06.04.2014 Views

Exact geometric optics in a Morris-Thorne wormhole spacetime

Exact geometric optics in a Morris-Thorne wormhole spacetime

Exact geometric optics in a Morris-Thorne wormhole spacetime

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PHYSICAL REVIEW D 77, 044043 (2008)<br />

<strong>Exact</strong> <strong>geometric</strong> <strong>optics</strong> <strong>in</strong> a <strong>Morris</strong>-<strong>Thorne</strong> <strong>wormhole</strong> <strong>spacetime</strong><br />

Thomas Müller<br />

Visualisierungs<strong>in</strong>stitut der Universität Stuttgart, Nobelstrasse 15, 70569 Stuttgart, Germany<br />

(Received 17 December 2007; published 26 February 2008)<br />

The simplicity of the <strong>Morris</strong>-<strong>Thorne</strong> <strong>wormhole</strong> <strong>spacetime</strong> permits us to determ<strong>in</strong>e null and timelike<br />

geodesics by means of elliptic <strong>in</strong>tegral functions and Jacobian elliptic functions. This analytic solution<br />

makes it possible to f<strong>in</strong>d a geodesic which connects two distant events. An exact gravitational lens<strong>in</strong>g, an<br />

illum<strong>in</strong>ation calculation, and even an <strong>in</strong>teractive visualization become possible.<br />

DOI: 10.1103/PhysRevD.77.044043 PACS numbers: 04.20. q, 04.20.Jb<br />

I. INTRODUCTION<br />

The notion of a <strong>wormhole</strong> was first <strong>in</strong>troduced <strong>in</strong> 1962<br />

by John Wheeler [1] who re<strong>in</strong>terpreted the E<strong>in</strong>ste<strong>in</strong>-Rosen<br />

bridge [2] as a connection between two distant places <strong>in</strong><br />

<strong>spacetime</strong> with no mutual <strong>in</strong>teraction. However, he realized<br />

together with Robert Fuller [3] that this Schwarzschild<br />

<strong>wormhole</strong> cannot be traversed even by a s<strong>in</strong>gle particle. In<br />

1988, Michael <strong>Morris</strong> and Kip <strong>Thorne</strong> [4] presented the<br />

most simple metric which serves as a <strong>wormhole</strong> that could<br />

<strong>in</strong> pr<strong>in</strong>ciple be traversed by human be<strong>in</strong>gs. [5] From that<br />

time on, there are a lot of publications which suggest new<br />

types of <strong>wormhole</strong>s, see e.g. [7–13]. But all of them have <strong>in</strong><br />

common that they violate the weak energy condition. For a<br />

detailed discussion see, for example, Visser [14].<br />

One of the difficulties <strong>in</strong> curved <strong>spacetime</strong>s is to f<strong>in</strong>d a<br />

geodesic which connects two distant events. The common<br />

astrophysical application is the gravitational lens<strong>in</strong>g of a<br />

distant object by means of a very massive object like a<br />

galaxy or a black hole. Here, the null geodesics connect<strong>in</strong>g<br />

the distant object with the observer are searched. In the<br />

case of the Schwarzschild <strong>spacetime</strong>, Frittelli et al [15]<br />

construct the exact lens equation. A short discussion of<br />

gravitational lens<strong>in</strong>g by <strong>wormhole</strong>s can be found <strong>in</strong> Cramer<br />

et al [16] or Nandi et al [17]. A detailed review of gravitational<br />

lens<strong>in</strong>g <strong>in</strong> curved <strong>spacetime</strong> with several examples<br />

is given by Perlick [18].<br />

In general, there is no mathematical procedure which<br />

could f<strong>in</strong>d a geodesic <strong>in</strong> a four-dimensional <strong>spacetime</strong><br />

connect<strong>in</strong>g two events <strong>in</strong> a reasonable time. The shoot<strong>in</strong>g<br />

method [19] might be applicable <strong>in</strong> a two-dimensional<br />

problem. Another possibility would be the precalculation<br />

and tabulat<strong>in</strong>g of geodesics. But the disadvantage of this<br />

method is the extreme amount of data which must be<br />

searched. Furthermore, the ambiguity which appears<br />

when connect<strong>in</strong>g two events drastically complicates the<br />

solution. The only practical method is, so far as it exists, to<br />

use the analytic solution of the geodesic equation.<br />

In contrast to the Schwarzschild case as shown by Čadež<br />

and Kostić [20], the analytic solution of the geodesic<br />

equation <strong>in</strong> the <strong>Morris</strong>-<strong>Thorne</strong> (MT) <strong>spacetime</strong> is quite<br />

*Thomas.Mueller@vis.uni-stuttgart.de<br />

straightforward. Start<strong>in</strong>g from the Lagrangian equations<br />

for the MT metric, one immediately gets the orbital equation<br />

for a geodesic as an elliptic <strong>in</strong>tegral of the first k<strong>in</strong>d <strong>in</strong><br />

standard form. Like <strong>in</strong> the Schwarzschild case, one has to<br />

make a dist<strong>in</strong>ction where the null geodesic starts and ends.<br />

However, <strong>in</strong> the MT case, we do not have to deal with<br />

complex arguments or modules <strong>in</strong> the elliptic <strong>in</strong>tegrals<br />

which def<strong>in</strong>itely simplifies the calculations.<br />

The aim of this article is to derive the exact analytic<br />

solution of the geodesic equation <strong>in</strong> the MT <strong>spacetime</strong> and<br />

to show its relevance for connect<strong>in</strong>g two events with a<br />

lightlike geodesic. The most prom<strong>in</strong>ent application is the<br />

determ<strong>in</strong>ation of the exact gravitational lens equation,<br />

compare Perlick [21]. In contrast to Perlick, we will formulate<br />

the lens equation <strong>in</strong> terms of elliptic <strong>in</strong>tegral functions<br />

which makes the orbits of the geodesics more<br />

transparent. A second application might be the visualization<br />

of the MT <strong>spacetime</strong> from a first-person’s po<strong>in</strong>t of<br />

view. By means of objects <strong>in</strong> motion or at rest some aspects<br />

