding energies of both the surface and for Na(110) [41] and for Li(110) [51]. On both<br />

image <str<strong>on</strong>g>states</str<strong>on</strong>g> [25]. These evaluati<strong>on</strong>s with various these <strong>surfaces</strong> the binding energy was found to be<br />

degrees of sophisticati<strong>on</strong> have been performed for E ≈−0.7 eV.<br />

1<br />

image <str<strong>on</strong>g>states</str<strong>on</strong>g> lying inside the energy gap, i.e. separated<br />

In c<strong>on</strong>trast to many calculati<strong>on</strong>s of binding<br />

from bulk <str<strong>on</strong>g>states</str<strong>on</strong>g>, for Cu(100) [25], Ni(100) energies of image <str<strong>on</strong>g>states</str<strong>on</strong>g>, <strong>on</strong>ly a few evaluati<strong>on</strong>s of<br />

[39], Fe(110) [27], Au(100) [42], Ag(100) [43], the lifetime of these <str<strong>on</strong>g>states</str<strong>on</strong>g> have been carried out<br />

Pd(100) [45], and Pd(111) [45]. Res<strong>on</strong>ance image [14,51–59]. Calculati<strong>on</strong>s performed within a selfenergy<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> that exist outside the energy gap and degenerate<br />

formalism by Echenique and coworkers<br />

with bulk <str<strong>on</strong>g>states</str<strong>on</strong>g> have been computed as well. [52–54] have shown that the lifetime of image<br />

These calculati<strong>on</strong>s were performed within both <str<strong>on</strong>g>states</str<strong>on</strong>g> crucially depends <strong>on</strong> the penetrati<strong>on</strong> of these<br />

the slab model (pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong>s) <str<strong>on</strong>g>states</str<strong>on</strong>g> into the bulk and, therefore, an accurate<br />

[38,40,41,45] and semi-infinite crystal model (the descripti<strong>on</strong> of the image <str<strong>on</strong>g>states</str<strong>on</strong>g> wave functi<strong>on</strong> is


332 E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

needed. Deisz et al. [55], Gao and Lundqvist [56], <str<strong>on</strong>g>states</str<strong>on</strong>g> corresp<strong>on</strong>ding to the first image state. The<br />

and Osma et al. [58] have dem<strong>on</strong>strated the important<br />

pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> method is briefly described in<br />

role of final <str<strong>on</strong>g>states</str<strong>on</strong>g>, in particular the surface Secti<strong>on</strong> 2, and in Secti<strong>on</strong> 3 we present the results<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g>, in the decay of image <str<strong>on</strong>g>states</str<strong>on</strong>g>. First-principles of the pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong> of simple <strong>metal</strong><br />

calculati<strong>on</strong>s of the image <str<strong>on</strong>g>states</str<strong>on</strong>g> lifetimes are limited <strong>surfaces</strong>. General discussi<strong>on</strong> and c<strong>on</strong>clusi<strong>on</strong>s are<br />

by the complexity of a descripti<strong>on</strong> of the screened placed in Secti<strong>on</strong> 4.<br />

Coulomb interacti<strong>on</strong> for large systems [52–55].<br />

Therefore, for practical calculati<strong>on</strong>s of the lifetime,<br />

a model that includes an accurate descripti<strong>on</strong> of 2. Calculati<strong>on</strong> methods<br />

the binding energy and spatial behaviour of both<br />

the image and surface <str<strong>on</strong>g>states</str<strong>on</strong>g> is needed.<br />

To calculate the electr<strong>on</strong>ic structure of simple<br />

Recently, a model <str<strong>on</strong>g>potential</str<strong>on</strong>g> that has a c<strong>on</strong>stant <strong>metal</strong> <strong>surfaces</strong> we use a self-c<strong>on</strong>sistent pseudovalue<br />

in the x, y plane and varies in the z directi<strong>on</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> method and a supercell technique. The<br />

was proposed by Chulkov and coworkers [51,57] norm-c<strong>on</strong>serving n<strong>on</strong>-local i<strong>on</strong> pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> of<br />

to evaluate wave functi<strong>on</strong>s and binding energies lithium is generated according to Ref. [60], the<br />

of image <str<strong>on</strong>g>states</str<strong>on</strong>g> and also lifetimes of these image norm-c<strong>on</strong>serving i<strong>on</strong> pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g>s of Na, Be,<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g>. The key parameters of this <str<strong>on</strong>g>potential</str<strong>on</strong>g> repro- Mg, and Al are c<strong>on</strong>structed according to Refs.<br />

duce experimental or first-principles calculati<strong>on</strong> [61,62]. A local density approximati<strong>on</strong> (LDA) is<br />

values of the width and positi<strong>on</strong> of the energy gap used for the exchange-correlati<strong>on</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> [63,64].<br />

and energies E and E of the intrinsic or res<strong>on</strong>ance The calculati<strong>on</strong>s are carried out for 19–27-layer<br />

0 1<br />

surface state (n=0) and the first image state respec- films. As the LDA does not reproduce the correct<br />

tively. Preliminary calculati<strong>on</strong> results for Li(110), asymptotic behaviour of the image <str<strong>on</strong>g>potential</str<strong>on</strong>g> in the<br />

for copper and silver <strong>surfaces</strong>, have been presented vacuum, the final iterati<strong>on</strong> is carried out with<br />

in Ref. [51]. We here apply this model to the the use of a modified <str<strong>on</strong>g>potential</str<strong>on</strong>g> that for zz is given im<br />

Mg(0001), Al(100), and Al(111) and also to the by Eq. (5) (see below). At this iterati<strong>on</strong> the vacuum<br />

(100) and (111) <strong>surfaces</strong> of gold and palladium. interval between c<strong>on</strong>secutive films is chosen to be<br />

We also give an extended analysis of the model large enough (~20 interlayer spacings) to describe<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong> results for lithium, copper accurately the first image state wave functi<strong>on</strong>. For<br />

and silver <strong>surfaces</strong>. A descripti<strong>on</strong> of the <str<strong>on</strong>g>potential</str<strong>on</strong>g> Li(110) this interval has been increased in order<br />

is presented in Secti<strong>on</strong> 2. The results of the model to describe also the sec<strong>on</strong>d image state. The image<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong>s and discussi<strong>on</strong> of binding plane positi<strong>on</strong> z is obtained as the centre of<br />

im<br />

energies and wave functi<strong>on</strong>s of image <str<strong>on</strong>g>states</str<strong>on</strong>g> and, gravity of the charge density induced by a weak<br />

also, of image plane positi<strong>on</strong>s for the simple and static electric field [51]. The values of z , obtained<br />

im<br />

noble <strong>metal</strong> <strong>surfaces</strong>, are given in Secti<strong>on</strong> 3. The in this way, agree in general with those found in<br />

parameters of the <str<strong>on</strong>g>potential</str<strong>on</strong>g> for all <strong>surfaces</strong> of self-c<strong>on</strong>sistent calculati<strong>on</strong>s of linear resp<strong>on</strong>se of a<br />

interest are given in Appendix A.<br />

jellium to an external electric field [65] and to a<br />

In this study we also present first-principles test charge [66] and with those values obtained in<br />

pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong>s of res<strong>on</strong>ance image calculati<strong>on</strong>s that take into account the n<strong>on</strong>-local<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong> simple <strong>metal</strong> <strong>surfaces</strong>. We show that for exchange-correlati<strong>on</strong> c<strong>on</strong>tributi<strong>on</strong> to form the cor-<br />

all these <strong>surfaces</strong> the binding energy of the n=1 rect asymptotic behaviour of the image <str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

image state lies in an energy interval 0.7–0.9 eV [38,45,67]. At the same time, our z is always<br />

im<br />

below the vacuum level. We dem<strong>on</strong>strate that the smaller than z obtained from the jellium model<br />

im<br />

Be(0001) surface is the best candidate am<strong>on</strong>g the as a centre of gravity of the induced charge density<br />

simple <strong>metal</strong> <strong>surfaces</strong> to observe the first res<strong>on</strong>ance [65]. This trend is caused by the effects of the<br />

image state experimentally. In c<strong>on</strong>trast to the crystal structure of a film. A similar trend was<br />

aluminium, magnesium, and sodium <strong>surfaces</strong>, it found by Serena et al. [68] for Li(110), by<br />

manifests a pr<strong>on</strong>ounced peak in the density of Heinrichsmeier et al. [45] for Al(100) and Al(111),


E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

333<br />

and also by White et al. [69] for Al(111). In the s<strong>on</strong> with experimental results, and the image plane<br />

jellium model the dependence of z <strong>on</strong> the crystallographic<br />

face is determined by half an interlayer model. Our <str<strong>on</strong>g>potential</str<strong>on</strong>g> and its first derivative are<br />

positi<strong>on</strong> was used as a fitting parameter of a<br />

im<br />

spacing z =a /2+zjel , where zjel is the image c<strong>on</strong>tinuous everywhere in space. The energies E im s im im 0<br />

plane positi<strong>on</strong> defined relative to the jellium (geo- and E of the surface state and of the first image<br />

1<br />

metrical ) edge and a is the interlayer spacing. The state respectively are the fitted parameters. We<br />

s<br />

factor a /2 gives artificially str<strong>on</strong>g dependence of obtain z as a c<strong>on</strong>sequence of the model. For a<br />

s im<br />

z <strong>on</strong> the crystallographic face. Because of this descripti<strong>on</strong> of the surface electr<strong>on</strong>ic structure we<br />

im<br />

we compare our z with the jellium calculati<strong>on</strong> present a <strong>on</strong>e-dimensi<strong>on</strong>al periodic-film model<br />

im<br />

results <strong>on</strong>ly for close-packed BCC(110), with large intervals between films. In this model<br />

HCP(0001), and FCC(111) <strong>surfaces</strong>. The the full screened <str<strong>on</strong>g>potential</str<strong>on</strong>g> has a c<strong>on</strong>stant value in<br />

electr<strong>on</strong>ic self-energy calculati<strong>on</strong>s performed the x, y plane and varies in the z directi<strong>on</strong> as<br />

within the GW approximati<strong>on</strong> [38,45,69] and the<br />

weighted-density approximati<strong>on</strong> [67] place the V (z)=A +A cos 1 10 1 A2p z z


334 E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

gaps unknown from experiments we calculate the<br />

bulk electr<strong>on</strong>ic structure of simple <strong>metal</strong>s using<br />

the bulk pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> versi<strong>on</strong>. The electr<strong>on</strong>ic<br />

structure calculati<strong>on</strong> of bulk Cu, Ag and Pd is<br />

carried out with the use of the bulk versi<strong>on</strong> of the<br />

LAPW method.<br />

Fig. 1. Schematic plot of the model <str<strong>on</strong>g>potential</str<strong>on</strong>g> used. Vertical solid<br />

lines represent atomic layers positi<strong>on</strong>s.<br />

3. Calculati<strong>on</strong> results and discussi<strong>on</strong><br />

3.1. Li(110)<br />

We have performed self-c<strong>on</strong>sistent pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

calculati<strong>on</strong>s of the surface electr<strong>on</strong>ic<br />

structure of Li(110) for a 27-layer film. Some<br />

characteristics of this structure are presented in<br />

Table 1.<br />

As follows from the calculati<strong>on</strong>, there are no<br />

occupied surface <str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong> this surface. An unoccupied<br />

res<strong>on</strong>ance surface state is obtained just below<br />

the wide energy gap at C9 . The first and sec<strong>on</strong>d<br />

image <str<strong>on</strong>g>states</str<strong>on</strong>g> are found in the energy gap just below<br />

the upper edge of the gap [51]. Our calculated<br />

work functi<strong>on</strong> w=3.35 eV is in agreement with<br />

other calculati<strong>on</strong> results [68,77,78] and the experi-<br />

mental value obtained for polycrystalline samples<br />

[76].<br />

To fit the model <str<strong>on</strong>g>potential</str<strong>on</strong>g> parameters A and 1<br />

A we use the lower and upper edge positi<strong>on</strong>s of<br />

10<br />

the energy gap found in our bulk calculati<strong>on</strong>. The<br />

lower edge positi<strong>on</strong> is in excellent agreement with<br />

the results of other calculati<strong>on</strong>s performed within<br />

both the LDA [74,75,80] and the quasi-particle<br />

approximati<strong>on</strong> [75], whereas there is some disagreement<br />

between the LDA and the quasi-particle<br />

(2)–(5) in Fig. 1 in the regi<strong>on</strong> where the solid–<br />

vacuum interface <str<strong>on</strong>g>potential</str<strong>on</strong>g> merges smoothly into<br />

an image-like Coulomb <str<strong>on</strong>g>potential</str<strong>on</strong>g> represented by<br />

Eq. (5). We also use an experimental or firstprinciples<br />

calculati<strong>on</strong> work functi<strong>on</strong> value to fix<br />

the Fermi level positi<strong>on</strong> relative to the vacuum<br />

level. In fact, this parameter is not an adjustable;<br />

it may be obtained from band structure calculati<strong>on</strong><br />

with the <str<strong>on</strong>g>potential</str<strong>on</strong>g> Eqs. (2)–(5). In this case the<br />

difference between calculated and experimental<br />

values is of the order of 0.1 eV. However, for a<br />

more precise descripti<strong>on</strong> of the electr<strong>on</strong>ic structure<br />

in the E −E energy interval, we use the experimental<br />

value of work functi<strong>on</strong>. For all <strong>surfaces</strong> of<br />

V F<br />

interest, 500–700 atomic layer films with a 100–<br />

150 interlayer spacing vacuum interval between evaluati<strong>on</strong>s for the upper edge. The LDA calculati<strong>on</strong>s<br />

them have been used. Such a geometry allows us<br />

[51,74,75] give for this positi<strong>on</strong> a value that<br />

to resolve res<strong>on</strong>ance surface <str<strong>on</strong>g>states</str<strong>on</strong>g> and res<strong>on</strong>ance is closer to the vacuum level by ~0.5 eV than the<br />

image <str<strong>on</strong>g>states</str<strong>on</strong>g> (n=1, …, 4) with an accuracy better quasi-particle theory does [75]. This shift can<br />

than 0.005 eV.<br />

influence the first image state. Our pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

To obtain the binding energy of unoccupied calculati<strong>on</strong> gives E =−0.73 eV relative to E .It<br />

