10.04.2014 Views

energy saving in pumps, fans & compressors - petrofed.winwinho...

energy saving in pumps, fans & compressors - petrofed.winwinho...

energy saving in pumps, fans & compressors - petrofed.winwinho...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ENERGY SAVING IN PUMPS,<br />

FANS & COMPRESSORS<br />

P. K. MUKHOPADHYAY<br />

New Delhi<br />

December, 2008<br />

1


Energy – Pumps<br />

Pump<strong>in</strong>g – 25-50% Energy <strong>in</strong> plants<br />

– 20% World Electric Energy<br />

9%<br />

27%<br />

64%<br />

Energy<br />

Repair<br />

Cost<br />

Life Cycle Cost Analysis<br />

2


Energy Sav<strong>in</strong>g <strong>in</strong> Pumps<br />

Pump<strong>in</strong>g System<br />

-L<strong>in</strong>e Size<br />

-Fitt<strong>in</strong>gs<br />

- Valves<br />

- Pumps<br />

-Motors<br />

- Drives<br />

L<strong>in</strong>e Size<br />

- Velocity Limits<br />

High – Errosion, NPSHA, Noise, Standards<br />

Low – Sedimentation<br />

--- M<strong>in</strong>imise Life cycle cost<br />

3


Energy Sav<strong>in</strong>g <strong>in</strong> Pumps<br />

P <strong>in</strong> Control Valves for same size & flow rate<br />

4


Life Cycle Cost – Pump<strong>in</strong>g System<br />

COST<br />

LINE DIAMETER<br />

5


Pump System Interaction<br />

Pump Curve<br />

Operat<strong>in</strong>g Po<strong>in</strong>t<br />

HEAD, FT<br />

System Curve<br />

Capacity, GPM<br />

6


Typical Pump Curves<br />

Pump Curve<br />

Operat<strong>in</strong>g Po<strong>in</strong>t<br />

Head<br />

Efficiency<br />

Efficiency<br />

System Curve<br />

BEP<br />

NPSHR<br />

BHP NPSHR<br />

BHP<br />

Capacity<br />

7


Pump Overdesign<br />

‣ Overdesign result<strong>in</strong>g actual<br />

operation away from BEP<br />

<br />

BID evaluation-efficiency<br />

difference of ½ to 1%<br />

<br />

System clearance<br />

}<br />

Lighter shaft To Check 8


Handl<strong>in</strong>g Pump Overdesign<br />

& Part-Load with Time<br />

Approaches<br />

Methods<br />

– Shift Pump Curve<br />

– Shift System Curve<br />

– Shift Both<br />

– Throttl<strong>in</strong>g by Control Valves<br />

– Bypass<strong>in</strong>g Pump<br />

– Two <strong>pumps</strong> <strong>in</strong> series<br />

– Start-Stop Operation<br />

– Variable Speed Operation<br />

– 2-Speed Motor<br />

9


Part Load Operation<br />

<br />

Throttl<strong>in</strong>g by Control Valve<br />

<br />

<br />

<br />

Conventional Method<br />

High Energy<br />

Valve Wear<br />

10


Part Load Operation<br />

<br />

Bypass<strong>in</strong>g Pump<br />

<br />

<br />

<br />

High Energy<br />

Temperature Rise<br />

Valve Wear<br />

11


Part Load Operation<br />

Aff<strong>in</strong>ity Laws<br />

Change<br />

Constant<br />

Cas<strong>in</strong>g`<br />

RPM N<br />

IMP D<br />

Q 1 D 2<br />

2<br />

Q 2 Q 1 N 2<br />

H 2 H 1 N 2<br />

2<br />

H 1 D 2<br />

N 1<br />

D 1<br />

BHP BHP 1<br />

N<br />

3<br />

2 2 BHP 1<br />

D 2<br />

3<br />

N 1<br />

D1<br />

N 1<br />

Assumes Constant Efficiency<br />

IMP. D<br />

RPM N<br />

SAME<br />

D 1<br />

<br />

<br />

<br />

<br />

Two Pumps <strong>in</strong> parallel<br />

Start-Stop operation<br />

By chang<strong>in</strong>g N at<br />

constant D, efficiency is<br />

constant if system is<br />

ma<strong>in</strong>ly friction load. If<br />

system conta<strong>in</strong>s static<br />

head efficiency loss will<br />

occur.<br />

For chang<strong>in</strong>g D efficiency<br />

is constant if D change is<br />

less than 5%. For 25%<br />

change efficiency drop<br />

can be 2% or more<br />

depend<strong>in</strong>g on N s .<br />

12


Effect of RPM Change of Efficiency<br />

Pump Curve<br />

13


Match<strong>in</strong>g pump & system curves<br />

By Variable speed drive<br />

Head, %<br />

Power, %<br />

Capacity, %<br />

14


Part Load Operation<br />

<br />

<br />

Energy efficiency is best with RPM change and for<br />

system with ma<strong>in</strong>ly frictional loss.<br />

Typical <strong>energy</strong> <strong>sav<strong>in</strong>g</strong><br />

Full Load<br />

Part Load<br />

Power for part Load<br />

Throttl<strong>in</strong>g<br />

Variable speed drive<br />

% <strong>sav<strong>in</strong>g</strong> VSD<br />

GPM<br />

3600<br />

2400<br />

FT<br />

180<br />

152<br />

HP<br />

165<br />

118<br />

28<br />

2 – Speed Motor<br />

If part-loads are <strong>in</strong> two regions 2-speed motor is effective.<br />