of the topology and the <strong>in</strong>ner geometry of the <strong>spacetime</strong><br />

become visible. The importance of visualization to get a<br />

better <strong>in</strong>sight of special and general relativity is demonstrated,<br />

for example, <strong>in</strong> [22–25]. A visualization of the<br />

<strong>Morris</strong>-<strong>Thorne</strong> <strong>wormhole</strong> is given by the author [26]. In<br />

general, the ray trac<strong>in</strong>g method is used where a null geodesic<br />

is traced back <strong>in</strong> time from the observer to the po<strong>in</strong>t<br />

of emission to render the view of an observer. But this<br />

method is quite time consum<strong>in</strong>g and is not capable of<br />

<strong>in</strong>clud<strong>in</strong>g a correct illum<strong>in</strong>ation of the scenario. This limitation<br />

can be bypassed with the exact solution of the<br />

geodesic equation. F<strong>in</strong>ally, an <strong>in</strong>teractive visualization by<br />

means of today’s fully programmable graphics process<strong>in</strong>g<br />

units (GPUs) becomes possible.<br />

In Sec. II we give a short <strong>in</strong>troduction to the <strong>Morris</strong>-<br />

<strong>Thorne</strong> <strong>spacetime</strong> and expla<strong>in</strong> the topological structure by<br />

means of an embedd<strong>in</strong>g diagram. For the <strong>in</strong>itial conditions<br />

of the geodesics we take the perspective of a local observer<br />

whose reference frame is represented by a local tetrad. This<br />

is a more <strong>in</strong>tuitive approach than the use of angular momentum<br />

and longitude of periapsis. The ma<strong>in</strong> part of this<br />

article concerns with the analytic solution of the geodesic<br />

equation which will be discussed <strong>in</strong> Sec. III. As we will<br />

see, the orbits of lightlike, timelike, and spacelike geo-<br />

1550-7998=2008=77(4)=044043(11) 044043-1 © 2008 The American Physical Society


THOMAS MÜLLER PHYSICAL REVIEW D 77, 044043 (2008)<br />

desics <strong>in</strong> the <strong>Morris</strong>-<strong>Thorne</strong> <strong>spacetime</strong> are all equal. As a<br />

upper universe<br />

first application, Sec. IV expla<strong>in</strong>s the determ<strong>in</strong>ation of<br />

distance and throat size by means of a flash of light. In<br />

Sec. V we show how two arbitrary po<strong>in</strong>ts can be connected<br />

by a lightlike geodesic. This enables us to determ<strong>in</strong>e the<br />

exact lens equation <strong>in</strong> Sec. VI. F<strong>in</strong>ally, we can easily show<br />

<strong>in</strong> Sec. VII how wave fronts propagate <strong>in</strong> the <strong>geometric</strong><br />

throat<br />

<strong>optics</strong> approximation.<br />

lower universe<br />

II. MORRIS-THORNE SPACETIME<br />

The simplest metric represent<strong>in</strong>g a <strong>wormhole</strong> is the one<br />

studied by <strong>Morris</strong> and <strong>Thorne</strong> [4]<br />

ds 2 c 2 dt 2 dl 2 b 2 0 l 2 d# 2 s<strong>in</strong> 2 #d’ 2 ; (1)<br />

where t is the global time, l is the proper radial coord<strong>in</strong>ate,<br />

b 0 is the shape constant and c is the speed of light [27]. The<br />

<strong>Morris</strong>-<strong>Thorne</strong> metric is spherically symmetric with surface<br />

area A 4 b 2 0 l 2 of the hypersurface (t const,<br />

l const). In the limit jlj 1 there are two asymptotically<br />

flat regions. The connection between these two regions<br />

l 0 is called the throat of the <strong>wormhole</strong>. While<br />

the coord<strong>in</strong>ate l 2 1; 1 covers the whole <strong>spacetime</strong>,<br />

we could also <strong>in</strong>troduce a Schwarzschild-like radial coord<strong>in</strong>ate<br />

r with r 2 b 2 0 l 2 . Because r>b 0 we need two<br />

charts to cover the whole <strong>spacetime</strong>. The MT metric with<br />

the new radial coord<strong>in</strong>ate reads<br />

ds 2 c 2 dt 2 dr 2<br />

1 b 2 0 =r2 r 2 d# 2 s<strong>in</strong> 2 #d’ 2 : (2)<br />

To get a first impression of the <strong>wormhole</strong> topology, we take<br />

advantage of the spherical symmetry and staticity of the<br />

metric and consider only the two-dimensional hypersurface<br />

h t const;# =2 with <strong>in</strong>ner geometry<br />

d 2 h<br />

dr 2<br />

1 b 2 0 =r2 r 2 d’ 2 : (3)<br />

The hypersurface h can be embedded as rotational surface<br />

z z r; ’ <strong>in</strong>to the Euclidean space, which is given <strong>in</strong><br />

cyl<strong>in</strong>drical coord<strong>in</strong>ates r; ’; z ,<br />

d 2 euclidian<br />

1<br />

dz<br />

dr<br />

2<br />

dr<br />

2<br />

r 2 d’ 2 : (4)<br />

Comparison of Eq. (3) with Eq. (4) and <strong>in</strong>tegration with<br />

respect to r leads to the shape of the embedd<strong>in</strong>g diagram<br />

z r b 0 ln r s<br />

r 2<br />

b 0 b 0<br />

as shown <strong>in</strong> Fig. 1.<br />

The natural local tetrad given with respect to the proper<br />

radial coord<strong>in</strong>ate l is given by<br />

1<br />

(5)<br />

FIG. 1. Embedd<strong>in</strong>g diagram of the hypersurface h t<br />

const;# =2 <strong>in</strong>to the Euclidean space. The throat of the<br />

<strong>wormhole</strong> is located at coord<strong>in</strong>ate l 0. We will call the region<br />

