06.04.2014 Views

Baryonic Spectral Functions at Finite Temperature - Physics

Baryonic Spectral Functions at Finite Temperature - Physics

Baryonic Spectral Functions at Finite Temperature - Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Baryonic</strong> <strong>Spectral</strong> <strong>Functions</strong><br />

<strong>at</strong> <strong>Finite</strong> Temper<strong>at</strong>ure<br />

Masayuki Asakawa<br />

Department of <strong>Physics</strong>, Osaka University<br />

July 2008<br />

@ XQCD 2008


QCD Phase Diagram<br />

T<br />

LHC<br />

160-190 MeV<br />

100MeV ~ 10 12 K<br />

RHIC<br />

crossover<br />

CEP(critical end point)<br />

1st order<br />

QGP (quark-gluon plasma)<br />

Hadron Phase<br />

• chiral symmetry breaking<br />

• confinement<br />

order ?<br />

CSC (color superconductivity)<br />

5-10ρ 0<br />

μ B<br />

M. Asakawa (Osaka University)


Hadrons above Tc?<br />

Hadrons above T c<br />

• No a priori reason th<strong>at</strong> no hadrons exist above T c<br />

• QGP looks like strongly interacting system (low viscosity...etc.)<br />

• Definition of <strong>Spectral</strong> Function (SPF)<br />

ρ<br />

J<br />

μν<br />

μ<br />

<br />

( k , k)<br />

e<br />

(2 π )<br />

( )<br />

0 :<br />

−( En−μ<br />

Nn)/<br />

T<br />

0<br />

0 −Pmn<br />

/ T 4<br />

≡<br />

3 ∑<br />

μ ( ) ν ( ) ∓ δ<br />

nm , Z<br />

mn m n<br />

nJ 0 m mJ 0 n(1 e ) ( k−P<br />

)<br />

− ( + ) : Boson(Fermion)<br />

A Heisenberg Oper<strong>at</strong>or with some quantum #<br />

n : Eigenst<strong>at</strong>e with 4-momentum<br />

P = P −P<br />

P<br />

μ<br />

n<br />

mn<br />

• Inform<strong>at</strong>ion on<br />

• Dilepton production<br />

• Photon Production<br />

• J/ψ suppression...etc. :<br />

encoded in SPF<br />

M. Asakawa (Osaka University)


Microscopic Understanding of QGP<br />

Importance of Microscopic Properties of m<strong>at</strong>ter,<br />

in addition to Bulk Properties<br />

• In condensed m<strong>at</strong>ter physics, common to start from one particle st<strong>at</strong>es,<br />

then proceed to two, three, ... particle st<strong>at</strong>es (correl<strong>at</strong>ions)<br />

<strong>Spectral</strong> <strong>Functions</strong>:<br />

One Quark<br />

Two Quarks<br />

mesons<br />

color singlet<br />

• octet<br />

‣ diquarks<br />

Three Quarks<br />

baryons<br />

......<br />

need to fix gauge<br />

need to fix gauge<br />

need to fix gauge<br />

M. Asakawa (Osaka University)


Photon and Dilepton production r<strong>at</strong>es<br />

• Photon production r<strong>at</strong>e<br />

<br />

( , )<br />

3<br />

dRγ α ρT<br />

ω = p p<br />

=<br />

3<br />

ω<br />

d p<br />

π exp( ω T) −1<br />

• Dilepton production r<strong>at</strong>e<br />

4 2<br />

d R<br />

<br />

+ −<br />

l l<br />

α (2 ρT + ρL)( ω, p)<br />

=<br />

4 2 2<br />

d p 3π<br />

p exp( ω T) −1<br />

(for massless leptons)<br />

where ρ T and ρ L are given by<br />

<br />

ρ ( ω, p) = ρ ( ω, p)( P ) + ρ ( ω, p)( P )<br />

μν T T μν L L μν<br />

ρ μν : QCD EM current spectral function<br />

<br />

ρ ( k , k) = ρ ( k , k) P + ρ ( k , k)<br />

P<br />

( ) ( )<br />

μν 0 T 0 T μν L 0 L μν<br />

em 2 1 1<br />

Jμ = jμ = uγμu− dγμd − sγμs+<br />

3 3 3<br />

M. Asakawa (Osaka University)


L<strong>at</strong>tice calcul<strong>at</strong>ion of spectral functions<br />