1 V<br />

res<strong>on</strong>ance surface <str<strong>on</strong>g>states</str<strong>on</strong>g> unknown explicitly from is located at −0.62 eV relative to the LDA upper<br />

an experiment for the Cu(100) and Pd(100) <strong>surfaces</strong><br />

edge of the gap and at −0.02 eV relative to the<br />

we have used a self-c<strong>on</strong>sistent linearized quasi-particle upper edge positi<strong>on</strong>. How does this<br />

augmented-plane-wave (LAPW ) film method proximity of an image state to the upper edge have<br />

[72,73]. The self-c<strong>on</strong>sistent calculati<strong>on</strong>s have been an influence <strong>on</strong> its characteristics? As follows from<br />

performed for nine-layer films of these <strong>metal</strong> <strong>surfaces</strong>.<br />

IPE and 2PPE measurements [6,8,14,81,82], the<br />

To find the width and positi<strong>on</strong> of the energy n=1 state is located in the middle of the gap<br />

<strong>on</strong>


E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

335<br />

Table 1<br />

Some characteristics of the Li(110) surface. The lower edge<br />

Elower, the upper edge Eupper of the energy gap and surface state<br />

edge edge<br />

energy E are expressed relative to the Fermi level E . <str<strong>on</strong>g>Image</str<strong>on</strong>g><br />

0 F<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> energies E are given relative to the vacuum level<br />

n<br />

E =0. All energies and work functi<strong>on</strong> w are in electr<strong>on</strong>-volts.<br />

V<br />

Penetrati<strong>on</strong> values p are given in percent. The symbol 1 marks<br />

n<br />

res<strong>on</strong>ance state. The image plane positi<strong>on</strong> z is given in a.u.<br />

im<br />

relative to the surface atomic layer<br />

Characteristics Experiment Theory Model<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

Elower<br />

edge<br />

Eupper<br />

edge<br />

(N 1 ∞ ) – 0.25a; 0.21b; 0.25<br />

0.27c; 0.25c<br />

(N 1<br />

) – 3.24a; 3.10b,c; 3.24<br />

2. 64c<br />

E1 – 0.18a 0.18<br />

0<br />

E −0.73d −0.73a −0.73 Fig. 2. The local part of the full screened pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

1<br />

E −0.197d −0.22a −0.217 averaged in the plane parallel to the surface (solid line), the<br />

2<br />

E1 −0.090d – −0.100±0.002 model <str<strong>on</strong>g>potential</str<strong>on</strong>g>, reproducing correctly the energy gap width<br />

3<br />

E1 −0.051d – −0.055±0.002 and positi<strong>on</strong> (dot–dashed line), and the model <str<strong>on</strong>g>potential</str<strong>on</strong>g>, reprop<br />

– 15.05a 15.27 ducing the results of the calculati<strong>on</strong> performed with use of the<br />

1<br />

4<br />

p – 5.78a 5.89 local part of the screened pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> (dotted line) for<br />

2<br />

w 2.93e 3.35a; 3.45f; 3.35 Li(110). z=0 corresp<strong>on</strong>ds to the surface atomic layer positi<strong>on</strong>.<br />

3.55g;3.63h;<br />

Vertical solid lines represent atomic layers positi<strong>on</strong>s.<br />

3.33i<br />

z – 3.63a; 3.2h; 3.21<br />

im<br />

3.74j; 2.93k;<br />

may be increased from −0.73 eV in the LDA<br />

3.08l calculati<strong>on</strong> up to −0.80 eV in the quasi-particle<br />

calculati<strong>on</strong>. This 10% increase of the binding<br />

a Present calculati<strong>on</strong>.<br />

b Ref. [74].<br />

energy does not change significantly the properties<br />

c Ref. [75].<br />

of the n=1 state obtained in the present calcula-<br />

d This value is obtained from the c<strong>on</strong>venti<strong>on</strong>al Eq. (1), where ti<strong>on</strong>. At the same time, lowering of the positi<strong>on</strong> of<br />

a=0.85/E −1. E is the experimental or first-principles calcu-<br />

1 1 the upper energy gap edge can change the properlati<strong>on</strong><br />

energy value of the n=1 image state.<br />

ties of the sec<strong>on</strong>d image state. This state will<br />

e Ref. [76].<br />

i Ref. [79].<br />

f Ref. [77].<br />

j Ref. [65].<br />

degenerate with bulk <str<strong>on</strong>g>states</str<strong>on</strong>g>. As we c<strong>on</strong>centrate<br />

g Ref. [78].<br />

k Ref. [67].<br />

mainly <strong>on</strong> the first image state (this state is used<br />

h Ref. [68].<br />

l Ref. [70].<br />

to fit the parameters A and b), we utilize here the<br />

2<br />

surface electr<strong>on</strong>ic structure data from the LDA<br />

the Cu(100), Ag(100), Pd(111) <strong>surfaces</strong> and calculati<strong>on</strong>.<br />

energy of this state is ~−0.55 eV relative to E . In Fig. 2 we compare the <strong>on</strong>e-dimensi<strong>on</strong>al<br />

V<br />

A different situati<strong>on</strong> is observed for Cu(111), model <str<strong>on</strong>g>potential</str<strong>on</strong>g> calculated for Li(110) and the<br />

Ag(111), and Au(111), where, as for Li(110), the local part of the full screened n<strong>on</strong>-local self-c<strong>on</strong>sistent<br />

pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> averaged in a plane parallel<br />

V<br />

upper edge of the energy gap is just below E<br />

[3,4,6,14,81]. On Ag(111) and Cu(111) the n=1 to the surface. The discrepancy between these two<br />

state is located ~0.1 eV below the upper edge, curves is explained by the absence of the n<strong>on</strong>-local<br />

and its energy is −0.77 eV for Ag(111) [14,81] c<strong>on</strong>tributi<strong>on</strong>, which is a large <strong>on</strong>e for lithium [60].<br />

and −0.82 eV for Cu(111) [14,16]. On Au(111) The use of the averaged local c<strong>on</strong>tributi<strong>on</strong> <strong>on</strong>ly<br />

this state with the energy of −0.80 eV degenerates modifies the energy gap. It gives different positi<strong>on</strong>s<br />

with bulk <str<strong>on</strong>g>states</str<strong>on</strong>g>, i.e. it is above the upper edge. of the edges of the energy gap and different binding<br />

Following this analogy <strong>on</strong>e can expect that the energies of the image <str<strong>on</strong>g>states</str<strong>on</strong>g> [51]. The model <str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

binding energy of the first image state <strong>on</strong> Li(110)<br />

c<strong>on</strong>structed for the modified energy gap (for


336 E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

Fig. 3. The probability amplitude of the first image state of the<br />

Li(110) surface obtained from the model <str<strong>on</strong>g>potential</str<strong>on</strong>g> (solid line)<br />

and from the full pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> (dotted line) calculati<strong>on</strong>. Vertical<br />

solid lines represent atomic layers positi<strong>on</strong>s.<br />

of the image state inside the crystal. In Table 1 we<br />

give the calculated penetrati<strong>on</strong> values p for the n<br />

n=1, 2 <str<strong>on</strong>g>states</str<strong>on</strong>g> (we assume that the crystal edge is<br />

located at half an interlayer spacing from the last<br />

atomic layer). p is defined as a fracti<strong>on</strong> of the nth<br />

n<br />

image state in the bulk. The evaluated penetrati<strong>on</strong><br />

p =15.27% of the n=1 state is significantly closer<br />

1<br />

to that obtained for Cu(111) and Ag(111) than<br />

to that found for Cu(100) and Ag(100) [51]. The<br />

image <str<strong>on</strong>g>states</str<strong>on</strong>g> binding energies E =0.217 eV,<br />

2<br />

E =0.100 eV, and E =0.055 eV found in the<br />

3 4<br />

model <str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong> are in agreement with<br />

the E values obtained from Eq. (1). The inaccuracy<br />

of the binding energies of the res<strong>on</strong>ance<br />

n<br />

surface <str<strong>on</strong>g>states</str<strong>on</strong>g> obtained from the <strong>on</strong>e-dimensi<strong>on</strong>al<br />

model <str<strong>on</strong>g>potential</str<strong>on</strong>g> Schrödinger equati<strong>on</strong> is explained<br />

by the use of the finite film thickness. The image<br />

plane positi<strong>on</strong>, z =3.21 a.u., agrees well with the<br />

im<br />

pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong> result [68] and evaluati<strong>on</strong><br />

data of Appelbaum and Hamann [70] and<br />

that we have changed <strong>on</strong>ly the parameters A 10<br />

and A ) is also shown (dashed line) in Fig. 2. As 1<br />

follows from the figure, good agreement is<br />

Ossicini et al. [67].<br />

observed between the local part of the pseudo- 3.2. Na(110)<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> and the modified model <str<strong>on</strong>g>potential</str<strong>on</strong>g>. Both<br />

of them give practically the same binding energy In Table 2 we show some experimental and<br />

of the n=1 state: E #−0.52 eV. This result c<strong>on</strong>firms<br />

the importance of the energy gap parameters ture of Na(110). The projecti<strong>on</strong> of the bulk band<br />

calculati<strong>on</strong> data characterizing the electr<strong>on</strong>ic struc-<br />

1<br />

for a descripti<strong>on</strong> of image <str<strong>on</strong>g>states</str<strong>on</strong>g> found previously structure of Na <strong>on</strong>to the (110) surface is similar<br />

[3–9,14,29–31]. to that of lithium. The lower edge positi<strong>on</strong> of the<br />

In order to test the quality of the image <str<strong>on</strong>g>states</str<strong>on</strong>g> energy gap obtained from the pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

wave functi<strong>on</strong>s, obtained with the use of the model evaluati<strong>on</strong> of bulk band structure agrees well with<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g>, we compare in Fig. 3 the probability other LDA [74,75] calculati<strong>on</strong>s and quasi-particle<br />

amplitudes of the first image state found in the [75] results. So, we use E(N )=0.68 eV together<br />

1∞<br />

n<strong>on</strong>-local pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong> as well as in with our energy value of the upper edge to fit the<br />

that of the model calculati<strong>on</strong>. One can see in Fig. 3 parameters A and A . As in the case of Li(110),<br />

1 10<br />

that the difference between these two curves is very a broad surface res<strong>on</strong>ance state with energy of<br />

small, especially in the vicinity of the surface 0.45 eV relative to E has been found at C9 just<br />

F<br />

atomic layer. Very similar results are obtained for below the energy gap in our slab pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

the sec<strong>on</strong>d image state and for the surface reso- calculati<strong>on</strong>. But, in c<strong>on</strong>trast to the Li(110) surface,<br />

nance. These results show that the model <str<strong>on</strong>g>potential</str<strong>on</strong>g> all image <str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong> Na(110) are the res<strong>on</strong>ance<br />

Eqs. (2)–(5) describes with high accuracy both <strong>on</strong>es. In the calculated vacuum density of <str<strong>on</strong>g>states</str<strong>on</strong>g><br />

the binding energies and wave functi<strong>on</strong>s of the there appear peaks that corresp<strong>on</strong>d to the n=<br />

image <str<strong>on</strong>g>states</str<strong>on</strong>g> as well as of the surface state.<br />

2, 3, … image <str<strong>on</strong>g>states</str<strong>on</strong>g>, whereas the n=1 image state<br />

The finite lifetime value of image <str<strong>on</strong>g>states</str<strong>on</strong>g> is due peak does not appear. Therefore, we determine<br />

to the coupling to bulk and surface <str<strong>on</strong>g>states</str<strong>on</strong>g>. The the binding energy of the first image res<strong>on</strong>ance as<br />

decay into unoccupied <str<strong>on</strong>g>states</str<strong>on</strong>g> is accompanied by the mean energy of the film electr<strong>on</strong> <str<strong>on</strong>g>states</str<strong>on</strong>g> having<br />

the creati<strong>on</strong> of electr<strong>on</strong>–hole pairs. A measure of <strong>on</strong>e node just around the crystal edge or in the<br />

this coupling is the charge fracti<strong>on</strong> (penetrati<strong>on</strong>) vacuum and weighted for each of these <str<strong>on</strong>g>states</str<strong>on</strong>g> by


E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

337<br />

Table 2<br />

The Na(110) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to<br />

those in Table 1)<br />

Characteristics Experiment Theory Model<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

observed with the calculati<strong>on</strong>s of Appelbaum and<br />

Hamann [70] and Ossicini et al. [67]. The reas<strong>on</strong><br />

for this disagreement in the case of the pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

evaluati<strong>on</strong> is, in fact, the use of the linear<br />

resp<strong>on</strong>se to a test charge, when z is determined<br />

im<br />

as a centre of gravity of the induced charge density.<br />

A more accurate treatment of the exchange correlati<strong>on</strong><br />

interacti<strong>on</strong> may decrease z [38,69] to better<br />

im<br />

Elower (N<br />

edge 1<br />

∞) – 0.73a; 0.82b; 0.68<br />

0.67b; 0.68c<br />

Eupper (N ) – 1.11a; 1.35c 1.35<br />

edge 1<br />

E1 – 0.45c; 0.69d 0.60 0<br />

agreement with the calculati<strong>on</strong>s [67,70].<br />

E1 −0.77e −0.77c; −0.71d −0.77±0.02<br />

1<br />

E1 −0.202e −0.20d −0.206±0.002 2 3.3. Be(0001)<br />

E1 −0.091e – −0.094±0.002<br />

3<br />

E1 −0.052e – −0.052±0.002<br />

4<br />

w 2.9f; 2.75g 3.0c; 3.10h,i; 2.9<br />

In c<strong>on</strong>trast to the extensive study of the occu-<br />

2.94j pied electr<strong>on</strong>ic structure [87–91], to the best of<br />

z – 4.10c; 4.18k; 4.0 im our knowledge there are two experimental studies<br />

3.33l; 3.48m<br />

of the unoccupied electr<strong>on</strong>ic structure of Be(0001)<br />

a Ref. [74].<br />

[92,93]. Bruhwiller and coworkers [92,93] using<br />

b Ref. [75].<br />

the IPE technique observed a large peak just below<br />

c Present calculati<strong>on</strong>.<br />

E . They ascribed this feature to the image potend<br />

Ref. [41].<br />

V<br />

tial, but did not extract precise informati<strong>on</strong> from<br />

e This value is obtained from the c<strong>on</strong>venti<strong>on</strong>al Eq. (1), where<br />

the peak to determine the binding energies of<br />

a=0.85/E −1. E is the experimental or first-principles calcuimage<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g>. The results obtained in the slab<br />