with l>0 the upper universe and the region with l


EXACT GEOMETRIC OPTICS IN A MORRIS-THORNE ... PHYSICAL REVIEW D 77, 044043 (2008)<br />

L c 2 t_<br />

2 l_<br />

2 b 2 0 l 2 _’ 2 q<br />

: (10)<br />

k c 2 and h c b 2 0 l 2 i s<strong>in</strong> : (16)<br />

From Eq. (8) there follow two constants of motion k, h with<br />

c 2 t_<br />

k and b 2 0 l 2 _’ h: (11)<br />

B. Effective potential<br />

The qualitative behavior of a geodesic can be studied<br />

Insert<strong>in</strong>g k and h <strong>in</strong>to the Lagrangian (10) yields the<br />

us<strong>in</strong>g the concept of an effective potential which is well<br />

differential equation for the radial coord<strong>in</strong>ate,<br />

known from classical mechanics [29]. Equation (12) can be<br />

l_<br />

2 k 2 h 2<br />

rewritten as an energy balance equation,<br />

c 2 b 2 0 l 2 c 2 : (12)<br />

l_<br />

2 k 2<br />

V eff<br />

c 2 (17)<br />

A. Initial conditions<br />

with effective potential V eff c 2 h 2 = b 2 0 l 2<br />

which is shown <strong>in</strong> Fig. 3. Because the effective potential<br />

The <strong>in</strong>itial conditions for the Eqs. (11) and (12) are given<br />

depends ma<strong>in</strong>ly on h it can be <strong>in</strong>terpreted as an angular<br />

by the <strong>in</strong>itial position t i ;l i ;’ i and the <strong>in</strong>itial direction y<br />

momentum barrier.<br />

with respect to the local frame, Fig. 2.<br />

Here, the <strong>in</strong>itial direction y y t e t y l e l y ’ A geodesic rests on the same side of the <strong>wormhole</strong><br />

e ’ is<br />

where it has started if V eff l 0 >k 2 =c 2 . In this case,<br />

given by<br />

the geodesic is deflected by the <strong>wormhole</strong> and reaches its<br />

y y t closest approach l<br />

e t cos e l s<strong>in</strong> e ’ (13a)<br />

m<strong>in</strong> . The po<strong>in</strong>t of reversal follows from<br />

y t 1 the condition l_<br />

0 and it is <strong>in</strong>dependent of the type of<br />

c @ s<strong>in</strong><br />

t cos @ l q @ ’ (13b) geodesic,<br />

b 2 0 l 2<br />

t@ _ t l@ _<br />

l<br />

l _’@ ’ ; (13c)<br />

2 h 2<br />

m<strong>in</strong><br />

k 2 =c 2 c 2 b 2 0 b 2 0 l 2 i s<strong>in</strong> 2 b 2 0 : (18)<br />

where c for lightlike and c for timelike geodesics.<br />

The velocity v=c is measured with respect to proaches the throat asymptotically. The correspond<strong>in</strong>g<br />

In the critical case V eff l 0 k 2 =c 2 the geodesic ap-<br />

p<br />

2<br />

critical angle<br />

the local frame and 1= 1 as usual. The time<br />

crit is given by<br />

direction y t follows from the local condition<br />

b<br />

crit arcs<strong>in</strong> 0<br />

q : (19)<br />

c 2 y t 2 y l 2 y ’ 2 : (14)<br />

Thus, the time direction y t c for lightlike and y t<br />

c for timelike geodesics. The sign depends on whether<br />

the geodesic has to be traced back <strong>in</strong> time or should be<br />

send to the future . The constants of motion k and h can<br />

be expressed by these <strong>in</strong>itial conditions. For lightlike geodesics<br />

we have<br />

q<br />

k c 2 and h c b 2 0 l 2 i s<strong>in</strong> (15)<br />

and for timelike geodesics the constants read<br />

If V eff 0 and 0 . Note, that e l always po<strong>in</strong>ts away<br />

from the <strong>wormhole</strong> throat.<br />

FIG. 3. Effective potential for a lightlike ( 0, k 2 =c 4 1)<br />

and a timelike ( 1, k 2 =c 4 2 ) geodesic with <strong>in</strong>itial<br />

conditions: l i =b 0 6:0, 0:3, 0:6.<br />

044043-3


THOMAS MÜLLER PHYSICAL REVIEW D 77, 044043 (2008)<br />

geodesics at great length. So it becomes obvious that one<br />

should represent the elliptic <strong>in</strong>tegrals by elliptic <strong>in</strong>tegral<br />

functions.<br />

1. Radial geodesics<br />

For radial geodesics the Lagrangian (10) simplifies to<br />

L<br />

c 2 t_<br />

2<br />

_ l 2 : (20)<br />

From the Euler-Lagrangian equations (8) together with the<br />

<strong>in</strong>itial conditions (15) and (16) we can immediately determ<strong>in</strong>e<br />

the radial geodesics. Thus, from dl=dt<br />

p<br />

c 2 c 2 k 2 =c 2 =k 2 we obta<strong>in</strong><br />

l ct l i for 0; (21a)<br />

l vt l i for 1: (21b)<br />

Hence, an object with zero <strong>in</strong>itial velocity, v<br />

and rests at the <strong>in</strong>itial radial position l i .<br />

0, is static<br />

2. Circular geodesics<br />

From the effective potential, Fig. 3, we immediately see<br />

that circular orbits only exist for l 0 and they are unstable.<br />

Here, with l_<br />

0, the Lagrangian reads<br />

L<br />

c 2 _ t 2 b 2 0 _’2 c 2 (22)<br />

and the orbit ’ ’ t follows from d’=dt c 2 h= b 2 0 k ,<br />

ct<br />

’ ’<br />

b i for 0; (23a)<br />

0<br />

’ vt ’<br />

b i for 1: (23b)<br />

0<br />

Aga<strong>in</strong>, an object with zero <strong>in</strong>itial velocity stays at the<br />