• No calcul<strong>at</strong>ion yet for finite momentum light quark spectral functions<br />

<br />

( , )<br />

3<br />

dRγ α ρT<br />

ω = p p<br />

=<br />

3<br />

ω<br />

d p<br />

π exp( ω T) −1<br />

LQGP collabor<strong>at</strong>ion, in progress<br />

So far, only pQCD spectral function has been used<br />

• Calcul<strong>at</strong>ion for zero momentum light quark spectral functions by two groups<br />

4 2<br />

d R<br />

<br />

+ −<br />

l l<br />

α (2 ρT + ρL)( ω, p)<br />

=<br />

4 2 2<br />

d p 3π<br />

p exp( ω T) −1<br />

ρ T = ρ L @ zero momentum<br />

Since the spectral function is a real time quantity,<br />

necessary to use MEM (Maximum Entropy Method)<br />

M. Asakawa (Osaka University)


QGP is strongly coupled, but...<br />

D’Enterria, LHC workshop @CERN 2007<br />

M. Asakawa (Osaka University)


L<strong>at</strong>tice calcul<strong>at</strong>ion of spectral functions<br />

• No calcul<strong>at</strong>ion yet for finite momentum light quark spectral functions<br />

<br />

( , )<br />

3<br />

dRγ α ρT<br />

ω = p p<br />

=<br />

3<br />

ω<br />

d p<br />

π exp( ω T) −1<br />

LQGP collabor<strong>at</strong>ion, in progress<br />

So far, only pQCD spectral function has been used<br />

• Calcul<strong>at</strong>ion for zero momentum light quark spectral functions by two groups<br />

4 2<br />

d R<br />

<br />

+ −<br />

l l<br />

α (2 ρT + ρL)( ω, p)<br />

=<br />

4 2 2<br />

d p 3π<br />

p exp( ω T) −1<br />

ρ T = ρ L @ zero momentum<br />

Since the spectral function is a real time quantity,<br />

necessary to use MEM (Maximum Entropy Method)<br />

M. Asakawa (Osaka University)


<strong>Spectral</strong> <strong>Functions</strong> above T c<br />

m~m s<br />

ss-channel <strong>at</strong> T/T c = 1.4<br />

spectral functions<br />

A(ω)/ω 2<br />

peak structure<br />

L<strong>at</strong>tice Artifact<br />

Asakawa, Nakahara & H<strong>at</strong>suda [hep-l<strong>at</strong>/0208059]<br />

M. Asakawa (Osaka University)


Another calcul<strong>at</strong>ion<br />

log scale!<br />

dilepton production r<strong>at</strong>e<br />

massless quarks<br />

smaller l<strong>at</strong>tice<br />

~2 GeV @1.5T c<br />

Karsch et al., 2003<br />

In almost all dilepton calcul<strong>at</strong>ions from QGP, pQCD expression has been used<br />