1 1<br />

lati<strong>on</strong> energy value of the n=1 image state.<br />

f Ref. [83].<br />

j Ref. [79].<br />

pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong> are presented in Fig. 4<br />

g Ref. [84].<br />

k Ref. [65].<br />

and in Table 3. As <strong>on</strong>e can see in Fig. 4, the<br />

h Ref. [78]. l Ref. [67].<br />

calculati<strong>on</strong> gives well-known occupied surface<br />

i Ref. [85].<br />

m Ref. [70].<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> at C9 , M9 , and K9 [87–90]. Res<strong>on</strong>ance image<br />

the integrati<strong>on</strong> of the probability amplitude in the<br />

vacuum regi<strong>on</strong>. The binding energy E , so calculated,<br />

is −0.77 eV, which agrees with the 1<br />

E =−0.71 eV obtained by Finocchi et al. [41]<br />

1<br />

with the use of a model pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> [86]. The<br />

parameters A and b are found by reproducing<br />

2<br />

reas<strong>on</strong>ably the calculated broad res<strong>on</strong>ance surface<br />

state energy and the first image state energy. Our<br />

model <str<strong>on</strong>g>potential</str<strong>on</strong>g> gives E =−0.206 eV in good<br />

2<br />

agreement with that found in Ref. [41]. Excellent<br />

agreement is observed between the <strong>on</strong>e-dimensi<strong>on</strong>al<br />

model <str<strong>on</strong>g>potential</str<strong>on</strong>g> Schrödinger equati<strong>on</strong> eigenvalues<br />

and soluti<strong>on</strong>s of Eq. (1) for E , E , and 2 3<br />

E . As for the work functi<strong>on</strong>, our pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

4<br />

calculati<strong>on</strong> gives w=3.0 eV, which agrees well with<br />

both the experimental data [84] and the calculati<strong>on</strong><br />

result [78]. The image plane positi<strong>on</strong> values 4.1 a.u.<br />

and 4.0 a.u., obtained from the pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

and model <str<strong>on</strong>g>potential</str<strong>on</strong>g> evaluati<strong>on</strong>s respectively, are<br />

close to that found in the jellium model by Lang<br />

and Kohn [65]. However, some disagreement is<br />

Fig. 4. Calculated surface electr<strong>on</strong>ic structure of Be(0001): the<br />

projected band structure of bulk Be and the surface and image<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> (dashed lines).


338 E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

Table 3<br />

image plane positi<strong>on</strong> obtained with the model<br />

The Be(0001) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to <str<strong>on</strong>g>potential</str<strong>on</strong>g>; good agreement is observed between the<br />

those in Table 1)<br />

<strong>on</strong>e-dimensi<strong>on</strong>al model <str<strong>on</strong>g>potential</str<strong>on</strong>g> Schrödinger<br />

Characteristics Experiment Theory Model<br />

equati<strong>on</strong> eigenvalues and soluti<strong>on</strong>s of Eq. (1).<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

In Fig. 5 the vacuum density of <str<strong>on</strong>g>states</str<strong>on</strong>g> evaluated<br />

with the model <str<strong>on</strong>g>potential</str<strong>on</strong>g> is shown for energies just<br />

Elower (C ) −4.8a −4.34b; −4.3c −4.8<br />

edge 3+ below E . This DOS has been obtained by integ-<br />

Eupper (C ) – 1.40b; 1.2c 1.4<br />

edge 4− V<br />

E −2.8d −2.6e; −2.8f −2.8<br />

rati<strong>on</strong> of the local density of <str<strong>on</strong>g>states</str<strong>on</strong>g> DOS(E, z) over<br />

0<br />

E1 −0.95g −0.95b −0.95±0.01 1<br />

the vacuum regi<strong>on</strong>. As can be seen in Fig. 5, there<br />

E1 −0.224g – −0.24±0.01 2 is a clear peak of the first image state at −0.95 eV<br />

E1 −0.098g – −0.096±0.002 3 in the DOS curve. Two other peaks corresp<strong>on</strong>d to<br />

E1 −0.055g – −0.058±0.002<br />

4<br />

w 5.1h 5.35b; 5.54f 5.35<br />

the sec<strong>on</strong>d and third image <str<strong>on</strong>g>states</str<strong>on</strong>g>. It is interesting<br />

z – 2.75b; 3.31i; 2.21<br />

to note that the clear peak of the first image state<br />

im<br />

2.57j; 2.72k<br />

is also observed in the DOS curve that was<br />

a Ref. [94].<br />

h Ref. [95].<br />

b Present calculati<strong>on</strong>. i Ref. [65].<br />

c Ref. [74].<br />

j Ref. [67].<br />

d Refs. [87,88].<br />

k Ref. [70].<br />

e Ref. [89].<br />

f Ref. [90].<br />

g This value is obtained from the c<strong>on</strong>venti<strong>on</strong>al Eq. (1), where<br />

a=0.85/E −1. E is the experimental or first-principles calcu-<br />

1 1<br />

lati<strong>on</strong> energy value of the n=1 image state.<br />

obtained from a calculati<strong>on</strong> with the local part<br />

of the full screened n<strong>on</strong>-local pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

averaged in a plane parallel to the surface. This<br />

remarkable feature differs drastically for the<br />

Be(0001) surface from other n<strong>on</strong>-transiti<strong>on</strong>-<strong>metal</strong><br />

<strong>surfaces</strong>. In particular, for Na(110), Mg(0001),<br />

Al(100), and Al(111) we could not obtain a clear<br />

DOS peak for the first image state. The <strong>on</strong>ly way<br />

to determine the n=1 state binding energy <strong>on</strong><br />

these <strong>surfaces</strong> is weighting the film electr<strong>on</strong> <str<strong>on</strong>g>states</str<strong>on</strong>g><br />

by taking into account a node positi<strong>on</strong> of the wave<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> with n=1, 2 are shown in the upper part<br />

of Fig. 4. The energies of these <str<strong>on</strong>g>states</str<strong>on</strong>g> are functi<strong>on</strong>s. This difference may be qualitatively<br />

E =−0.95 eV and E =−0.24 eV. As in the case<br />

1 2<br />

of Na(110), the E and E energies are determined<br />

1 2<br />

by weighting the film electr<strong>on</strong> <str<strong>on</strong>g>states</str<strong>on</strong>g> according to<br />

the fracti<strong>on</strong> of the <str<strong>on</strong>g>states</str<strong>on</strong>g> in the vacuum regi<strong>on</strong> and<br />

to the positi<strong>on</strong> of the wave functi<strong>on</strong> node of these<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> relative to the crystal edge. The calculated<br />

work functi<strong>on</strong> value w=5.35 eV agrees reas<strong>on</strong>ably<br />

well with the experimental <strong>on</strong>e obtained for polycrystalline<br />

samples [95] and with the evaluati<strong>on</strong><br />

result [90]. In c<strong>on</strong>trast to Na(110), the image<br />

plane positi<strong>on</strong> obtained for Be(0001) is in good<br />

agreement with that found in Refs. [67,70] for the<br />

charge density parameter r corresp<strong>on</strong>ding to<br />

s<br />

bulk Be.<br />

We fit the model <str<strong>on</strong>g>potential</str<strong>on</strong>g> parameters A and 1<br />

A to the experimental value [94] of the lower<br />

10<br />

edge of the gap and to our bulk calculati<strong>on</strong> result<br />

for the upper edge. The parameters A and b 2<br />

reproduce the experimental surface state energy at<br />

C9 [87,88] and the calculated value<br />

E =−0.95 eV. In Table 3 we show the binding<br />

1<br />

energies of the n=2, 3, 4 image <str<strong>on</strong>g>states</str<strong>on</strong>g> and the<br />

Fig. 5. Calculated vacuum density of <str<strong>on</strong>g>states</str<strong>on</strong>g> for Be(0001). The<br />

peaks corresp<strong>on</strong>ding to the n=1, 2, 3 image <str<strong>on</strong>g>states</str<strong>on</strong>g> are shown.


E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

339<br />

understood as a c<strong>on</strong>sequence of the higher electr<strong>on</strong> agreement with the results of Appelbaum and<br />

reflectivity of the Be crystal, compared with other Hamann [70] and Lang and Kohn [65], whereas<br />

simple <strong>metal</strong>s, that originates from the wide energy the weighted density approximati<strong>on</strong> calculati<strong>on</strong><br />

gap at the C9 point. The existence of a clear peak [67] places z closer to the surface atomic layer<br />

im<br />

in the DOS of Be(0001) assumes that it might be by 0.5 a.u.<br />

much easier to observe experimentally the first To fit the parameters A and A we use the<br />

1 10<br />

image state <strong>on</strong> this surface than <strong>on</strong> both the (111) positi<strong>on</strong>s of the energy gap edges found in angleresolved<br />

and (100) <strong>surfaces</strong> of aluminium.<br />

photoemissi<strong>on</strong> measurements [96]. The<br />

parameters A and b are fitted to reproduce the<br />

2<br />

3.4. Mg(0001)<br />

experimental value of the surface state binding<br />

energy within the experimental error and the<br />

The projected bulk band structure of magnesium<br />

pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> evaluati<strong>on</strong> binding energy of the<br />

<strong>on</strong>to the (0001) surface has a narrow energy first image state. The image plane positi<strong>on</strong>,<br />

gap with a width that was found experimentally z =3.46 a.u., obtained from the model <str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

im<br />

to be of 0.7 eV at C9 [96], and LDA calculati<strong>on</strong>s calculati<strong>on</strong> agrees with all available theoretical<br />

give a width around 0.35 eV (see Table 4.). The results.<br />

present pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong> of the surface<br />

electr<strong>on</strong>ic structure reproduces the LDA data pub- 3.5. Al(100) and Al(111)<br />

lished previously [89,99] and gives an energy of<br />

−0.78 eV for the first image state. The image plane The Al(100) surface is <strong>on</strong>e of the most studied<br />

positi<strong>on</strong> obtained, z =3.66 a.u., is in reas<strong>on</strong>able theoretically am<strong>on</strong>g simple <strong>metal</strong> <strong>surfaces</strong>.<br />

im<br />

However, in c<strong>on</strong>trast to the case of surface <str<strong>on</strong>g>states</str<strong>on</strong>g><br />

Table 4<br />

detected experimentally at different symmetry<br />

The Mg(0001) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to points [100–102] and obtained theoretically<br />

those in Table 1)<br />

[38,40,103–109], no measurements of image <str<strong>on</strong>g>states</str<strong>on</strong>g><br />

have been performed for Al(100). Theoretical<br />

Characteristics Experiment Theory Model<br />

calculati<strong>on</strong>s of the first image state energy give<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

values lying in a wide energy interval: from<br />

Elower (C ) −1.7±0.1a −1.53b; −1.58c −1.7<br />

edge 3+ −1.0 eV to −0.4 eV (see Table 5). On the <strong>on</strong>e<br />

Eupper (C ) −0.9±0.1a; −1.11b; −1.28c −1.0<br />

edge 4− hand, this large spread in energy may be attributed<br />

−1.0d<br />

to the res<strong>on</strong>ance character of the image state, and<br />

E −1.6±0.1a; −1.56f,g −1.5<br />

0<br />

−1.7e<br />

<strong>on</strong> the other hand to different positi<strong>on</strong>s of the<br />

E1 −0.78h −0.78c −0.78±0.04 image plane used in the calculati<strong>on</strong>s. As we have<br />

1<br />

E1 −0.203h – −0.21±0.01 2 shown for Li(110), the z value does not influence<br />

E1 −0.092h – −0.100±0.004 im 3 seriously the binding energy of the image <str<strong>on</strong>g>states</str<strong>on</strong>g>.<br />

E1 −0.052h – −0.056±0.004<br />

4 The same occurs for Be(0001) and aluminium<br />

w 3.66i 3.7f; 4.05i; 3.66<br />

3.86j<br />

<strong>surfaces</strong>. So, <strong>on</strong>e can expect that the real origin of<br />

z – 3.66c; 3.96k; 3.46<br />

the large spread in binding energy values is the<br />

im<br />

3.18l; 3.33m<br />

res<strong>on</strong>ance nature of the image state, i.e. theoretical<br />

results may depend <strong>on</strong> the way of weighting resoa<br />

Ref. [96].<br />

i Ref. [78].<br />

b Ref. [74].<br />

j Ref. [79].<br />

nance <str<strong>on</strong>g>states</str<strong>on</strong>g>. Our slab pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong><br />

c Present calculati<strong>on</strong>. k Ref. [65].<br />

describes very well the surface electr<strong>on</strong>ic structure<br />

d Ref. [97].<br />

l Ref. [67].<br />

of Al(100). In particular, it gives a binding energy<br />

e Ref. [98].<br />

m Ref. [70].<br />

of −2.76 eV for the surface state at C9 that is in<br />

f Ref. [89].<br />

excellent agreement with photoemissi<strong>on</strong> measureg<br />

Ref. [99].<br />

h This value is obtained from the c<strong>on</strong>venti<strong>on</strong>al Eq. (1), where ments [100–102]. It gives a first image state binding<br />

a=0.85/E −1. E is the experimental or first-principles calculati<strong>on</strong><br />

energy value of the n=1 image state.<br />

the results by Finocchi et al. [41], Jurczyszyn<br />

energy of E =−0.88 eV, which agrees well with<br />

1 1 1<br />

and


340 E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

Table 5<br />

part, (~0.15 eV ) this discrepancy may be related<br />

The Al(100) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to to the different z values found in the present<br />

those in Table 1)<br />

im<br />

work and in Ref. [38]. In their pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

Characteristics Experiment Theory Model calculati<strong>on</strong> of image <str<strong>on</strong>g>states</str<strong>on</strong>g> Eguiluz and coworkers<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> [38,45] used z =2.62 a.u. resulting from the<br />

im<br />

electr<strong>on</strong>ic self-energy evaluati<strong>on</strong> of the jellium slab<br />

Elower (X<br />

edge 4<br />

∞) −2.83a −2.86b; −2.96c; −2.83<br />

[38]. Decreasing z by 0.5 a.u. we find E =<br />

−2.99d<br />

im 1<br />

Eupper (X ) −1.15a −1.79b; −1.15 −0.72 eV, which is still significantly larger than<br />

edge 1<br />

−1.64c,d<br />

that obtained in Ref. [38]. The reas<strong>on</strong> for the<br />

E −2.75a,e; −2.8f −2.76d; −2.73g; −2.6 0 remaining part of this discrepancy is still unclear<br />