<strong>in</strong>itial angular position ’ i .<br />

3. Arbitrary geodesics<br />

In the case of arbitrary geodesics we consider the orbital<br />

motion l l ’ . For that, we have to solve the differential<br />

equation<br />

dl 2 l_<br />

2 c 2 k 2 =c 2<br />

d’ _’ 2 h 2 b 2 0 l 2 2 b 2 0 l 2 (24)<br />

which follows from Eq. (12). Transform<strong>in</strong>g to the radial<br />

q<br />

coord<strong>in</strong>ate r b 2 0 l 2 leads to the representation<br />

dr 2<br />

r 2 b 2 c 2 k 2 =c 2<br />

0<br />

d’<br />

h 2 r 2 1 : (25)<br />

Note that we have chosen only the positive sign for the<br />

coord<strong>in</strong>ate r. In order to still cover the whole <strong>spacetime</strong>, we<br />

need two charts. The first chart represents the region l 0<br />

and the other one represents l 0 and the <strong>in</strong>itial angle lies<br />

<strong>in</strong> the <strong>in</strong>terval 0; for nonradial geodesics, we have a><br />

0. With the critical angle crit from (19) it follows:<br />

8<br />

< 1 for < crit or > crit<br />

Thus, because r, b 0 , and a are strictly positive, is also<br />

strictly positive. On the other hand, from the balance<br />

equation (17) together with the condition l_<br />

2 0 follows<br />

that 1. In the follow<strong>in</strong>g we will also use the scaled<br />

q<br />

distance b b 0 = b 2 0 l 2 <strong>in</strong>stead of the parameter .<br />

Note that Eq. (27) is <strong>in</strong>dependent of . Hence, all geodesics<br />

follow the same orbit regardless of whether they are<br />

timelike, lightlike, or spacelike. As can be easily shown,<br />

this is also true for any spherically symmetric and static<br />

<strong>spacetime</strong>.<br />

Case 1: Ifa 0, negative sign). Note<br />

that the root <strong>in</strong> Eq. (29) vanishes for l 0 and l l m<strong>in</strong> .<br />

However, the <strong>in</strong>tegral rema<strong>in</strong>s f<strong>in</strong>ite and we only have to<br />

split it <strong>in</strong>to two branches. For =2 l f l i we obta<strong>in</strong><br />

’ <br />

F i F ; a : (32)<br />

On the other hand, if > =2, there is only a solution for<br />

l f l m<strong>in</strong> . In the case l f >l i , the angle ’ is given uniquely<br />

by<br />

’ <br />

2K a F ; a F i ; (33)<br />

044043-4


EXACT GEOMETRIC OPTICS IN A MORRIS-THORNE ... PHYSICAL REVIEW D 77, 044043 (2008)<br />

while if l f =2, l f l i . The orbital equation<br />

’ reads<br />

and thus,<br />

crit<br />

s<strong>in</strong>h’ cosh’ 1 b 2 i b i<br />

cosh 2 ’ b 2 i s<strong>in</strong>h2 ’<br />

s<br />

1<br />

l crit<br />

b 0<br />

1<br />

2<br />

crit<br />

(51)<br />

: (52)<br />

In that case, a geodesic either starts with the critical angle<br />

crit (lower sign) and recedes to <strong>in</strong>f<strong>in</strong>ity or it starts<br />

with<br />

crit and approaches the throat asymptotically<br />

(upper sign). For<br />

crit the angle ’ might<br />

grow unlimited, while for crit the maximum angle<br />

’ ? max reads<br />

’ ? 1<br />

max<br />

2 ln1 b i<br />

ars<strong>in</strong>h b 0<br />

(53)<br />

1 b i l i<br />

which follows immediately from Eq. (50) with 0.<br />

In Fig. 4 we collocated the function ’ ’ b , where<br />

q<br />

b b 0 = b 2 0 l 2 is the scaled distance, for all three above<br />

044043-5


THOMAS MÜLLER PHYSICAL REVIEW D 77, 044043 (2008)<br />

<strong>in</strong>itial angle > =2 and ’ f >’ m<strong>in</strong> is given by<br />

l 2L 1 L i L f (58)<br />

with f ’ f and i s<strong>in</strong> , whereas otherwise<br />

l L f L i : (59)<br />

If a>1, the primitive of Eq. (56) reads<br />

R<br />

L b 0 F a ; D a ; : (60)<br />

FIG. 4. The angle<br />

q<br />

’ (ord<strong>in</strong>ate) is plotted over the scaled<br />

distance b b 0 = b 2 0 l 2 (abscissa), l 0. The throat size is<br />

b 0 2 and the observer is located at l i 6 b i 0:316 . The<br />

dotted l<strong>in</strong>e separates the dest<strong>in</strong>ation po<strong>in</strong>ts l f _ l i and the solid<br />

l<strong>in</strong>e separates the <strong>in</strong>itial angle _ =2. The dash-dotted l<strong>in</strong>e for<br />

7<br />

9<br />

is composed of ’ <br />

b’ m<strong>in</strong> and ’ <br />

’<<br />

’ m<strong>in</strong> .<br />

mentioned cases. Because b does not dist<strong>in</strong>guish between<br />

the upper and lower universe, we restricted to l 0.<br />

4. Length of a geodesic<br />

The spatial length l of a geodesic follows from the<br />

<strong>in</strong>tegral over the orbital curve C fl ’ ;’ 0...’ f g,<br />

Z<br />

l d~s; (54)<br />

where d~s 2 dl 2 b 2 0 l 2 d’ 2 . If we use ’ as the orbital<br />

parameter, the <strong>in</strong>tegral reads<br />

s<br />

Z dl 2<br />

l<br />

b 2 0 l 2 d’: (55)<br />

C d’<br />

Instead of the angle ’ we can also parametrize C by ,<br />

Z<br />

b<br />

l<br />

0<br />

p d : (56)<br />

C a 2 1<br />

2<br />

1 a 2 2<br />

For a crit, we must dist<strong>in</strong>guish<br />

whether we measure the length up to the <strong>wormhole</strong> throat,<br />

’ f


EXACT GEOMETRIC OPTICS IN A MORRIS-THORNE ... PHYSICAL REVIEW D 77, 044043 (2008)<br />

the time t are shown <strong>in</strong> Fig. 6. Note that the angle cone is<br />

limited to the <strong>in</strong>terval 0; =2 . Measur<strong>in</strong>g cone and t,we<br />