How about for heavy quarks?<br />

M. Asakawa (Osaka University)


J/ψ non-dissoci<strong>at</strong>ion above T c<br />

L<strong>at</strong>tice Artifact<br />

J/ψ (p = 0) disappears<br />

between 1.62T c and 1.70T c<br />

L<strong>at</strong>tice Artifact<br />

Asakawa and H<strong>at</strong>suda, PRL 2004<br />

M. Asakawa (Osaka University)


Result for PS channel (η c ) <strong>at</strong> <strong>Finite</strong> T<br />

η c (p = 0) also disappears<br />

between 1.62T c and 1.70T c<br />

Asakawa and H<strong>at</strong>suda, PRL 2004<br />

M. Asakawa (Osaka University)


Importance of Understanding Baryons @<strong>Finite</strong> T<br />

Success of Recombin<strong>at</strong>ion @RHIC<br />

v<br />

2 ⎛ p<br />

p<br />

⎜ ⎞ 3v<br />

⎛ ⎞<br />

2<br />

⎟ ∼ ⎜<br />

3<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

( p ) ∼ v and<br />

v ( p )<br />

M p t B p t<br />

2 t 2<br />

2 t 2<br />

( x)<br />

n<br />

1+ ∼1+<br />

nx<br />

• v 2M (p TM ) : v 2 B<br />

(p TB ) ~ 2 : 3 for p TM : p T<br />

B<br />

= 2 : 3<br />

φ<br />

dN ⎛<br />

i<br />

dN ⎞ = N<br />

i2 i0 1 + 2v1cos( −<br />

0) + 2v2 cos 2( −<br />

0)<br />

+<br />

dydϕ⎜dydϕd p<br />

⎜⎝ ⎠⎟<br />

T<br />

( ϕ ϕ ϕ ϕ )<br />

M. Asakawa (Osaka University)


Constituent Quark Number Scaling<br />

• v 2M (p TM ) : v 2 B<br />

(p TB ) ~ 2 : 3 for p TM : p T<br />

B<br />

= 2 : 3<br />

• Partons are flowing and Partons recombine to make mesons and baryons<br />

Assumption<br />

Evidence of Deconfinement<br />

All hadrons are cre<strong>at</strong>ed <strong>at</strong> hadroniz<strong>at</strong>ion simultaneously<br />

M. Asakawa (Osaka University)


Baryon Oper<strong>at</strong>ors<br />

• Nucleon current<br />

( ) ( )<br />

J<br />

N( x) = εabc ⎡⎣s ua( x) Cdb( x) γ5uc( x) + t ua( x) Cγ5db( x) uc( x)<br />

⎤⎦<br />

s<br />

= − t = 1 Ioffe current<br />

• On the l<strong>at</strong>tice, used s = 0, t = 1, u(x) = d(x) = q(x), J N (x)<br />

J(x)<br />

• Euclidean correl<strong>at</strong>ion function <strong>at</strong> zero momentum<br />

<br />

3 <br />

D(,0) τ = ∫ d x J(, τ x) J(0,0)<br />

∞<br />

D(,0) τ = K(, τωρω ) ( ) dω<br />

∫<br />

−∞<br />

⎛1<br />

⎞ω<br />

exp⎜<br />

−τT<br />

⎟ 2 T<br />

K(, τω)<br />

=<br />

⎝ ⎠<br />

⎛ ω ⎞ ⎛ ω ⎞<br />

exp⎜ ⎟+ exp⎜−<br />

⎟<br />

⎝2T<br />

⎠ ⎝ 2T<br />

⎠<br />

M. Asakawa (Osaka University)


<strong>Spectral</strong> <strong>Functions</strong> for Fermionic Oper<strong>at</strong>ors<br />