−2.9h; −2.92i;<br />

to us. To verify our result for E we performed<br />

−2.6j; −2.65k;<br />

1<br />

−2.81l; −2.67m;<br />

the calculati<strong>on</strong>s for 27- and 301-layer films with<br />

−2.71n<br />

the local part of the screened pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

E1 −0.88o −0.88d; −0.4n,t; −0.88 1<br />

averaged in the x, y plane. For the 27-layer film<br />

−0.95p; −0.65q;<br />

this <str<strong>on</strong>g>potential</str<strong>on</strong>g> gives practically the same result as<br />

−0.59r; −0.8s<br />

the three-dimensi<strong>on</strong>al n<strong>on</strong>-local pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g>.<br />

E1 −0.216o −0.18n; −0.25p; −0.23<br />

2<br />

−0.16q; −0.17r ±0.01 A very similar value is obtained from the evalua-<br />

E1 −0.096o −0.074r −0.10 ti<strong>on</strong> of a 301-layer film. The calculated work<br />

3<br />

±0.01 functi<strong>on</strong> is fairly close to the experimental value<br />

E1 −0.054o – −0.056 4 of 4.4 eV and agrees with other calculati<strong>on</strong> results.<br />

±0.003<br />

Our value of z =3.15 a.u. is in reas<strong>on</strong>able<br />

w 4.41u; 4.2v 4.49g; 4.7d,h; 4.4<br />

im<br />

4.54k; 4.67l;<br />

agreement with the calculati<strong>on</strong>s that take into<br />

4.41m; 4.82n;<br />

account the crystal structure of the Al(100) surface<br />

4.63q; 4.59t; [37,68,116,117].<br />

4.2p,w;<br />

To determine the model <str<strong>on</strong>g>potential</str<strong>on</strong>g> parameters<br />

4.27x; 4.5y,z<br />

A and A we utilize the experimentally found<br />

z – 3.15d; 3.45r; 3.44<br />

im 1 10<br />

[100] positi<strong>on</strong>s of the lower and upper edges of<br />

2.44t; 3.22x;<br />

2.95aa; 3.0ab<br />

the energy gap. The parameters A and b are fitted<br />

2<br />

to reproduce the experimental value of the binding<br />

a Ref. [100].<br />

p Ref. [74].<br />

energy of the surface state [100] within the experib<br />

Ref. [41].<br />

q Ref. [39].<br />

mental error and the pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong><br />

c Ref. [110].<br />

r Ref. [37].<br />

d Present calculati<strong>on</strong>. s Ref. [36].<br />

value E =−0.88 eV of the first image state. Our<br />

1<br />

e Refs. [101,102].<br />

t Ref. [45].<br />

results for binding energies of the excited image<br />

f Ref. [111]<br />

u Ref. [112].<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> are in agreement with those found from Eq.<br />

g Ref. [103].<br />

v Ref. [113].<br />

(1) with E =−0.88 eV. Some disagreement is<br />

h Ref. [104].<br />

w Ref. [78].<br />

1<br />

observed with the calculati<strong>on</strong>s [37–39] for the<br />

i Ref. [105].<br />

x Ref. [68].<br />

j Ref. [106 ].<br />

y Ref. [114].<br />

sec<strong>on</strong>d image state, whereas our value of E is 2<br />

k Ref. [107].<br />

z Ref. [115].<br />

very close to that obtained in Ref. [41]. The image<br />

l Ref. [108]. aa Ref. [116].<br />

plane positi<strong>on</strong>, z =3.44 a.u., found with the<br />

m Ref. [109].<br />

ab Ref. [117].<br />

im<br />

model <str<strong>on</strong>g>potential</str<strong>on</strong>g> agrees well with the value of z<br />

n Ref. [38].<br />

im<br />

calculated by Lang and Kohn [65] and Radny [37].<br />

o This value is obtained from the c<strong>on</strong>venti<strong>on</strong>al Eq. (1), where<br />

a=0.85/E −1. E is the experimental or first-principles calcumeasurements<br />

have been performed to determine<br />

In c<strong>on</strong>trast to other simple <strong>metal</strong> <strong>surfaces</strong>, three<br />

1 1<br />

lati<strong>on</strong> energy value of the n=1 image state.<br />

the binding energy of the first image state <strong>on</strong> the<br />

Al(111) surface [48–50]. All of them give<br />

Stȩślicka [36], and Nekovee and Inglesfield [39]. E #−0.5 eV below the vacuum level, whereas<br />

1<br />

A larger difference is observed with the value of theoretical calculati<strong>on</strong>s lead to energies lying in a<br />

E obtained by Eguiluz and coworkers [38,45]. In<br />

1<br />

wide interval from −0.40 eV to −1.0 eV (see


E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

341<br />

Table 6<br />

E #−0.9 eV has been obtained. Our self-c<strong>on</strong>sis-<br />

The Al(111) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to 1<br />

tent pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong> gives the surface<br />

those in Table 1)<br />

state energy at C9 in excellent agreement with both<br />

Characteristics Experiment Theory Model experimental values [118] and other calculati<strong>on</strong><br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> values [109,119,120], whereas the first image state<br />

energy E =−0.79 eV agrees <strong>on</strong>ly qualitatively<br />

Elower (L<br />

edge 2<br />

∞) – −4.71a; −4.62b; −4.65<br />

1<br />

with available experimental data. Good agreement<br />

−4.65c<br />

Eupper (L ) – −4.36a; −4.41b; −4.40 is observed with the calculati<strong>on</strong>s by Finocchi et al.<br />

edge 1<br />

−4.40c<br />

[41] and by F<strong>on</strong>dén et al. [28]. The discrepancy<br />

E −4.56d −4.53c; −4.69e; −4.54 0 with the evaluati<strong>on</strong> by Jurczyszyn and Stȩślicka<br />

−4.68f; −4.6g<br />

may be attributed partly to the small value of<br />

E1 −0.54h; −0.49i; −0.79c; −0.86k; −0.79<br />

1<br />

−0.46j −0.62l; −0.45m;<br />

z =2.2 a.u. used in Ref. [34]. This value of z im im<br />

−1.0n; −0.5o;<br />

coincides with the jellium edge positi<strong>on</strong> of Al(111).<br />

−0.4p<br />

Some part of the discrepancy with E =−0.4 eV,<br />

E1 −0.205q −0.24k; −0.16l,m −0.22 1<br />

2 found in Ref. [45], may also be attributed to the<br />

±0.01 smaller z =2.6 a.u. utilized by Heinrichsmeier<br />

E1 −0.092q −0.054l −0.100<br />

3 im<br />

±0.004 et al. [45]. As was menti<strong>on</strong>ed in Secti<strong>on</strong> 1, the<br />

E1 −0.052q – −0.055 large difference between the calculated values of<br />

4<br />

±0.004 E =−0.8 to −1.0 eV and that measured by<br />

w 4.24r; 4.26s 4.40c; 4.49e; 4.24 1<br />

Heskett et al. [48] of E =−0.54 eV may be<br />

4.28f; 4.19g;<br />

1<br />

explained by the relatively low resoluti<strong>on</strong> of the<br />

4.18k,t; 4.82p;<br />

4.05u; 4.25v<br />

IPE spectroscopy technique. The discrepancy with<br />

z – 3.24c; 3.74l; 3.49 other IPE experiments [49] may be attributed to<br />

im<br />

26p,ab; 33t;<br />

an interpretati<strong>on</strong> of the IPE data based <strong>on</strong> prelimi-<br />

3.78w,x; 3.03y; nary calculati<strong>on</strong> results by Papadia et al. [26].<br />

3.18z; 2.91aa;<br />

New calculati<strong>on</strong>s carried out by the same group<br />

3.14ac; 3.0ad<br />

gave E #−1 eV [28]. At the same time Bulovič<br />

1<br />

a Ref. [74].<br />

r Ref. [112].<br />

et al. [50] have obtained E #−0.45 eV based <strong>on</strong><br />

1<br />

b Ref. [110].<br />

s Ref. [113].<br />

an extremely weak feature of the 2PPE spectra.<br />

c Present calculati<strong>on</strong>. t Ref. [68].<br />

So, both experimental and theoretical investigad<br />

Ref. [118].<br />

u Ref. [78].<br />

ti<strong>on</strong>s of the image state <strong>on</strong> Al(111) show a very<br />

e Ref. [119].<br />

v Ref. [114].<br />

f Ref. [120].<br />

w Ref. [121].<br />

weak character of the res<strong>on</strong>ance image state <strong>on</strong><br />

g Ref. [109].<br />

x Ref. [65].<br />

this surface and illustrate problems arising from<br />

h Ref. [48].<br />

y Ref. [67].<br />

this character in the study of this state. The image<br />

i Ref. [49]. z Ref. [70].<br />

plane positi<strong>on</strong> we obtain is in reas<strong>on</strong>able<br />

j Ref. [50].<br />

aa Ref. [38].<br />

agreement with both the lattice and the jellium<br />

k Ref. [41].<br />

ab Ref. [69].<br />

l Ref. [37].<br />

ac Ref. [122].<br />

model evaluati<strong>on</strong> results. The maximum discrep-<br />

m Ref. [34].<br />

ad Ref. [66].<br />

ancy is observed with the electr<strong>on</strong>ic self-energy<br />

n Ref. [28].<br />

calculati<strong>on</strong> by White et al. [69] and Heinrichsmeier<br />

o Ref. [33].<br />

et al. [45], and with the jellium evaluati<strong>on</strong> by Lang<br />

p Ref. [45].<br />

and Kohn [65] of a resp<strong>on</strong>se of a <strong>metal</strong> surface to<br />

q This value is obtained from the c<strong>on</strong>venti<strong>on</strong>al Eq. (1), where<br />

a=0.85/E −1. E is the experimental or first-principles calcuti<strong>on</strong>s<br />

place z closer to the surface atomic layer<br />

im<br />

an external electric field. The self-energy calcula-<br />

1 1<br />

lati<strong>on</strong> energy value of the n=1 image state.<br />

by ~0.6 a.u. than our evaluati<strong>on</strong> does, whereas<br />

the linear resp<strong>on</strong>se calculati<strong>on</strong> shifts z outwards<br />

im<br />

Table 6). Simplified models [33,34] and the firstprinciples<br />

by ~0.6 a.u. [65].<br />

calculati<strong>on</strong> [45] give E #−0.5 eV, The model <str<strong>on</strong>g>potential</str<strong>on</strong>g> parameters A and A are<br />

1 1 10<br />

whereas in the calculati<strong>on</strong>s [28,41] a value of fitted to our calculated positi<strong>on</strong> of the lower and


342 E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

upper edges of the energy gap. A and b reproduce Table 7<br />

2<br />

our pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong> binding energies The Cu(100) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to<br />

those in Table 1)<br />

of both the surface state and the first image state.<br />

Some results obtained with this <str<strong>on</strong>g>potential</str<strong>on</strong>g> are listed Characteristics Experiment Theory Model<br />

in Table 6 and, as can be seen, our E value agrees<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

2<br />

well with that found by Finocchi et al. [41] but<br />

Elower (X<br />

edge 4<br />

∞) 1.8a 1.75b; 1.6c 1.6<br />

<strong>on</strong>ly semi-quantitatively with data from Refs.<br />

Eupper (X ) 7.9±0.2d 6.9b; 7.7c 7.7<br />

[34,37]. The image plane positi<strong>on</strong> found with the edge 1<br />

E1 1.4a; 0.8e; 1.0c; 0.5e; 1.0<br />

0<br />

model <str<strong>on</strong>g>potential</str<strong>on</strong>g> lies between the pseudo<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

1.15f; 1.1g 0.2h<br />

calculati<strong>on</strong> value and that obtained by Lang and E −0.5a; −0.57i; −0.62e,l; −0.52h −0.57<br />

1<br />

Kohn [65] and Schreier and Rebentrost [121] from<br />

−0.6j,k<br />

E −0.18i; −0.17m −0.19e; − 0.18l −0.18<br />

the jellium model. 2<br />

E −0.082m −0.09e −0.083<br />

3<br />

E −0.048m – −0.051<br />

4<br />

3.6. Cu(100) and Cu(111)<br />

p – 3.4n 5.17<br />

1<br />

p – – 0.92<br />

2<br />

Cu(100) is <strong>on</strong>e of the most studied of <strong>metal</strong> p – – 0.30<br />

3<br />

p – – 0.13<br />

<strong>surfaces</strong>. Numerous calculati<strong>on</strong>s and measure- 4<br />

w 4.62n 4.91o; 4.94p 4.62<br />

ments of the electr<strong>on</strong>ic structure have been z – 1.01h; 2.48l; 2.27<br />

im<br />

performed for this surface (e.g. see Refs.<br />

2.18q; 2.33q;<br />

[10,25,123–125]). High precisi<strong>on</strong> measurements of<br />

2.40r; 1.93s<br />

the binding energies of the n=1, 2 image <str<strong>on</strong>g>states</str<strong>on</strong>g><br />

a Ref. [10].<br />

n Ref. [14].<br />

have been d<strong>on</strong>e by 2PPE [14,126]. Cu(100) is the b Ref. [74].<br />

o Ref. [123].<br />

<strong>on</strong>ly surface for which very accurate values of the c Present LAPW calculati<strong>on</strong>. p Ref. [124].<br />

image <str<strong>on</strong>g>states</str<strong>on</strong>g> lifetime have been obtained experie<br />

d Ref. [127].<br />

q Ref. [131].<br />

mentally for n=1, 2, …, 6 [17]. Therefore, <strong>on</strong>e can<br />

Ref. [25].<br />

r Ref. [116 ].<br />

f Ref. [125].<br />

s Ref. [9].<br />

c<strong>on</strong>sider Cu(100) as <strong>on</strong>e of the best candidates to<br />

g Ref. [128].<br />

verify any model pretending to describe and predict h Ref. [31].<br />

characteristics of the image <str<strong>on</strong>g>potential</str<strong>on</strong>g> <str<strong>on</strong>g>states</str<strong>on</strong>g>. In i Ref. [126].<br />