can immediately read the throat size b 0 from Fig. 6.<br />

Now, the distance of the observer to the <strong>wormhole</strong> throat<br />

follows from Eq. (26),<br />

p<br />

b<br />

l 0 1 a 2 cones<strong>in</strong> 2 cone<br />

i : (66)<br />

a cone s<strong>in</strong> cone<br />

The scaled distance b i is given by b i a cone s<strong>in</strong> cone and is<br />

shown <strong>in</strong> Fig. 7.<br />

FIG. 6. The observation angle cone is plotted on the abscissa.<br />

Left axis: The solid l<strong>in</strong>e represents the size of the throat b 0<br />

scaled by the time t between the emission of the flash and the<br />

observation of the r<strong>in</strong>g. Right axis: The dashed l<strong>in</strong>e corresponds<br />

to the parameter a cone .<br />

the flash and the lightn<strong>in</strong>g up of the r<strong>in</strong>g deciphers the size<br />

of the throat. From c t l together with Eq. (58) we<br />

obta<strong>in</strong><br />

1 c ta<br />

b cone<br />

0<br />

2 A<br />

where the denom<strong>in</strong>ator A is given by<br />

(65)<br />

A D a cone D s<strong>in</strong> cone ;a cone<br />

q<br />

cot cone 1 a 2 cones<strong>in</strong> 2 cone:<br />

The parameter a cone as well as the throat size b 0 scaled by<br />

V. CONNECTING TWO POINTS WITH A<br />

LIGHTLIKE GEODESIC<br />

Consider any two fixed po<strong>in</strong>ts P and Q. Because of the<br />

spherical symmetry and staticity of the MT metric, one can<br />

always orientate a coord<strong>in</strong>ate system such that P and Q<br />

will lie <strong>in</strong> the hypersurface # =2 with P ly<strong>in</strong>g on the<br />

x-axis, compare Fig. 8.<br />

Without loss of generality we can choose the coord<strong>in</strong>ates<br />

of P and Q to be<br />

P: l l i > 0; ’ 0;<br />

Q: l l f ; ’ ’ f > 0:<br />

To f<strong>in</strong>d the <strong>in</strong>itial angle >0 of the geodesic which<br />

connects P and Q <strong>in</strong> the <strong>Morris</strong>-<strong>Thorne</strong> <strong>spacetime</strong> with<br />

fixed throat size b 0 , we have to solve the conditional<br />

equation<br />

C li ;l f ;’ f<br />

’ l i ; ’ f<br />

!<br />

0; (67)<br />

where ’ l i ; follows from ’ <br />

or ’ <br />

, respectively, and<br />

the parameters l i , l f , and ’ f are fixed. Because of the<br />

ambiguity of the Jacobian functions, we solve Eq. (67)<br />

FIG. 7. The scaled distance b i is plotted with respect to the<br />

observation angle cone. The proper distance l i is connected to<br />

q<br />

the scaled distance by l i b 0 bi 2 1. In the limit cone<br />

=2, the observer is located <strong>in</strong> the throat.<br />

FIG. 8. In MT <strong>spacetime</strong> a coord<strong>in</strong>ate system can always be<br />

chosen <strong>in</strong> such a way that any two po<strong>in</strong>ts P and Q will lie <strong>in</strong> the<br />

# =2 plane. A geodesic connect<strong>in</strong>g both po<strong>in</strong>ts has an <strong>in</strong>itial<br />

angle with respect to the direction of the <strong>wormhole</strong> throat.<br />

S<strong>in</strong>ce there are arbitrary many geodesics connect<strong>in</strong>g both po<strong>in</strong>ts,<br />

the angle is not unique. However, we can elim<strong>in</strong>ate the<br />

ambiguity of by fix<strong>in</strong>g the angle ’ f .<br />

044043-7


THOMAS MÜLLER PHYSICAL REVIEW D 77, 044043 (2008)<br />

for the parameter a <strong>in</strong> the first place and then calculate ,<br />

compare Eq. (26).<br />

The most simple case is when P and Q lie <strong>in</strong> opposite<br />

universes, l f < 0. Then, the geodesic connect<strong>in</strong>g both<br />

po<strong>in</strong>ts has to pass the <strong>wormhole</strong> throat at ’ ’ throat b i ,<br />

compare Eq. (47). Thus, the conditional Eq. (67) is composed<br />

of ’ throat b f and ’ throat b i ,<br />

C ? ’ throat b i ’ throat b f ’ f<br />

and the <strong>in</strong>itial angle<br />

2 K F b i ; F b f ; ’ f ;<br />

(68)<br />

reads<br />

arcs<strong>in</strong> b i : (69)<br />

However, if l f 0, we have to determ<strong>in</strong>e the doma<strong>in</strong><br />

where Q is localized <strong>in</strong> order to choose the correct orbital<br />

equation ’ ’ ; a from Sec. III C 3. Therefore, we<br />

have to plot the critical curves l crit<br />

and l =2 for a given<br />

<strong>in</strong>itial position l i . Like <strong>in</strong> Fig. 4, we can use the scaled<br />

q<br />

coord<strong>in</strong>ate b b 0 = b 2 0 l 2 <strong>in</strong>stead of the proper coord<strong>in</strong>ate<br />

l, s<strong>in</strong>ce l f 0, compare Fig. 9.<br />

The separators b crit<br />

follow from Eq. (52) where b crit<br />

is<br />

only valid <strong>in</strong> the range ’ 2 0;’ ? max . On the other hand,<br />

the separator b =2 follows from Eq. (39) and is valid <strong>in</strong> the<br />

range ’ 2 0; K =2 . While the geodesics <strong>in</strong> the regions<br />

1 , 3 , and 4 are strictly monotonic, a geodesic <strong>in</strong> region 2<br />

might have a place of closest approach b m<strong>in</strong> depend<strong>in</strong>g on<br />

the <strong>in</strong>itial angle , compare Eqs. (18) and (35).<br />

Now, we can determ<strong>in</strong>e the conditional equation C 0<br />

for the different regions. If Q is located <strong>in</strong> region 1 or 4 ,<br />