<br />

3 <br />

D( τ,0) = ∫ d x J( τ, x) J(0,0)<br />

∞<br />

D(,0) τ = K(, τωρω ) ( ) dω<br />

∫<br />

−∞<br />

ρ( ω) = ρ ( ω) γ + ρ ( ω): ρ ( ω), ρ ( ω)<br />

0<br />

0 s<br />

0<br />

= ρ ( ω) Λ γ + ρ ( ω)<br />

Λ γ<br />

0 0<br />

+ + − −<br />

s<br />

independent<br />

ρ ( ω) = ρ ( − ω), ρ ( ω) =−ρ ( −ω)<br />

0 0<br />

s<br />

ρ ( ω) = ρ ( − ω) = ρ ( ω) + ρ ( ω) ≥0<br />

semi-positivity<br />

+ −<br />

0<br />

s<br />

s<br />

ρ+ ( ω)( ρ− ( ω))<br />

: neither even nor odd<br />

• For Meson currents, SPF is odd<br />

Thus, need to and can carry out MEM analysis in [-ω max , ω max ]<br />

In the following, we analyze<br />

ρω ( )<br />

≡<br />

ρ ( ω)<br />

+<br />

5<br />

ω<br />

M. Asakawa (Osaka University)


L<strong>at</strong>tice Parameters<br />

1. L<strong>at</strong>tice Sizes<br />

32 3 ∗ 46 (T = 1.62T c )<br />

54 (T = 1.38T c )<br />

72 (T = 1.04T c )<br />

80 (T = 0.93T c )<br />

96 (T = 0.78T c )<br />

2. β = 7.0, ξ 0 = 3.5<br />

ξ = a σ /a τ = 4.0 (anisotropic)<br />

3. a τ = 9.75 ∗ 10 -3 fm<br />

L σ = 1.25 fm<br />

4. Standard Plaquette Action<br />

5. Wilson Fermion<br />

6. He<strong>at</strong>b<strong>at</strong>h : Overrelax<strong>at</strong>ion<br />

= 1 : 4<br />

1000 sweeps between<br />

measurements<br />

7. Quenched Approxim<strong>at</strong>ion<br />

8. Gauge Unfixed<br />

9. p = 0 Projection<br />

10. Machine: CP-PACS<br />

M. Asakawa (Osaka University)


Analysis Details<br />

• Default Model<br />

At zero momentum,<br />

ρ 1 5<br />

5<br />

( ω ) ρ ( ω ) sgn( )<br />

4<br />

128<br />

ω ω<br />

+<br />

=<br />

−<br />

=<br />

( 2π<br />

)<br />

Espriu, Pascual, Tarrach, 1983<br />

• Rel<strong>at</strong>ion between l<strong>at</strong>tice and continuum currents<br />

LAT ⎛<br />

3/4 15/4 1 ⎞ 1 CON <br />

J (, τ x) = aτ<br />

aσ<br />

J (, τ x)<br />

⎜2<br />

κκ ⎟<br />

⎝<br />

Z<br />

τ σ ⎠ O<br />

3/2<br />

• ω max = 45 GeV ~ 3π/a σ (3 quarks)<br />

• In the following, l<strong>at</strong>tice spectral functions are presented<br />

• Z<br />

O<br />

= 1 is assumed<br />

M. Asakawa (Osaka University)


St<strong>at</strong>. and Syst. Error Analyses in MEM<br />

Generally,<br />

The Larger the Number of D<strong>at</strong>a Points<br />

and the Lower the Noise Level<br />

The closer the result is<br />

to the original image<br />

Need to do the following:<br />

• Put Error Bars and<br />

Make Sure Observed Structures are St<strong>at</strong>istically Significant<br />

• Change the Number of D<strong>at</strong>a Points and<br />

Make Sure the Result does not Change<br />

St<strong>at</strong>istical<br />

System<strong>at</strong>ic<br />

in any MEM analysis<br />

M. Asakawa (Osaka University)


Below T c : Light Baryon<br />

sss baryon<br />

parity -<br />

parity +<br />

M. Asakawa (Osaka University)


Below T c : Charm Baryon<br />

ccc baryon<br />

parity -<br />

parity +<br />

M. Asakawa (Osaka University)


Above T c : Light Baryon<br />

peak near zero + symmetric and equally separ<strong>at</strong>ed peaks<br />

parity -<br />

parity +<br />

M. Asakawa (Osaka University)


@Higher T<br />

only symmetric and equally separ<strong>at</strong>ed peaks<br />

parity -<br />

parity +<br />

M. Asakawa (Osaka University)


Above T c : Charm Baryon<br />

peak near zero + symmetric and equally separ<strong>at</strong>ed peaks<br />

parity -<br />

parity +<br />

M. Asakawa (Osaka University)


@Higher T<br />

only symmetric and equally separ<strong>at</strong>ed peaks<br />

parity -<br />

parity +<br />

M. Asakawa (Osaka University)


St<strong>at</strong>istical Analysis: Light Baryon @T=0<br />

Peaks are st<strong>at</strong>istically significant<br />

M. Asakawa (Osaka University)


St<strong>at</strong>istical Analysis: Charm Baryon @<strong>Finite</strong> T<br />