Table 7 we show a list of experimentally and j Ref. [129].<br />

theoretically determined electr<strong>on</strong>ic properties of k Ref. [130].<br />

l Ref. [30].<br />

Cu(100). The fourth column of Table 7 shows<br />

m This value is obtained from the c<strong>on</strong>venti<strong>on</strong>al Eq. (1), where<br />

data E(X ), E(X ), E , E used to fit the model<br />

4∞ 1 0 1 a=0.85/E −1. E is the experimental or first-principles calcu<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

parameters and energies E , E , E 1 1<br />

2 3 4<br />

lati<strong>on</strong> energy value of the n=1 image state.<br />

obtained with this <str<strong>on</strong>g>potential</str<strong>on</strong>g>. Of the excited image<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong>ly E was measured by 2PPE [126]. Our<br />

2<br />

value E =−0.18 eV is in excellent agreement with that obtained from the present evaluati<strong>on</strong>.<br />

2<br />

this result. In Table 7 we compare the binding Excellent agreement between these functi<strong>on</strong>s<br />

energies for the n=2, 3, 4 <str<strong>on</strong>g>states</str<strong>on</strong>g> obtained by direct emphasizes, <strong>on</strong> the <strong>on</strong>e hand, the small role of the<br />

soluti<strong>on</strong> of the Schrödinger equati<strong>on</strong> using the surface corrugati<strong>on</strong> in the formati<strong>on</strong> of image<br />

model <str<strong>on</strong>g>potential</str<strong>on</strong>g> Eqs. (2)–(5) with those obtained <str<strong>on</strong>g>potential</str<strong>on</strong>g> <str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong> Cu(100). On the other hand,<br />

from Eq. (1). The difference between these values this agreement testifies to the very good quality of<br />

does not exceed 6%.<br />

the wave functi<strong>on</strong>s generated with the model<br />

Fig. 6 shows the probability amplitude of the <str<strong>on</strong>g>potential</str<strong>on</strong>g> Eqs. (2)–(5). The penetrati<strong>on</strong> p =5% 1<br />

n=1, 2, ,3, 4 image <str<strong>on</strong>g>states</str<strong>on</strong>g> obtained with the use of agrees well with the FLAPW and wave functi<strong>on</strong><br />

the model <str<strong>on</strong>g>potential</str<strong>on</strong>g> and compares the probability matching technique results [25].<br />

amplitude of the most sensitive to the surface In Table 7 we compare our image plane positi<strong>on</strong><br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> corrugati<strong>on</strong> first image state found in the value with those obtained with the use of different<br />

first-principles (FLAPW ) calculati<strong>on</strong> [25] with approaches [9,30,31,116,131]. Smith et al. [131]


E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

343<br />

(upper edge of the gap is 0.7 eV below E V<br />

) and<br />

the first image state is at the top of this gap —<br />

just below the upper edge of the gap. All other<br />

image <str<strong>on</strong>g>states</str<strong>on</strong>g> degenerate with the bulk <str<strong>on</strong>g>states</str<strong>on</strong>g>. Such<br />

a positi<strong>on</strong> of the first image state influences its<br />

properties. In particular, the penetrati<strong>on</strong> of the<br />

n=1 state <strong>on</strong> this surface is greater than that <strong>on</strong><br />

Cu(100) (see Tables 7 and 8). It leads to a shorter<br />

lifetime of the n=1 state <strong>on</strong> Cu(111) [16,17,23,57].<br />

At the same time, owing to a res<strong>on</strong>ance character<br />

of the sec<strong>on</strong>d image state its lifetime is shorter<br />

than that of the n=1 state lifetime [16]. In Table 8<br />

we present some experimental and theoretical data<br />

Table 8<br />

Fig. 6. The probability amplitude of the n=1, 2, 3, and 4 image The Cu(111) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> obtained from the model <str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong> are shown those in Table 1)<br />

for the Cu(100) surface. Vertical solid lines represent atomic<br />

layers positi<strong>on</strong>s. z=0 corresp<strong>on</strong>ds to the surface atomic layer Characteristics Experiment Theory Model<br />

positi<strong>on</strong>. Asterisks represent the probability amplitude of the<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

n=1 image state for Cu(100) obtained from FLAPW calculati<strong>on</strong><br />

[25].<br />

Elower (L<br />

edge 2 ∞) −0.90±0.2a −0.93b; −0.89c −0.89<br />

Eupper (L ) – 3.7b; 4.25c,d 4.25<br />

edge 1<br />

E −0.39e,f,g −0.5h; −0.59i; −0.39<br />

and Jennings et al. [116 ] used Eq. (5) to describe 0<br />

−0.46j<br />

the <str<strong>on</strong>g>potential</str<strong>on</strong>g> for z>z .Forz


344 E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

characterizing the electr<strong>on</strong>ic structure of Cu(111). Table 9<br />

Comparing the calculated binding energy of the The Ag(100) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to<br />

those in Table 1)<br />

n=2 state with available experimental [16,140]<br />

and theoretical [30,46] results <strong>on</strong>e can c<strong>on</strong>clude Characteristics Experiment Theory Model<br />

that good agreement is observed with these data.<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

The binding energies of higher image <str<strong>on</strong>g>states</str<strong>on</strong>g><br />

Elower (X<br />

edge 4<br />

∞) 1.6a 1.5b; 1.9c 1.6<br />

obtained by direct calculati<strong>on</strong> of the <strong>on</strong>e-dimen-<br />

Eupper (X ) – 6.64b; 6.6c 6.64<br />

si<strong>on</strong>al model <str<strong>on</strong>g>potential</str<strong>on</strong>g> Schrödinger equati<strong>on</strong> agree edge 1<br />

E1 1.3a 1.22d; 0.58e; 0.4f 1.3<br />

0<br />

well with those found from Eq. (1).<br />

E −0.53a,g; −0.5h −0.62d; −0.55e; −0.53<br />

1<br />

As in the case of Cu(100), our value of z for<br />

−0.53f<br />

im<br />

Cu(111) agrees very well with the results of other E −0.16g −0.19d; −0.17e −0.17<br />

2<br />

E −0.075i −0.080i −0.081<br />

calculati<strong>on</strong>s [30,116,131]. Comparis<strong>on</strong> of the cal- 3<br />

E −0.047j – −0.048<br />

culated image plane positi<strong>on</strong>s for Cu(100) and 4<br />

p –


E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

345<br />

Table 10 with the results obtained by Smith et al. [131],<br />

The Ag(111) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to Ortuño and Echenique [31], and Weinert et al.<br />

those in Table 1)<br />

[30].<br />

Characteristics Experiment Theory Model<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

3.8. Au(100) and Au(111)<br />

Elower (L<br />

edge 2 ∞ ) – −0.4a,b; −0.4 It is well known that the stable crystal structure<br />

−0.5c<br />

Eupper (L ) – 3.6a; 3.9b 3.9<br />

of Au(100) exhibits a (5×20) rec<strong>on</strong>structi<strong>on</strong><br />

edge 1<br />

E −0.065d +0.04e; −0.065 0<br />

[146 ]. The crystal structure (1×1) typical for the<br />

−0.16f<br />

FCC(100) <strong>surfaces</strong> can be stabilized by impurities<br />

E −0.7g; −0.6h; −0.77e; −0.77 1 or defects [147,148]. The unoccupied surface<br />

−0.77i,j −0.78f<br />

electr<strong>on</strong>ic structure of Au(100) was studied with<br />

E1 −0.23±0.03j −0.22e −0.22±0.01<br />

2<br />

E1 −0.10±0.03j – −0.095±0.003 the use of IPE spectroscopy [10,42,44,129] for<br />

3<br />

E1 −0.052k – −0.053±0.003 4<br />

both these crystal structures. On both of these<br />

p – 25.0l 23.4 1 <strong>surfaces</strong> the first image state has been found,<br />

w 4.56l; 4.74m 4.67n 4.56<br />

whereas the res<strong>on</strong>ance surface state has been<br />

z – 2.43e; 2.12f; 2.22<br />

im observed <strong>on</strong>ly <strong>on</strong> the metastable (1×1) surface.<br />

2.07o<br />

The difference between E values measured <strong>on</strong> the<br />

1<br />

a Ref. [74].<br />

l Ref. [14].<br />

(5×20) and (1×1) <strong>surfaces</strong> does not exceed<br />

b Present LAPW calculati<strong>on</strong>. m Ref. [145].<br />

0.1 eV. We have used the experimental values<br />

c Ref. [80].<br />

n Ref. [143].<br />

E =1.5 eV and E =−0.63 eV to determine the<br />

d Ref. [135]<br />

o Ref. [131].<br />

0 1<br />

e Ref [30].<br />

parameters A and b. To fit the parameters A 2 1<br />

f Ref. [31].<br />

and A the IPE-measured positi<strong>on</strong> of the lower<br />

10<br />

g Ref. [144].<br />

edge of the energy gap [10] and the calculated<br />

h Ref. [8].<br />

value [149] of the upper edge were utilized. The<br />

i Ref. [81].<br />

calculated binding energies of the n=2, 3, 4 image<br />

j Ref. [126 ].<br />

k This value is obtained from the c<strong>on</strong>venti<strong>on</strong>al Eq. (1), where <str<strong>on</strong>g>states</str<strong>on</strong>g>, together with other results, are presented in<br />

a=0.85/E −1. E is the experimental or first-principles calculati<strong>on</strong><br />

energy value of the n=1 image state.<br />

ti<strong>on</strong> values of p with those of Cu(100) and<br />

n<br />

Table 11. A comparis<strong>on</strong> of the evaluated penetra-<br />

1 1<br />

Ag(100) shows that a larger fracti<strong>on</strong> of the image<br />

electr<strong>on</strong>ic structures of these <strong>surfaces</strong> for E>E . <str<strong>on</strong>g>states</str<strong>on</strong>g> wave functi<strong>on</strong>s penetrates into the bulk in<br />

F<br />

The value z #2.25 a.u. is in good agreement with the case of Au(100) than in the case of Cu(100)<br />

im<br />

ours despite the very different behaviour of the and Ag(100). Therefore, according to the penetra-<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> [30] in the <strong>metal</strong>–vacuum interface. ti<strong>on</strong> argument [52–54] <strong>on</strong>e can expect a shorter<br />

Qualitatively, the electr<strong>on</strong>ic structure of lifetime of the image <str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong> Au(100) than <strong>on</strong><br />

Ag(111) is similar to that of Cu(111), but, in the (100) <strong>surfaces</strong> of Cu and Ag. As for the image<br />

c<strong>on</strong>trast to Cu(111), no experimental informati<strong>on</strong> plane positi<strong>on</strong>, our z =1.62 a.u. value is in excel-<br />

im<br />

<strong>on</strong> the positi<strong>on</strong> of the energy gap edges is available. lent agreement with z =1.68 a.u. evaluated by<br />

im<br />

So, to fit the parameters A and A our LAPW Smith et al. [131] by fitting the JJJ model <str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

1 10<br />

bulk calculati<strong>on</strong> results are used (see Table 10). To to the first and sec<strong>on</strong>d image state energies within<br />

determine the parameters A and b we utilize the the two-band gap model [29]. Both of these posi-<br />

2<br />

surface state energy E =−0.065 eV [135] and ti<strong>on</strong>s are inside the crystal, in c<strong>on</strong>trast to<br />

0<br />

2PPE value E =−0.77 eV [126] found experimentally<br />

at low temperature. The model <str<strong>on</strong>g>potential</str<strong>on</strong>g> JJJ model <str<strong>on</strong>g>potential</str<strong>on</strong>g> that was fitted to the FLAPW<br />

z =2.41 a.u. obtained with the use of the<br />

1 im<br />

calculati<strong>on</strong> results are shown in Table 10 and it <str<strong>on</strong>g>potential</str<strong>on</strong>g> averaged in the x, y plane in the surface<br />

that excellent agreement is observed between the regi<strong>on</strong> [116,131].<br />

calculated and 2PPE measured binding energies The main difference between the Au(111) and<br />

for the n=2, 3 <str<strong>on</strong>g>states</str<strong>on</strong>g>. The value of z agrees well<br />

im<br />

Cu(111) [or Ag(111)] <strong>surfaces</strong> is that <strong>on</strong> Cu(111)


346 E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

Table 11 Table 12<br />

The Au(100) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to The Au(111) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to<br />

those in Table 1) those in Table 1)<br />

Characteristics Experiment Theory Model Characteristics Experiment Theory Model<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

Elower (X<br />

edge 4 ∞ ) 1.6a 1.4b; 1.5c 1.6 Eupper (L<br />

edge 2 ∞ ) −1.0a −1.0b −1.0<br />

Eupper (X ) – 5.8c 5.8<br />

Elower (L ) 3.6a 3.6b 3.6<br />

edge 1 edge 1<br />

E1 1.5a 1.45b 1.51±0.01 E −0.50a; −0.35c; −0.38a −0.47<br />

0 0<br />

E −0.62a; −0.63b,d −0.69b −0.64<br />

−0.47d; −0.41e<br />

1<br />

E −0.183e – −0.188 E1 −0.6a; −0.42f; −0.85a; −0.87h; −0.80<br />

2 1<br />

E −0.085e – −0.088<br />

−0.8g −0.68i ±0.01<br />

3<br />

E −0.049e – −0.051 E1 −0.206j −0.21h; −0.19i −0.21<br />

4 2<br />

p – – 7.00<br />

±0.01<br />

1<br />

p – – 1.48 E1 −0.093j −0.09h −0.095<br />

2 3<br />

p – – 0.52<br />

±0.002<br />

3<br />

p – – 0.24 E1 −0.052j – −0.054<br />

4 4<br />

w 5.47f 4.53b; 6.16g 5.47<br />

±0.002<br />

z – 1.68h; 2.41h 1.62 w 5.55g,h; 5.31k 6.01l 5.55<br />

im<br />

z – 2.18m 2.14<br />

im<br />

a Ref. [10].<br />

f Ref. [145].<br />

b Ref. [42]. g Ref. [79].<br />

a Ref. [150].<br />

k Ref. [145].<br />

c Ref. [149].<br />

h Ref. [131].<br />

b Ref. [153].<br />

l Ref. [79].<br />

d Ref. [129]. c Ref. [154].<br />

m Ref. [131].<br />

e This value is obtained from the c<strong>on</strong>venti<strong>on</strong>al Eq. (1), where d Ref. [135].<br />

a=0.85/E −1. E is the experimental or first-principles calcu- e Ref [152].<br />

1 1<br />

lati<strong>on</strong> energy value of the n=1 image state.<br />

f Ref. [81].<br />

g Ref. [151].<br />

h Ref. [14].<br />

i Ref. [46].<br />

the first image state is located at the top of the<br />

j This value is obtained from the c<strong>on</strong>venti<strong>on</strong>al Eq. (1), where<br />

energy gap, whereas <strong>on</strong> Au(111) this state degener- a=0.85/E −1. E is the experimental or first-principles calcuates<br />

with bulk <str<strong>on</strong>g>states</str<strong>on</strong>g> [14,81,150,151]. The upper<br />