the conditional equation is simply given by<br />

C 1 ;4 F b f ; sign b f b i<br />

’ f<br />

F b i ; ;<br />

(70)<br />

where 2 0; 1 . follows from arcs<strong>in</strong> b i a for Q 2<br />

4 or arcs<strong>in</strong> b i a for Q 2 1 , respectively. If Q is<br />

located <strong>in</strong> region 3 , we get the equation<br />

C 3 a ’ <br />

a ’ f (71)<br />

and the parameter a can be uniquely found <strong>in</strong> the range<br />

b i ; 1 . The most complicated condition arises for Q 2 2 .<br />

As long as l f >l i , the condition is given by<br />

C 2<br />

a ’ <br />

a ’ f : (72)<br />

But, if l f ~’ m<strong>in</strong><br />

compare Eqs. (33) and (34), respectively. The ambiguity<br />

between and a is solved by compar<strong>in</strong>g l f to the separat<strong>in</strong>g<br />

curve l =2 . Thus, if ’ f < K a =2 and l f >l =2 ’ f<br />

the <strong>in</strong>itial angle is arcs<strong>in</strong> b i =a and<br />

arcs<strong>in</strong> b i =a otherwise.<br />

FIG. 9. The MT <strong>spacetime</strong> is divided <strong>in</strong>to four regions which<br />

are separated by the l<strong>in</strong>es b crit<br />

, b crit<br />

and b =2 . Here, the angle ’ is<br />

shown as a function of the scaled distance b for a <strong>wormhole</strong> with<br />

throat size b 0 2 and an observer who is located at l i 6.<br />

Geodesics with <strong>in</strong>itial angle =2 < < crit have a po<strong>in</strong>t of<br />

closest approach at b m<strong>in</strong> , compare Eq. (18).<br />

VI. GRAVITATIONAL LENSING<br />

A review of gravitational lens<strong>in</strong>g from a <strong>spacetime</strong><br />

perspective with a detailed list of references is given by<br />

Perlick [18]. In general, gravitational lens<strong>in</strong>g is only <strong>in</strong>vestigated<br />

<strong>in</strong> the weak or strong field limit. Here, we follow<br />

Perlick [21] and determ<strong>in</strong>e the exact lens<strong>in</strong>g equation<br />

L ; ’ 0 for the MT metric with parameters ’ and<br />

as shown <strong>in</strong> Fig. 10. Because of the spherical symmetry of<br />

the MT <strong>spacetime</strong>, we can restrict us to the # =2<br />

plane. Note that, unlike Perlick, we evaluate the aris<strong>in</strong>g<br />

elliptic <strong>in</strong>tegrals and determ<strong>in</strong>e the gravitational lens<strong>in</strong>g<br />

equation as well as the angular diameter distances by<br />

means of elliptic <strong>in</strong>tegral functions.<br />

As <strong>in</strong> the previous section, we have to connect two<br />

po<strong>in</strong>ts by a lightlike geodesic for the lens<strong>in</strong>g equation.<br />

044043-8


EXACT GEOMETRIC OPTICS IN A MORRIS-THORNE ... PHYSICAL REVIEW D 77, 044043 (2008)<br />

FIG. 10. An observer located at position l i > 0 receives light<br />

from a source at position l f ;’ at an angle .<br />

While the observer is fixed at position l i , the position of the<br />

light source is given by the fixed radius l f and an arbitrary<br />

angle ’. However, <strong>in</strong> contrast to the previous section, we<br />

do not solve the lens<strong>in</strong>g equation for the <strong>in</strong>itial angle but<br />

for the position angle ’.<br />

Depend<strong>in</strong>g on the position l f , we have to consider three<br />

cases. The most simple one is given by l f < 0. For each<br />

observation angle represented by s<strong>in</strong> =b i , we immediately<br />

get the angle ’ of the source,<br />

’ 2 K F b i ; F b f ; : (75)<br />

S<strong>in</strong>ce the null geodesic must pass the <strong>wormhole</strong> throat, the<br />

angle is limited to the range 1; 1 with 1<br />

arcs<strong>in</strong> b i crit , compare Fig. 11.<br />

If 0 l f crit there are two <strong>in</strong>tersections<br />

arcs<strong>in</strong> b i<br />

b f<br />

: (76)<br />

’ 1 F f ;a F s<strong>in</strong> ; a ; (77a)<br />

’ 2 2K a F f ;a F s<strong>in</strong> ; a ; (77b)<br />

where the second one is hidden by the first one. On the<br />

other hand, if m<strong>in</strong> < < crit , the angle ’ is unambiguously<br />

given by<br />

’ F b f ; F b i ; ; (78)<br />

compare Fig. 12. In the limit<strong>in</strong>g case<br />

m<strong>in</strong> we obta<strong>in</strong><br />

’ m<strong>in</strong> K b f F s<strong>in</strong> ; b f : (79)<br />

In the third case, the position of the observer is closer to<br />

the <strong>wormhole</strong> than the r<strong>in</strong>g of sources, 0 l i l i .<br />

To calculate image distortion and the brightness of<br />

images one has to consider a congruence of null geodesics<br />

start<strong>in</strong>g at the observer’s position. For that, one has to<br />

determ<strong>in</strong>e the radial and tangential angular diameter distances<br />

D r ang and D t ang as described by Perlick [18]. For the<br />

MT <strong>spacetime</strong>, we obta<strong>in</strong><br />

FIG. 11. Lens<strong>in</strong>g ’ ’ for an observer located at l i 6<br />

and r<strong>in</strong>gs with radius l f 0:1 (dashed l<strong>in</strong>e), l f 1 (solid<br />

l<strong>in</strong>e), and l f 10 (dotted l<strong>in</strong>e).<br />

FIG. 12. Lens<strong>in</strong>g ’ ’ for an observer at l i 6 and r<strong>in</strong>gs<br />

with radius l f 0:1 (solid l<strong>in</strong>e), l f 1 (dash-dotted l<strong>in</strong>e), l f<br />

3 (dashed l<strong>in</strong>e). The dotted l<strong>in</strong>e marks the maximum angle<br />