Peak near zero is st<strong>at</strong>istically significant<br />

M. Asakawa (Osaka University)


Origin of Near Zero Structure<br />

Sc<strong>at</strong>tering Term<br />

<br />

p = <br />

• Sc<strong>at</strong>tering term <strong>at</strong> 0<br />

a.k.a. Landau damping<br />

m 1<br />

( , p )<br />

1 1<br />

ω 2 1<br />

J N<br />

⊗<br />

<br />

p = 0<br />

<br />

m 2<br />

( ω , p<br />

)<br />

0 < ω = ω2 −ω1 ≤ m2 −m1<br />

• This term is non-vanishing only for<br />

• For J/ψ (m 1 =m 2 ), this condition becomes<br />

0 < ω = ω2 −ω1<br />

≤ε<br />

zero mode<br />

cf. QCD SR (H<strong>at</strong>suda and Lee, 1992)<br />

M. Asakawa (Osaka University)


Sc<strong>at</strong>tering Term (two body case)<br />

m 1<br />

( , p )<br />

1 1<br />

ω 2 1<br />

J N<br />

⊗<br />

<br />

p = 0<br />

<br />

m 2<br />

( , p )<br />

ω 2 1 2 1<br />

• This term is non-vanishing only for<br />

0 < ω = ω −ω<br />

≤ m −m<br />

T<br />

m , m<br />

1 2<br />

1<br />

0<br />

p ∼<br />

0<br />

m<br />

− m<br />

2 1<br />

m<br />

− m<br />

2 1<br />

(Boson-Fermion case, e.g. Kitazawa et al., 2008)<br />

M. Asakawa (Osaka University)


Sc<strong>at</strong>tering Term (three body case)<br />

m 1<br />

( , )<br />

ω1 p<br />

1<br />

m 2<br />

ω2 p<br />

<br />

2<br />

⊗ m<br />

J 3<br />

N<br />

<br />

p = 0<br />

<br />

( , )<br />

( ω , p<br />

)<br />

3 3<br />

T m1, m2,<br />

m3<br />

p 1<br />

∼ 0<br />

ω<br />

M. Asakawa (Osaka University)


Neg<strong>at</strong>ive parity: a possible interpret<strong>at</strong>ion<br />

anti-quark: parity -<br />

m 1<br />

( ω1, p<br />

1)<br />

L ∼ 0<br />

m 2<br />

⊗<br />

J N ( ω2, p<br />

<br />

1)<br />

<br />

p = 0<br />

<br />

if<br />

+ +<br />

0 or 1<br />

then:<br />

parity −<br />

T<br />

m , m<br />

1 2<br />

1<br />

0<br />

p ∼<br />

M. Asakawa (Osaka University)


Origin of Symmetric Structure<br />

• Wilson Doublers<br />

Mass of Wilson Doublers with r = 1 in the continuum limit<br />

m<br />

2n<br />

π<br />

+ n π : number of momentum components equal to π (1,2,3)<br />

a<br />

• If quark mass can be neglected:<br />

• Masses of baryons with doublers<br />

• Sc<strong>at</strong>tering term peaks with quark-doubler, doubler-doubler pairs<br />

Approxim<strong>at</strong>ely equally separ<strong>at</strong>ed and symmetric in ω<br />

M. Asakawa (Osaka University)


QCD Phase Diagram<br />

Quark-antiquark correl<strong>at</strong>ions<br />

T<br />

LHC<br />

Diquark correl<strong>at</strong>ions<br />

Baryon correl<strong>at</strong>ions<br />

RHIC<br />

QGP (quark-gluon plasma)<br />

160-190 MeV<br />

100MeV ~ 10 12 K<br />

crossover<br />

CEP(critical end point)<br />

1st order<br />

Hadron Phase<br />

• chiral symmetry breaking<br />

• confinement<br />

order ?<br />

CSC (color superconductivity)<br />

5-10ρ 0<br />

μ B<br />

M. Asakawa (Osaka University)


Summary<br />

• Baryons disappear just above T c<br />

• A sharp peak with neg<strong>at</strong>ive parity near ω=0 is<br />

observed in baryonic SPF above T c<br />

This can be due to diquark-quark sc<strong>at</strong>tering term and<br />

imply the existence of diquark correl<strong>at</strong>ion above T c<br />

• Diquarks disappear below meson disapperance temper<strong>at</strong>ure<br />

• Direct measurement of SPF of one and two quark oper<strong>at</strong>ors<br />

with MEM is desired<br />

• To understand doubler contribution, calcul<strong>at</strong>ion with finer l<strong>at</strong>tice<br />

is desired<br />

M. Asakawa (Osaka University)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!