1 1<br />

lati<strong>on</strong> energy value of the n=1 image state.<br />

edge of the energy gap <strong>on</strong> Au(111) is ~2 eV<br />

below E and 2PPE experiment gives E = Again, as occurs for the Au(100) surface, our<br />

V 1<br />

−0.80 eV [14,151]. In c<strong>on</strong>trast to the simple <strong>metal</strong> value of z =2.14 a.u. for Au(111) is very close<br />

im<br />

<strong>surfaces</strong> <strong>on</strong> Au(111), both IPE [81,150] and 2PPE to z =2.18 a.u. obtained by Smith et al. [131]. It<br />

im<br />

[151] experiments show a clear feature in the seems surprising, at first sight, because these<br />

spectra corresp<strong>on</strong>ding to the n=1 image state. A authors used in their calculati<strong>on</strong> a value of<br />

clear peak generated by the first image state is also E =−0.6 eV. In fact, they determined z by using<br />

1 im<br />

obtained in the model <str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong>. The the surface state energy E =−0.41 eV <strong>on</strong>ly, and<br />

0<br />

parameters A and A of the model <str<strong>on</strong>g>potential</str<strong>on</strong>g> have this is the reas<strong>on</strong> for the good agreement with our<br />

1 10<br />

been adjusted to reproduce experimentally found z . The use of E =−0.6 eV <strong>on</strong>ly gives an anomalously<br />

small value of z #1.1 a.u. im<br />

im 1<br />

positi<strong>on</strong>s of the energy gap edges [150]. The<br />

parameters A and b describe the occupied surface A graphical soluti<strong>on</strong> of the problem for<br />

2<br />

state energy [152] and E =−0.80 eV [14,151] at E =−0.8 eV (see fig. 2 of Ref. [131]) gives<br />

1 1<br />

C9 . The model <str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong> results for z #1.9 a.u., which is in much better agreement<br />

im<br />

Au(111) are listed in Table 12. It follows from with our z value. im<br />

Table 12 that our E value agrees well with other<br />

2<br />

model calculati<strong>on</strong>s [14,46 ]. Close agreement is 3.9. Pd(111) and Pd(100)<br />

observed between the <strong>on</strong>e-dimensi<strong>on</strong>al model<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> Schrödinger equati<strong>on</strong> eigenvalues and<br />

soluti<strong>on</strong>s of Eq. (1) for n=2, 3, 4.<br />

The surface electr<strong>on</strong>ic structure of Pd(111) is<br />

quite different from that of Cu(111), Ag(111),


E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

347<br />

inside the energy gap. This result may be influenced<br />

significantly by the low resoluti<strong>on</strong> of the HREELS<br />

technique [161]. In order to determine the parame-<br />

and Au(111). In particular, <strong>on</strong> Pd(111) the lower Table 13<br />

edge of the energy gap is above the Fermi level, The Pd(111) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to<br />

those in Table 1)<br />

and all image <str<strong>on</strong>g>states</str<strong>on</strong>g> are located just above the<br />

middle of the gap. From this point of view the Characteristics Experiment Theory Model<br />

Pd(111) surface is more similar to the (100) surface<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

than to that of the (111) of Cu, Ag, and Au. In<br />

Elower (L<br />

edge 2 ∞ ) – 0.95a; 1.0b; 1.0<br />

c<strong>on</strong>trast to Cu(111), the surface state <strong>on</strong> Pd(111)<br />

0.7c; 1.3d<br />

is unoccupied at the C9 point. The energies E and 0 Eupper (L ) 7.7±0.3e 7.3a; 7.6b; 7.2c 7.6<br />

edge 1<br />

E have been measured with the use of both IPE E 1.3f; 1.26g 1.28f; 1.17g; 1.3<br />

1 0<br />

and 2PPE spectroscopies [82,155,156]. For the<br />

2h; 0.54i;<br />

surface state these measurements gave a practically<br />

1.74i; 1.1j; 0.9k<br />

E −0.50f; −0.55g; −0.52f; −0.58g; −0.55<br />

identical result of E #1.3 eV. As for the first 1 0 −0.65l; −0.75m −0.72i; −0.69k<br />

image state they gave quite different values of E . 1 E −0.15g; −0.25m −0.17f; −0.18g; −0.17<br />

2<br />

To fit the parameters A and b we have used the<br />

−0.22i<br />

2<br />

2PPE-measured value of E =0.55 eV [155]. To E −0.081n −0.08g; −0.096i −0.082<br />

1 3<br />

determine A and A we utilized the positi<strong>on</strong>s of E −0.047n – −0.048<br />

4 1 10 p – 4.5o 4.60<br />

the lower and upper edges of the energy gap 1<br />

p – – 0.86<br />

obtained from our LAPW bulk calculati<strong>on</strong>. 2<br />

p – – 0.29<br />

3<br />

Table 13 lists some model <str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong> p – – 0.13<br />

4<br />

results and other theoretical and experimental data w 5.44g; 5.55l 5.46g; 6.18k; 5.44<br />

5.53p<br />

and, as can be seen, our E value agrees well with<br />

2 z – 2.25f; 3.97i; 2.29<br />

experimental [155] and calculati<strong>on</strong> [82,155] results. im<br />

2.48k; 1.99q<br />

For higher image <str<strong>on</strong>g>states</str<strong>on</strong>g> an excellent agreement is<br />

obtained between the <strong>on</strong>e-dimensi<strong>on</strong>al model a Ref. [157].<br />

o Ref. [14].<br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> Schrödinger equati<strong>on</strong> eigenvalues and b Present LAPW calculati<strong>on</strong>. p Ref. [143].<br />

c Ref. [74].<br />

q Ref. [131].<br />

energies of Eq. (1). On the other hand, the image<br />

d Ref. [80].<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> energies evaluated by Lenac et al. [32] seem e Ref. [158].<br />

to be too large. f Ref. [82].<br />

A comparis<strong>on</strong> of our z value with those g Ref. [155].<br />

im<br />

obtained from other calculati<strong>on</strong>s shows extremely h Ref. [159].<br />

i Ref. [32].<br />

good agreement with the z value obtained by<br />

im j Ref. [160].<br />

Hulbert et al. [82] and with z found in the self- im k Ref. [45].<br />

energy calculati<strong>on</strong> of the seven- to nine-layer films l Ref. [156].<br />

of Pd(111) [45], and large disagreement with the m Ref. [161].<br />

<strong>on</strong>e found by Lenac et al. [32]. The slight discrepa=0.85/E<br />

−1. E is the experimental or first-principles calcu-<br />

n This value is obtained from the c<strong>on</strong>venti<strong>on</strong>al Eq. (1), where<br />

ancy with the calculati<strong>on</strong> [131] may be due to the<br />

1 1<br />

lati<strong>on</strong> energy value of the n=1 image state.<br />

value E =−0.65 eV used in Ref. [131]. The use<br />

1<br />

of a value of E =−0.55 eV should increase z ,<br />

1 im<br />

thus leading to a better agreement with our result. ters A and A , in describing the energy gap we<br />

1 10<br />

In c<strong>on</strong>trast to the Pd(111) surface, for Pd(100) have utilized our LAPW bulk calculati<strong>on</strong> data (see<br />

there are no available experimental data <strong>on</strong> unoc- Table 14). The evaluated positi<strong>on</strong>s E =3.5 eV X∞4<br />

cupied electr<strong>on</strong> <str<strong>on</strong>g>states</str<strong>on</strong>g>. The <strong>on</strong>ly HREELS measurement<br />

gave for two image <str<strong>on</strong>g>states</str<strong>on</strong>g> E =−0.95 eV respectively, of the energy gap are in good<br />

1<br />

and E =10.6 eV, of the lower and upper edges<br />

X1<br />

and E =−0.19 eV [161]. It seems that the first agreement with other calculati<strong>on</strong>s [74,157]. To<br />

2<br />

image state energy is too large for a state located obtain the parameters A and b we use the reso-<br />

2<br />

nance surface state energy E =1.9 eV found in<br />

0<br />

our LAPW film calculati<strong>on</strong>. Because of the absence<br />

of any IP or 2PPE measurement of the binding


348 E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

Table 14<br />

their model and with E =−0.60 eV found in the<br />

The Pd(100) surface (designati<strong>on</strong>s and units corresp<strong>on</strong>d to<br />

1<br />

self-c<strong>on</strong>sistent calculati<strong>on</strong> by Heinrichsmeier et al.<br />

those in Table 1)<br />

[45]. The calculated penetrati<strong>on</strong> values of image<br />

Characteristics Experiment Theory Model <str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong> Pd(100) are smaller than those <strong>on</strong><br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> Pd(111); therefore, <strong>on</strong>e can expect a l<strong>on</strong>ger lifetime<br />

for image <str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong> Pd(100). On the other hand,<br />

Elower (X<br />

edge 4 ∞ ) – 3.3a; 3.5b; 3.5 the phase space available for decay of an electr<strong>on</strong><br />

3.6c<br />

Eupper (X ) – 10.5a; 10.6b; 10.6 from image state to final (unoccupied) <str<strong>on</strong>g>states</str<strong>on</strong>g> is<br />

edge 1<br />

10.54c significantly larger for Pd(100) than for Pd(111).<br />

E1 1.0±0.2d 1.9b 1.9 0 Therefore, the role of final <str<strong>on</strong>g>states</str<strong>on</strong>g> may be dominant<br />

E −0.9±0.2d; −0.95e −0.53f; −0.60g −0.5 1 <strong>on</strong> the Pd(100) surface, leading to a shorter life-<br />

E −0.19e; −0.160h – −0.163<br />

2<br />

E −0.078h – −0.079 time value of image <str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong> this surface.<br />

3<br />

E −0.046h – −0.047<br />

4<br />

p – – 3.54<br />

1<br />

p – – 0.66 2 4. General discussi<strong>on</strong> and c<strong>on</strong>clusi<strong>on</strong><br />

p – – 0.22<br />

3<br />

p – – 0.10<br />

4<br />

w 5.3i; 5.8j; 5.6b; 6.11g; 5.6 The present calculati<strong>on</strong>s dem<strong>on</strong>strate in accor-<br />

5.22k; 5.55k 5.0i; 5.25l;<br />

dance with other evaluati<strong>on</strong>s [28,36,39,41] that the<br />

5.3m; 5.8n;<br />

binding energy of the first image state <strong>on</strong> simple<br />

z im<br />

–<br />

5.96o <strong>metal</strong> <strong>surfaces</strong> lies in an energy interval from<br />

2.39f; 2.31g 2.29<br />

~−1.0 eV to ~−0.7 eV. Other calculati<strong>on</strong>s<br />

a Ref. [74].<br />

i Ref. [163].<br />

[33,34,37,38] performed for the aluminium sur-<br />

b Present LAPW calculati<strong>on</strong>. j Ref. [164].<br />

faces (111) and (100) give E ≈−0.5 eV in<br />

1<br />

c Ref. [157]. k Ref. [165].<br />

agreement with available experimental data [48–<br />

d Ref. [162].<br />

l Ref. [166].<br />

50] for Al(111). Because of very weak character<br />

e Ref. [161].<br />

m Ref. [143].<br />

of the feature in the spectra, corresp<strong>on</strong>ding to the<br />

f Ref. [131].<br />

n Ref. [167].<br />

g Ref. [45].<br />

o Ref. [79].<br />

first image state <strong>on</strong> Al(111), and the low resoluti<strong>on</strong><br />

h This value is obtained from the c<strong>on</strong>venti<strong>on</strong>al Eq. (1), where of the IPE spectroscopy technique, it is very diffi-<br />

a=0.85/E −1. E is the experimental or first-principles calcu-<br />

1 1 cult to expect that these experiments can provide<br />

lati<strong>on</strong> energy value of the n=1 image state.<br />

compelling evidence that the binding energy of the<br />

n=1 state is about of −0.5 eV. The Be(0001)<br />

energy of the first image state the image plane surface could be a very good object to observe a<br />

positi<strong>on</strong> of Pd(111) z =2.29 a.u. is taken as a res<strong>on</strong>ance image state. In c<strong>on</strong>trast to the case of<br />

im<br />

sec<strong>on</strong>d value to fit A and b. This choice of z Al(111), the calculated density of <str<strong>on</strong>g>states</str<strong>on</strong>g> for<br />

2 im<br />

for Pd(100) seems to be reas<strong>on</strong>able. In particular, Be(0001) has a clear peak corresp<strong>on</strong>ding to the<br />

Smith et al. [131] evaluated z for Pd(100) and first image state. The measurement of the n=1<br />

im<br />

Pd(110) using the FLAPW planar average poten- state <strong>on</strong> Be(0001) could give additi<strong>on</strong>al informati<strong>on</strong><br />

tial. They found a very slight dependence<br />

about the binding energy value of this state<br />

(0.06 a.u.) of z <strong>on</strong> the surface. This means <strong>on</strong>e <strong>on</strong> Al(111), since it is difficult to expect a qualitatively<br />

different behaviour of image <str<strong>on</strong>g>states</str<strong>on</strong>g> <strong>on</strong> these<br />

im<br />

im<br />

can expect a change in z between the closedpacked<br />

(100) and (111) <strong>surfaces</strong> of the same order close-packed <strong>surfaces</strong>. The main distincti<strong>on</strong><br />

as the change between the closed-packed (100) between these two <strong>surfaces</strong> with respect to image<br />

face and relatively open (110) face. One can note <str<strong>on</strong>g>states</str<strong>on</strong>g> is the different electr<strong>on</strong> reflectivity, produced<br />

that in the recent self-energy calculati<strong>on</strong> [45] by the bulk band structure. The Au(111) surface<br />

z =2.31 a.u. has been obtained for Pd(100). The can provide another indirect argument in favour<br />

im<br />

present evaluati<strong>on</strong> gives E =−0.5 eV, which of the binding energy to be about −0.8 eV. On<br />