’ m<strong>in</strong> for all l f , compare Eq. (79).<br />

044043-9


THOMAS MÜLLER PHYSICAL REVIEW D 77, 044043 (2008)<br />

observer<br />

caustic<br />

po<strong>in</strong>ts<br />

FIG. 13. Lens<strong>in</strong>g ’ ’ for an observer at l i 6 and r<strong>in</strong>gs<br />

with radius l f 7 (solid l<strong>in</strong>e), l f 10 (dotted l<strong>in</strong>e), l f 100<br />

(dashed l<strong>in</strong>e).<br />

q<br />

D t ang b 2 0 l 2 s<strong>in</strong>’<br />

f<br />

(83)<br />

s<strong>in</strong><br />

and<br />

q<br />

D r ang b 2 0 l 2 f<br />

cos d’ (84)<br />

d<br />

with b i s<strong>in</strong> b f s<strong>in</strong> . As before, we have to identify the<br />

necessary equations ’ ’ depend<strong>in</strong>g on the orbit of<br />

the correspond<strong>in</strong>g null geodesic. Instead of the angle ,we<br />

can also calculate the derivative of ’ with respect to the<br />

parameter a of Eq. (26) and then multiply<strong>in</strong>g d’=da with<br />

da<br />

d<br />

b 0 cos<br />

q : (85)<br />

s<strong>in</strong> 2 b 2 0 l 2 i<br />

The derivatives of the elliptic <strong>in</strong>tegral functions F and K<br />

are shown <strong>in</strong> the appendix.<br />

VII. WAVE FRONTS<br />

As <strong>in</strong> the previous sections, we use the <strong>geometric</strong> <strong>optics</strong><br />

approximation where light rays follow null geodesics <strong>in</strong><br />

curved <strong>spacetime</strong>. Then, a wave front at some coord<strong>in</strong>ate<br />

time t w const is def<strong>in</strong>ed by the correspond<strong>in</strong>g endpo<strong>in</strong>ts<br />

of all null geodesics start<strong>in</strong>g from the <strong>in</strong>itial event where<br />

the flash of light was emitted. The conditional equation for<br />

this wave front is given by<br />

l ’;<br />

!<br />

W li<br />

’;<br />

t<br />

c w 0: (86)<br />

Here, only the position l i of the observer is fixed which is<br />

also the po<strong>in</strong>t where the flash of light is emitted. For each<br />

direction , we can calculate the length l of a geodesic by<br />

means of the equations of Sec. III C 4. Figure 14 shows two<br />

snapshots of a wave front which has started at time t 0.<br />

FIG. 14. Embedd<strong>in</strong>g diagram of a <strong>wormhole</strong> with throat size<br />

b 0 2. An observer located at position l i 10 emits a flash of<br />

light at time t 0. The two solid l<strong>in</strong>es represent the correspond<strong>in</strong>g<br />

wave front at time t w 4 and t w 16, respectively. At t w<br />

16, the wave front overlap with itself result<strong>in</strong>g <strong>in</strong> two caustic<br />

po<strong>in</strong>ts.<br />

The bend<strong>in</strong>g of light close to the <strong>wormhole</strong> throat lets the<br />

wave front overlap with itself result<strong>in</strong>g <strong>in</strong> caustic po<strong>in</strong>ts.<br />

VIII. CONCLUDING REMARKS<br />

Numerical libraries like, for example, the Numerical<br />

Recipes [19] or the GNU Scientific Library [34] are able<br />

to handle elliptic functions as well as Jacobian functions<br />

like any other explicit function. Thus, there is no need to<br />

numerically <strong>in</strong>tegrate the elliptic <strong>in</strong>tegrals. In the case of<br />

gravitational lens<strong>in</strong>g <strong>in</strong> the <strong>Morris</strong>-<strong>Thorne</strong> <strong>spacetime</strong>, compare<br />

Sec. VI, we only have to evaluate the elliptic functions<br />

at the <strong>in</strong>itial and f<strong>in</strong>al po<strong>in</strong>ts which speeds up the calculations.<br />

In the more general case of connect<strong>in</strong>g two arbitrary<br />

po<strong>in</strong>ts, we have obta<strong>in</strong>ed an easy to solve implicit<br />

equation. Now, we are able to f<strong>in</strong>d any null geodesic which<br />

connects an object with the observer or an arbitrary light<br />

source. A physically reasonable illum<strong>in</strong>ation as well as an<br />

<strong>in</strong>teractive visualization becomes possible.<br />

ACKNOWLEDGMENTS<br />

This work was partly supported by the Deutsche<br />

Forschungsgesellschaft (DFG), SFB 382, Teilprojekt D4.<br />

APPENDIX: ELLIPTIC INTEGRALS AND<br />

JACOBIAN FUNCTIONS<br />

A detailed discussion of elliptic functions can be found<br />

<strong>in</strong> Ref. [30]. Here, only a short collection of some relations<br />

used <strong>in</strong> the ma<strong>in</strong> part of this article is given.<br />

For the three basic Jacobian functions sn, cn, and dn, the<br />

follow<strong>in</strong>g identities hold<br />

sn 2 u; k cn 2 u; k 1; (A1a)<br />

dn 2 u; k k 2 sn 2 u; k 1; (A1b)<br />

dn 2 u; k k 2 cn 2 u; k k 02 ; (A1c)<br />

044043-10


EXACT GEOMETRIC OPTICS IN A MORRIS-THORNE ... PHYSICAL REVIEW D 77, 044043 (2008)<br />

with k 02 k 2 1. If the module k of a Jacobian function the complete elliptic <strong>in</strong>tegral of the first k<strong>in</strong>d is given by<br />

vanishes, then we obta<strong>in</strong> the limit<strong>in</strong>g functions<br />

dK D<br />

sn u; 0 s<strong>in</strong>u; cn u; 0 cosu; dn u; 0 1:<br />

2<br />

d 1 : (A5)<br />

(A2)<br />

At last, we need the derivatives of the elliptic <strong>in</strong>tegral of the<br />

On the other hand, if k 1, the Jacobian functions simplify<br />

to<br />

that the argument as well as the module of the elliptic<br />

first k<strong>in</strong>d with respect to the parameter a or 1=a. Note<br />

1<br />

sn u; 1 tanhu; cn u; 1 dn u; 1<br />

coshu :<br />

<strong>in</strong>tegral depends on this parameter. Thus, we obta<strong>in</strong><br />

p<br />

@F b; D b; F b; b 1 b<br />

(A3)<br />

2<br />

p<br />

@<br />

2<br />

1 2<br />

1 1 2 b 2<br />

If the module k 1, the <strong>in</strong>complete elliptic <strong>in</strong>tegral of<br />

the first k<strong>in</strong>d, F , reduces to<br />

(A6)<br />

and<br />

p<br />

1 b 2<br />

1<br />

F u; 1 artanh u<br />

2 ln1 x (A4)<br />

1 x<br />

while the elliptic <strong>in</strong>tegral of the second k<strong>in</strong>d, D, simplifies<br />

to D u; 1 u.<br />

For the radial angular diameter distance D t ang, we need<br />

the derivatives of the elliptic <strong>in</strong>tegrals. The derivative of<br />

@F b a ;a<br />

@a<br />

D b a ;a F b a ;a<br />

a 1 a 2 a<br />

b<br />

a<br />

1<br />

p<br />

a 2 a 2 :<br />

b 2<br />

(A7)<br />

[1] J. A. Wheeler, Geometrodynamics (Academic Press, New<br />

York, 1962).<br />

[2] A. E<strong>in</strong>ste<strong>in</strong> and N. Rosen, Phys. Rev. 48, 73 (1935).<br />

[3] R. W. Fuller and J. A. Wheeler, Phys. Rev. 128, 919<br />

(1962).<br />

[4] M. S. <strong>Morris</strong> and K. S. <strong>Thorne</strong>, Am. J. Phys. 56, 395<br />

(1988).<br />

[5] The metric presented by <strong>Morris</strong> and <strong>Thorne</strong> already appears<br />

<strong>in</strong> 1973 by Homer G. Ellis [6]. However, he did not<br />

recognize the metric as a <strong>wormhole</strong> but a dra<strong>in</strong>hole.<br />

[6] H. G. Ellis, J. Math. Phys. (N.Y.) 14, 104 (1973).<br />

[7] M. Visser, Phys. Rev. D 39, 3182 (1989).<br />

[8] E. Teo, Phys. Rev. D 58, 024014 (1998).<br />

[9] M. Safonova, D. F. Torres, and G. E. Romero, Phys. Rev. D<br />

65, 023001 (2001).<br />

[10] M. Visser, S. Kar, and N. Dadhich, Phys. Rev. Lett. 90,<br />

201102 (2003).<br />

[11] P. K. F. Kuhfittig, Phys. Rev. D 68, 067502 (2003).<br />

[12] A. DeBenedictis and A. Das, Classical Quantum Gravity<br />

18, 1187 (2001).<br />

[13] P. K. F. Kuhfittig, Phys. Rev. D 71, 104007 (2005).<br />

[14] M. Visser, Lorentzian Wormholes—From E<strong>in</strong>ste<strong>in</strong> to<br />

Hawk<strong>in</strong>g (AIP Press, New York, 1995).<br />

[15] S. Frittelli, T. P. Kl<strong>in</strong>g, and E. T. Newman, Phys. Rev. D<br />

61, 064021 (2000).<br />

[16] J. G. Cramer, R. L. Forward, M. S. <strong>Morris</strong>, M. Visser,<br />

G. Benford, and G. A. Landis, Phys. Rev. D 51, 3117<br />

(1995).<br />

[17] K. K. Nandi, Y.-Z. Zhang, and A. V. Zakharov, Phys. Rev.<br />

D 74, 024020 (2006).<br />

[18] V. Perlick, Liv<strong>in</strong>g Rev. Relativity 7, 9 (2004).<br />

[19] W. H. Press, S. A. Teukolsky, W. T. Vetterl<strong>in</strong>g, and B. P.<br />

Flannery, Numerical Recipes <strong>in</strong> C (Cambridge University<br />

Press, Cambridge, England, 2002).<br />

[20] A. Čadež and U. Kostić, Phys. Rev. D 72, 104024 (2005).<br />

[21] V. Perlick, Phys. Rev. D 69, 064017 (2004).<br />

[22] D. Weiskopf, Ph.D. thesis, Eberhard-Karls-Universität<br />

Tüb<strong>in</strong>gen, 2001.<br />

[23] D. Weiskopf, <strong>in</strong> Proceed<strong>in</strong>gs of the 16th IEEE<br />

Visualization Conference, M<strong>in</strong>neapolis, 2005 (IEEE<br />

Computer Society, New York, 2005).<br />

[24] D. Weiskopf, IEEE Trans. Vis. Comput. Graph. 12, 522<br />

(2006).<br />

[25] U. Kraus, Eur. J. Phys. 29, 1 (2008).<br />

[26] T. Müller, Am. J. Phys. 72, 1045 (2004).<br />

[27] The metric (1) was firstly mentioned by Ellis [6] who<br />

called it a dra<strong>in</strong>hole. In contrast to <strong>Morris</strong> and <strong>Thorne</strong> he<br />

identified the upper and lower universe.<br />

[28] W. R<strong>in</strong>dler, Relativity—Special, General and Cosmology<br />

(Oxford University Press, New York, 2001).<br />

[29] H. Goldste<strong>in</strong>, Classical Mechanics (Addison-Wesley,<br />

Read<strong>in</strong>g, MA, 2002).<br />

[30] D. F. Lawden, Elliptic Functions and Applications<br />

(Spr<strong>in</strong>ger-Verlag, New York, 1989).<br />

[31] We use here the elliptic <strong>in</strong>tegral function F which is<br />

related to the one given <strong>in</strong> Abramowitz and Stegun [32]<br />

via F s<strong>in</strong> ; a F AS ; a .<br />

[32] M. Abramowitz and I. A. Stegun, Handbook of<br />

Mathematical Functions (Dover Publicaions, New York,<br />

1964).<br />

[33] R. P. Brent, Computer Journal 14, 422 (1971).<br />

[34] GNU Scientific Library: http://www.gnu.org/software/gsl/.<br />

044043-11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!