1<br />

agrees well with the corresp<strong>on</strong>ding value of Au(111) the first image state is the typical res<strong>on</strong>ance<br />

−0.53 eV predicted by Smith et al. [131] within<br />

<strong>on</strong>e, which is easily seen from the calculated


E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

349<br />

density of <str<strong>on</strong>g>states</str<strong>on</strong>g> and from 2PPE measurement <strong>metal</strong> <strong>surfaces</strong>. At the same time the GW selfenergy<br />

calculati<strong>on</strong>s place z closer to the surface<br />

im<br />

[151].<br />

Our model <str<strong>on</strong>g>potential</str<strong>on</strong>g> describes <strong>on</strong>e of the key atomic layer than our calculati<strong>on</strong>s do. In the case<br />

quantities used in the calculati<strong>on</strong>s of the image of noble <strong>metal</strong>s our z values agree well with<br />

im<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g> lifetime, namely, wave functi<strong>on</strong>s of image those obtained by Smith et al. [131] within a<br />

<str<strong>on</strong>g>states</str<strong>on</strong>g>, in excellent agreement with those obtained phase-shift model combined with the two-band<br />

from the first principles calculati<strong>on</strong>s. The evalua- approximati<strong>on</strong> and with those found by Jennings<br />

ti<strong>on</strong> of the lifetime of image <str<strong>on</strong>g>states</str<strong>on</strong>g> for the Cu(100) et al. [116] from the surface charge density profile.<br />

and Cu(111) <strong>surfaces</strong> [57] shows good agreement Excellent agreement is observed with z obtained im<br />

with recent TR2PPE measurements [16,17,23] and from the electr<strong>on</strong>ic self-energy calculati<strong>on</strong>s for<br />

emphasizes the crucial need of a precise descripti<strong>on</strong> Pd(111) and Pd(100) [45].<br />

of the image state wave functi<strong>on</strong>. Moreover, this<br />

model <str<strong>on</strong>g>potential</str<strong>on</strong>g> describes accurately the wave functi<strong>on</strong><br />

of the n=0 s–p surface state at the C9 point. Acknowledgements<br />

z<br />

The self-energy calculati<strong>on</strong> [168] of the linewidth<br />

of this occupied state at C9 leads to excellent The authors are grateful to U. Höfer, Th.<br />

agreement with recent very high-resoluti<strong>on</strong> angleresolved<br />

Fauster, W. Plummer, E. Zaremba, Yu.M.<br />

photoemissi<strong>on</strong> measurements for Cu(111) Koroteev, A. Rivacoba, and A.G. Lipnitskii for<br />

[169,170] and with scanning tunneling spectroscopy<br />

useful discussi<strong>on</strong>s. This project has been supported<br />

(STS) experiments for Ag(111) [171]. The by the Ministerio de Educación y Cultura, Spain,<br />

calculated inelastic linewidth for Cu(111) has been the Departamento de Educación del Gobierno<br />

found to be of 25 meV, whereas the measurements Vasco, and Iberdrola S.A.<br />

give 21±5 meV [170] and 30 meV [169]. For the<br />

surface state linewidth <strong>on</strong> Ag(111) the calculati<strong>on</strong><br />

gives 3.2 meV, and the STS-measured value is Appendix A<br />

4.8±1.2 meV [171].<br />

Our model <str<strong>on</strong>g>potential</str<strong>on</strong>g> calculati<strong>on</strong>s give the new Table 15 gives the model <str<strong>on</strong>g>potential</str<strong>on</strong>g> parameters<br />

set of image plane positi<strong>on</strong> values for simple and A , A , A , b and interlayer spacing value a .All<br />

10 1 2 s<br />

noble <strong>metal</strong> <strong>surfaces</strong>. In general, these values are other model <str<strong>on</strong>g>potential</str<strong>on</strong>g> parameters are obtained from<br />

smaller than those obtained from evaluati<strong>on</strong>s of these using the requirement of c<strong>on</strong>tinuity of the<br />

the linear resp<strong>on</strong>se to a test charge for simple <str<strong>on</strong>g>potential</str<strong>on</strong>g> and its first derivative everywhere in space.<br />

Table 15<br />

Surface a s<br />

(a.u.) A 10<br />

(eV) A 1<br />

(eV ) A 2<br />

(eV ) b<br />

Li(110) 4.667 −7.768 2.99 2.2425 2.0760<br />

Na(110) 5.733 −6.100 0.67 0.8710 2.8934<br />

Be(0001) 3.387 −18.750 6.20 4.1354 4.2630<br />

Mg(0001) 4.923 −10.550 0.70 1.2600 4.7223<br />

Al(100) 3.80 −15.690 1.68 2.0160 5.1258<br />

Al(111) 4.388 −15.700 0.30 1.9500 5.7276<br />

Cu(100) 3.415 −11.480 6.10 3.7820 2.5390<br />

Cu(111) 3.94 −11.895 5.14 4.3279 2.9416<br />

Ag(100) 3.86 −9.300 5.04 3.8808 2.4222<br />

Ag(111) 4.43 −9.640 4.30 3.8442 2.5649<br />

Au(100) 3.853 −10.810 4.20 6.0690 3.3626<br />

Au(111) 4.45 −11.030 4.60 4.8576 2.8239<br />

Pd(111) 4.25 −8.570 6.60 4.6728 1.9071<br />

Pd(100) 3.68 −8.480 7.10 5.0481 1.8460


350 E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

References<br />

[33] S.Å. Lindgren, L. Walldén, Phys. Rev. B 40 (1989) 11 546.<br />

[34] L. Jurczyszyn, M. Stȩślicka, Surf. Sci. 266 (1992) 141.<br />

[35] Th. Fauster, Appl. Phys. A 59 (1994) 639.<br />

[1] I.E. Tamm, Z. Phys. 76 (1932) 849.<br />

[36] L. Jurczyszyn, M. Stȩślicka, Surf. Sci. 376 (1997) L424.<br />

[2] W. Shockley, Phys. Rev. 56 (1939) 317.<br />

[37] M. Radny, Surf. Sci. 231 (1990) 43.<br />

[3] P.M. Echenique, J.B. Pendry, J. Phys. C 11 (1978) 2065.<br />

[38] A.G. Eguiluz, M. Heinrichsmeier, A. Fleszar, W. Hanke,<br />

[4] P.M. Echenique, J.B. Pendry, Prog. Surf. Sci. 32 (1990)<br />

Phys. Rev. Lett. 68 (1992) 1359.<br />

111.<br />

[39] M. Nekovee, J.E. Inglesfield, Europhys. Lett. 19 (1992)<br />

[5] F.J. Himpsel, Comments C<strong>on</strong>dens. Matter Phys. 12<br />

535.<br />

(1986) 199.<br />

[40] V.M. Silkin, E.V. Chulkov, Phys. Solid State 36 (1994)<br />

[6] N.V. Smith, Rep. Prog. Phys. 51 (1988) 1227.<br />

404, Rus. Fiz. Tverd. Tela 36 (1994) 736.<br />

[7] R.M. Osgood Jr., X. Wang, Solid State Phys. 51 (1997) 1.<br />

[41] F. Finocchi, C.M. Bert<strong>on</strong>i, S. Ossicini, Vacuum 41<br />

[8] A. Goldmann, V. Dose, G. Borstel, Phys. Rev. B 32<br />

(1990) 535.<br />

(1985) 1971.<br />

[42] F. Ciccacci, S. De Rossi, A. Taglia, S. Crampin, J. Phys.<br />

[9] G. Borstel, G. Thörner, Surf. Sci. Rep. 8 (1988) 1.<br />

C<strong>on</strong>dens. Matter 6 (1994) 7227.<br />

[10] F.J. Himpsel, J.E. Ortega, Phys. Rev. B 46 (1992) 9719.<br />

[43] Z. Li, S. Gao, Phys. Rev. B 50 (1994) 15349.<br />

[11] M. D<strong>on</strong>ath, Surf. Sci. Rep. 20 (1994) 251.<br />

[44] S. De Rossi, F. Ciccacci, S. Crampin, Phys. Rev. Lett. 77<br />

[12] K. Giesen, F. Hage, F.J. Himpsel, H.J. Riess, W.<br />

(1996) 908.<br />

Steinmann, Phys. Rev. Lett. 55 (1985) 300.<br />

[45] M. Heinrichsmeier, A. Fleszar, W. Hanke, A. Eguiluz,<br />

[13] W. Merry, R.E. Jordan, D.E. Padowitz, C.B. Harris, Surf.<br />

Phys. Rev. B 57 (1998) 14 974.<br />

Sci. 295 (1993) 393.<br />

[46] L. Jurczyszyn, Surf. Sci. 259 (1991) 65.<br />

[14] Th. Fauster, W. Steinmann, in: P. Halevi (Ed.), Electromagnetic<br />

Waves: Recent Development in Research vol. 2,<br />

[47] M. Nekovee, J. Inglesfield, Prog. Surf. Sci. 50 (1995) 149.<br />

Elsevier, Amsterdam, 1995, p. 350.<br />

[48] D. Heskett, K.-H. Frank, E.E. Koch, H.-J. Freund, Phys.<br />

[15] R.W. Schoenlein, J.G. Fujimoto, G.L. Eesley, T.W.<br />

Rev. B 36 (1987) 1276.<br />

Capehart, Phys. Rev. Lett. 61 (1988) 2596.<br />

[49] S. Yang, R.A. Bartynski, G.P. Kochanski, S. Papadia, T.<br />

[16] M. Wolf, E. Knoesel, T. Hertel, Phys. Rev. B 54 (1996)<br />

F<strong>on</strong>dén, M. Perss<strong>on</strong>, Phys. Rev. Lett. 70 (1993) 849.<br />

R5295.<br />

[50] V. Bulovič, B. Quiniou, R.M. Osgood Jr., J. Vac. Sci.<br />

[17] U. Höfer, I.L. Shumay, Ch. Reuß, U. Thomann, W.<br />

Technol. A: 12 (1994) 2201.<br />

Wallauer, Th. Fauster, Science 277 (1997) 1480.<br />

[51] E.V. Chulkov, V.M. Silkin, P.M. Echenique, Surf. Sci.<br />

[18] R.L. Lingle Jr., N.H. Ge, R.E. Jordan, J.D. McNeil, C.B.<br />

391 (1997) L1217.<br />

Harris, J. Chem. Phys. 205 (1996) 191.<br />

[52] P.M. Echenique, F. Flores, F. Sols, Phys. Rev. Lett. 55<br />

[19] F.J. Himpsel, Phys. Rev. B 43 (1991) 13 394.<br />

(1985) 2348.<br />

[20] S. Bode, K. Starke, P. Rech, G. Kaindl, Phys. Rev. Lett. [53] P. de Andres, P.M. Echenique, F. Flores, Phys. Rev. B<br />

72 (1994) 1072.<br />

35 (1987) 4529.<br />

[21] E. Passek, M. D<strong>on</strong>ath, K. Ertl, V. Dose, Phys. Rev. Lett. [54] P. de Andres, P.M. Echenique, F. Flores, Phys. Rev. B<br />

75 (1995) 2746.<br />

39 (1989) 10 356.<br />

[22] R.W. Schoenlein, J.G. Fujimoto, G.L. Eesley, T.W. [55] J. Deisz, A. Fleszar, M. Heinrichsmeier, A. Eguiluz,<br />

Capehart, Phys. Rev. B 43 (1991) 4688.<br />

unpublished results.<br />

[23] I.L. Shumay, U. Höfer, Ch. Reuß, U. Thomann, W. [56] S. Gao, B.I. Lundqvist, Prog. Theor. Phys. 106 (suppl.<br />

Wallauer, Th. Fauster, Phys. Rev. B 58 (1998) 13 974.<br />

N) (1991) 405.<br />

[24] J.D. McNeil, R.L. Lingle Jr,, N.H. Ge, C.M. W<strong>on</strong>g, R.E. [57] E.V. Chulkov, I. Sarría, V.M. Silkin, J.M. Pitarke, P.M.<br />

Jordan, C.B. Harris, Phys. Rev. Lett. 79 (1997) 4645.<br />

Echenique, Phys. Rev. Lett. 80 (1998) 4947.<br />

[25] S.L. Hulbert, P.D. Johns<strong>on</strong>, M. Weinert, R.F. Garrett, [58] J. Osma, I. Sarría, E.V. Chulkov, J.M. Pitarke, P.M.<br />

Phys. Rev. B 33 (1986) 760.<br />

Echenique, Phys. Rev. B 59 (1999) 10 591.<br />

[26] S. Papadia, M. Perss<strong>on</strong>, L.-A. Salmi, Phys. Rev. B 41 [59] E.V. Chulkov, J. Osma, I. Sarría, V.M. Silkin, J.M.<br />

(1990) 10 237.<br />

Pitarke, Surf. Sci. (1999) in press.<br />

[27] M. Nekovee, S. Crampin, J.E. Inglesfield, Phys. Rev. Lett. [60] G.B. Bachelet, D.R. Hamann, M. Schlüter, Phys. Rev. B<br />

70 (1993) 3099.<br />

26 (1982) 4199.<br />

[28] T. F<strong>on</strong>dén, S. Papadia, M. Perss<strong>on</strong>, J. Phys. C<strong>on</strong>dens. [61] V.M. Silkin, E.V. Chulkov, I.Yu. Sklyadneva, V.E. Panin,<br />

Matter 7 (1995) 2697.<br />

Izv. Vuzov. Fiz. 9 (1984) 56.<br />

[29] N.V. Smith, Phys. Rev. B 32 (1985) 3549.<br />

[62] E.V. Chulkov, V.M. Silkin, E.N. Shyrikalov, Fiz. Met.<br />

[30] M. Weinert, S.L. Hulbert, P.D. Johns<strong>on</strong>, Phys. Rev. Lett.<br />

Metall. 64 (1987) 213.<br />

55 (1985) 2055.<br />

[63] W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133.<br />

[31] M. Ortuño, P.M. Echenique, Phys. Rev. B 34 (1986) [64] L. Hedin, B.I. Lundqvist, J. Phys. C 4 (1971) 2064.<br />

5199.<br />

[65] N.D. Lang, W. Kohn, Phys. Rev. B 7 (1973) 3541.<br />

[32] Z. Lenac, M. Šunjić, H. C<strong>on</strong>rad, M.E. Kordesch, Phys. [66] M.W. Finnis, R. Kaschner, C. Kruse, J. Furthmüller, M.<br />

Rev. B 36 (1987) 9500. Scheffler, J. Phys. C<strong>on</strong>dens. Matter 7 (1995) 2001.


E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

351<br />

[67] S. Ossicini, C.M. Bert<strong>on</strong>i, P. Gies, Europhys. Lett. 1 [98] U.O. Karlss<strong>on</strong>, G.V. Hanss<strong>on</strong>, P.E.S. Perss<strong>on</strong>, S.A.<br />

(1986) 661. Flodström, Phys. Rev. B 26 (1982) 1852.<br />

[68] P.A. Serena, J.M. Soler, N. Garcia, Phys. Rev. B 37 [99] E.V. Chulkov, V.M. Silkin, Solid State Commun. 58<br />

(1988) 8701. (1986) 273.<br />

[69] I.D. White, R.W. Godby, M.M. Rieger, R.J. Needs, Phys. [100] H.J. Levins<strong>on</strong>, F. Greuter, E.W. Plummer, Phys. Rev. B<br />

Rev. Lett. 80 (1998) 4265. 27 (1983) 727.<br />

[70] J.A. Appelbaum, D.R. Hamann, Phys. Rev. B 6 (1972) [101] G.V. Hanss<strong>on</strong>, S.A. Flodström, Phys. Rev. B 18 (1978)<br />

1122. 1562.<br />

[71] V.M. Silkin, E.V. Chulkov, P.M. Echenique, Phys. Rev. [102] G.V. Hanss<strong>on</strong>, S.A. Flodström, Phys. Rev. B 19 (1979)<br />

B 60 (1999) Sept. 15. 3329.<br />

[72] H. Krakauer, M. Posternak, A.J. Freeman, Phys. Rev. B [103] E. Caruthers, L. Kleinman, G.P. Alldredge, Phys. Rev.<br />

19 (1979) 1706. B 8 (1973) 4570.<br />

[73] D.R. Hamann, Phys. Rev. Lett. 42 (1979) 662. [104] H. Krakauer, M. Posternak, A.J. Freeman, D.D.<br />

[74] D.A. Papac<strong>on</strong>stantopoulos, The Band Structure of Ele- Koelling, Phys. Rev. B 23 (1981) 3859.<br />

mental Solids, Plenum, New York, 1986. [105] M. Seel, Phys. Rev. B 28 (1983) 778.<br />

[75] J.E. Northrup, M.S. Hybertsen, S.G. Louie, Phys. Rev. [106] G. Wachutka, Phys. Rev. B 34 (1986) 8512.<br />

B 39 (1989) 8198. [107] J.E. Inglesfield, G.A. Benesh, Surf. Sci. 200 (1988) 135.<br />

[76] A.P. Ovchinnikov, B.M. Tsarev, Fiz. Tverd. Tela [108] E.V. Chulkov, V.M. Silkin, Surf. Sci. 215 (1989) 385.<br />

(Leningrad) 9 (1967) 3512, Sov. Phys. Solid State 9 [109] M. Heinrichsmeier, A. Fleszar, A.G. Eguiluz, Surf. Sci.<br />

(1968) 2766.<br />

285 (1993) 129.<br />

[77] K. Kokko, P.T. Salo, R. Laihia, K. Mansikka, Surf. Sci.<br />

[110] S.P. Singhal, J. Callaway, Phys. Rev. B 16 (1977) 1744.<br />

384 (1996) 168.<br />

[111] P.O. Gartland, B.J. Slagsvold, Solid State Commun. 25<br />

[78] N.D. Lang, W. Kohn, Phys. Rev. B 3 (1971) 1215.<br />

(1978) 489.<br />

[79] H.L. Skriver, N.M. Rosengaard, Phys. Rev. B 46<br />

[112] J.K. Grepstad, P.O. Gartland, B.J. Slagsvold, Surf. Sci.<br />

(1992) 7157.<br />

57 (1976) 348.<br />

[80] V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated<br />

[113] R.M. Eastman, C.H.B. Mee, J. Phys. F 3 (1973) 1738.<br />

Electr<strong>on</strong>ic Properties of Metals, Pergam<strong>on</strong>, New York,<br />

[114] R. Stumpf, M. Scheffler, Phys. Rev. B 53 (1996) 4958.<br />

1978.<br />

[115] K.P. Bohnen, K.M. Ho, Surf. Sci. 207 (1988) 105.<br />

[81] D. Straub, F.J. Himpsel, Phys. Rev. B 33 (1986) 2256.<br />

[116] P.J. Jennings, R.O. J<strong>on</strong>es, M. Weinert, Phys. Rev. B 37<br />

[82] S.L. Hulbert, P.D. Johns<strong>on</strong>, M. Weinert, Phys. Rev. B 34<br />

(1988) 6113.<br />

(1986) 3670.<br />

[117] J.E. Inglesfield, Vacuum 41 (1990) 543.<br />

[83] S. Anderss<strong>on</strong>, J.B. Pendry, P.M. Echenique, Surf. Sci. 65<br />

[118] S.D. Kevan, N.G. Stoffel, N.V. Smith, Phys. Rev. B 31<br />

(1977) 539.<br />

(1985) 1788.<br />

[84] R.L. Gerlach, T.N. Rhodin, Surf. Sci. 19 (1970) 403.<br />

[119] E. Caruthers, L. Kleinman, G.P. Alldredge, Phys. Rev.<br />

[85] T. Rodach, K.P. Bohnen, K.M. Ho, Surf. Sci. 209<br />

(1989) 481.<br />

B 9 (1974) 3330.<br />

[86] N.W. Ashcroft, J. Phys. Chem. 1 (1968) 232.<br />

[120] K. Mednick, L. Kleinman, Phys. Rev. B 22 (1980) 5768.<br />

[87] U.O. Karlss<strong>on</strong>, S.A. Flodström, R. Engelhardt, W.<br />

[121] F. Schreier, F. Rebentrost, J. Phys. C 20 (1987) 2609.<br />

Gädeke, E.E. Koch, Solid State Commun. 49 (1984) 711. [122] S.C. Lam, R.J. Needs, J. Phys. C<strong>on</strong>dens. Matter 5<br />

[88] R.A. Bartynski, E. Jepsen, T. Gustafss<strong>on</strong>, E.W. Plummer,<br />

(1993) 2101.<br />

Phys. Rev. B 32 (1985) 1921.<br />

[123] A. Euceda, D.M. Bylander, L. Kleinman, K. Mednick,<br />

[89] E.V. Chulkov, V.M. Silkin, E.N. Shirykalov, Surf. Sci.<br />

Phys. Rev. B 27 (1983) 659.<br />

188 (1987) 287.<br />

[124] D.S. Wang, A.J. Freeman, H. Krakauer, Phys. Rev. B 26<br />

[90] P.J. Feibelman, Phys. Rev. B 46 (1992) 2532.<br />

(1982) 1340.<br />

[91] N.A.W. Holzwarth, Y. Zeng, Phys. Rev. B 51 (1995) [125] D.P. Woodruff, S.L. Hulbert, P.D. Johns<strong>on</strong>, N.V. Smith,<br />

13 653.<br />

Phys. Rev. B 31 (1985) 4046.<br />

[92] P.A. Bruhwiller, G.M. Wats<strong>on</strong>, E.W. Plummer, [126] K. Giesen, F. Hage, F.J. Himpsel, H.J. Riess, W. Stein-<br />

H.J. Sagner, K.H. Frank, Europhys. Lett. 11 (1990) 573.<br />

mann, Phys. Rev. B 35 (1987) 971.<br />

[93] G.M. Wats<strong>on</strong>, P.A. Bruhwiller, H.J. Sagner, K.H. Frank, [127] J.A. Knapp, F.J. Himpsel, D.E. Eastman, Phys. Rev. B<br />

E.W. Plummer, Phys. Rev. B 50 (1994) 17 678.<br />

19 (1979) 4952.<br />

[94] E. Jensen, R.A. Bartynski, T. Gustafss<strong>on</strong>, E.W. Plummer, [128] G. Thörner, G. Borstel, V. Dose, J. Rogozik, Surf. Sci.<br />

M.Y. Chou, M.L. Cohen, G.B. Hoflund, Phys. Rev. B<br />

157 (1985) L379.<br />

30 (1984) 5500.<br />

[129] D. Straub, F.J. Himpsel, Phys. Rev. Lett. 52 (1984) 1922.<br />

[95] A.K. Green, E. Bauer, Surf. Sci. 74 (1978) L676.<br />

[130] V. Dose, W. Altmann, A. Goldmann, U. Kolac,<br />

[96] R.A. Bartynski, R.H. Gaylord, T. Gustafss<strong>on</strong>, E.W.<br />

J. Rogozik, Phys. Rev. Lett. 52 (1984) 1919.<br />

Plummer, Phys. Rev. B 33 (1986) 3644.<br />

[97] E.W. Plummer, Surf. Sci. 152–153 (1985) 162.<br />

[131] N.V. Smith, C.T. Chen, M. Weinert, Phys. Rev. B 40<br />

(1989) 7565.


352 E.V. Chulkov et al. / Surface Science 437 (1999) 330–352<br />

[132] R.O. J<strong>on</strong>es, P.J. Jennings, O. Jepsen, Phys. Rev. B 29 [152] S.D. Kevan, R.H. Gaylord, Phys. Rev. B 36 (1987) 5809.<br />

(1984) 6474.<br />

[153] A.B. Chen, B. Segall, Solid State Commun. 18 (1976) 149.<br />

[133] J.F. Janak, A.R. Williams, V.L. Moruzzi, Phys. Rev. B [154] R. Courths, H. Wern, U. Hau, B. Cord, V. Bachelier, S.<br />

11 (1975) 1522.<br />

Hüfner, J. Phys. F 14 (1984) 1559.<br />

[134] S.D. Kevan, Phys. Rev. Lett. 50 (1983) 526. [155] R. Fischer, S. Schuppler, N. Fischer, Th. Fauster, W.<br />

[135] R. Paniago, R. Matzdorf, G. Meister, A. Goldmann,<br />

Steinmann, Phys. Rev. Lett. 70 (1993) 654.<br />

Surf. Sci. 336 (1995) 113. [156] G.D. Kubiak, J. Vac. Sci. Technol. A: 5 (1987) 731.<br />

[136] P.O. Gartland, B.J. Slagsvold, Phys. Rev. B 12 (1975) [157] N.E. Christensen, Phys. Rev. B 14 (1976) 3446.<br />

4047. [158] F.J. Himpsel, D.E. Eastman, Phys. Rev. B 18 (1978) 5236.<br />

[137] J.A. Appelbaum, D.R. Hamann, Solid State Commun. [159] S.G. Louie, Phys. Rev. Lett. 40 (1978) 1525.<br />

27 (1978) 881. [160] W. D<strong>on</strong>g, G. Krese, J. Furthmüller, J. Hafner, Phys. Rev.<br />

[138] A. Euceda, D.M. Bylander, L. Kleinman, Phys. Rev. B<br />

B 54 (21) (1996) 57.<br />

28 (1983) 528. [161] H. C<strong>on</strong>rad, M.E. Cordesch, W. Stenzel, M. Sunjić, B.<br />

[139] K. Giesen, F. Hage, F.J. Himpsel, H.J. Riess, W.<br />

Trninic-Radja, Surf. Sci. 178 (1986) 578.<br />

Steinmann, Phys. Rev. B 33 (1986) 5241.<br />

[162] S.C. Wu, D.M. Poirier, M.B. Jost, J.H. Weaver, Phys.<br />

[140] G.D. Kubiak, Surf. Sci. 201 (1988) L475.<br />

Rev. B 45 (1992) 8709.<br />

[141] B. Reihl, K.H. Frank, R.R. Schlittler, Phys. Rev. B 30 [163] J.G. Gay, J.R. Smith, F.J. Arlinghaus, T.W. Capehart,<br />

(1984) 7328.<br />

Phys. Rev. B 23 (1981) 1559.<br />

[142] G.C. Aers, J.E. Inglesfield, Surf. Sci. 217 (1989) 367. [164] J. Rogozik, J. Küppers, V. Dose, Surf. Sci. 148 (1984)<br />

[143] M. Methfessel, D. Hennig, M. Scheffler, Phys. Rev. B 46<br />

L653.<br />

(1992) 4816. [165] J. Hölzl, F.K. Schulte, in: Work Functi<strong>on</strong> of MetalsSolid<br />

[144] S.L. Hulbert, P.D. Johns<strong>on</strong>, N.G. Stoffel, N.V. Smith,<br />

Surface Physics vol. 85 Springer, Heidelberg, 1979.<br />

Phys. Rev. B 32 (1985) 3451. [166] D. Tománek, Z. Sun, S.G. Louie, Phys. Rev. B 43<br />

[145] H.B. Michels<strong>on</strong>, J. Appl. Phys. 48 (1977) 4729.<br />

(1991) 4699.<br />

[146] D.G. Fedak, N.A. Gjostein, Surf. Sci. 8 (1967) 77. [167] A. Wachter, K.P. Bohnen, K.M. Ho, Surf. Sci. 346<br />

[147] J.F. Wendelken, D.M. Zehner, Surf. Sci. 71 (1978) 178.<br />

(1996) 127.<br />

[148] P. Heimann, J. Hermans<strong>on</strong>, H. Miosga, H. Neddermeyer, [168] E.V. Chulkov, V.M. Silkin, P.M. Echenique, in<br />

Phys. Rev. Lett. 43 (1979) 1757.<br />

preparati<strong>on</strong>.<br />

[149] N.E. Christensen, B.O. Seraphin, Phys. Rev. B 4 (1971) [169] B.A. McDougall, T. Balasubramanian, E. Jensen, Phys.<br />

3321.<br />

Rev. B 51 (1995) 13 891.<br />

[150] D.P. Woodruff, W.A. Royer, N.V. Smith, Phys. Rev. B [170] F. Theilmann, R. Matzdorf, G. Meister, A. Goldmann,<br />

34 (1986) 764.<br />

Phys. Rev. B 56 (1997) 3632.<br />

[151] C. Reuß, W. Wallauer, Th. Fauster, Surf. Rev. Lett. 3<br />

(1994) 1547.<br />

[171] J. Li, W.-D. Schneider, R. Berndt, O.R. Bryant, S.<br />

Crampin, Phys. Rev. Lett. 81 (1998) 4464.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!