Typical speeds, RPM<br />

1750/1150, 1750/850, 1150/850, 3500/1750<br />

Cheaper than VSD<br />

15


Part–Load Operation<br />

2-SPEED MOTOR AND THROTTLING<br />

16


Pump Selection<br />

<br />

<br />

<br />

Specific Speed N s = N√Q<br />

(g∆H) ³⁄<br />

For Simplicity g is dropped N s<br />

= N√Q<br />

(∆H) ³⁄<br />

Based on Anderson’s Work<br />

Efficiency η =0.94 – 0.08955 Q(gpm) . X<br />

N(rpm)<br />

– 0.29 Log º 2286 <br />

Ns<br />

-0.21333<br />

2<br />

X = 140<br />

ξ(µ - <strong>in</strong> ) ≈ 1<br />

17


BEP of Centrifugal <strong>pumps</strong> as function<br />

of NS,Q/N & Shape<br />

18


BEP of Pumps – Flowserve corp<br />

19


Change of Pump Efficiency on Part-Load<br />

20


Effects of Viscous Fluid on Pump Curve<br />

21


Achiev<strong>in</strong>g High BEP<br />

Avoid N s < 1000<br />

N s Too High<br />

BEP Highest N s 2500<br />

How to achieve higher BEP?<br />

N s = N√Q<br />

(∆H) ³⁄<br />

N up to 3600<br />

NPSHR<br />

∆H is large, use Multistage pump<br />

22


Vendor Offer Evaluation<br />

<br />

<br />

Compare offer BEP with calculated values. If large mismatch to<br />

<strong>in</strong>vestigate impeller type, clearance, surface roughness, etc.<br />

Initial Test Run<br />

Design & Actual – Operat<strong>in</strong>g po<strong>in</strong>ts, efficiency. Need for<br />

throttl<strong>in</strong>g. Consider<br />

Change rotor dia<br />

Trim Rotor<br />

Change Rotor Width<br />

Different no of blades<br />

Blade discharge Angles<br />

Orifice <strong>in</strong> discharge<br />

Impeller with angle trim at periphery<br />

23


Change Rotor Dia<br />

24


Rotor Trim Correction<br />

25


Efficiency %<br />

60<br />

40<br />

20<br />

0<br />

26<br />

80<br />

X 10<br />

Change Rotor Width<br />

Capacity GPM X 100<br />

100<br />

Head feet


Change Blade Number<br />

27<br />

Capacity, %<br />

Head and Efficiency., %


Effect of No of Vanes & Discharge Angle<br />

Head & Efficiency, %<br />

Capacity, %<br />

28


Impeller With Angle-Trim at Peripheral<br />

29


Pump Performance with Orific <strong>in</strong> Discharge<br />

¼ORIF<br />

Head, Ft<br />

Capacity, GPM<br />

30


Performance Change with Orifice<br />

Head, %<br />

B.H.P., %<br />

Capacity, %<br />

31


Increas<strong>in</strong>g Pump Capacity<br />

<br />

<br />

Underfil<strong>in</strong>g vane tips<br />

Remov<strong>in</strong>g metal from volute<br />

tongue<br />

Performance after underfil<strong>in</strong>g vane tips<br />

Underfil<strong>in</strong>g vane tips<br />

32


Remov<strong>in</strong>g Metal from Volute Tongue<br />

33


Performance after metal removal<br />

from volute tongue<br />

Head and Efficiency, %<br />

Q = Capacity Normal<br />

Q1 = Capacity after volute chipp<strong>in</strong>g<br />

A =Projected volute <strong>in</strong>let area normal<br />

A1 = Projected volute <strong>in</strong>let area after chipp<strong>in</strong>g<br />

34


Different Variable Speed Drives<br />

<br />

<br />

<br />

Permanent magnet adjustable speed drive<br />

S<strong>in</strong>gle unit adjustable speed drive<br />

AC adjustable voltage drive<br />

Wound-Rotor <strong>in</strong>duction motors<br />

• Liquid rheostat controls<br />

• Tirastat II secondary controls<br />

• Contact secondary controls<br />

Adjustable frequency drives<br />

• Pulse width modulation frequency <strong>in</strong>verters<br />

• Solid state frequency <strong>in</strong>verters<br />

• Flux vector drives<br />

Modified Kraemer drives<br />

DC motor with SCR power supply drives<br />

Variable speed fluid drives<br />

35


Variable Speed Drives<br />

Permanent magnet adjustable speed drives<br />

• Number of units up to 400HP <strong>in</strong> use<br />

• Problems of dissipat<strong>in</strong>g heat losses<br />

Adjustable frequency drives<br />

• Widely used <strong>in</strong> units below 1000 HP<br />

• Used over 10,000 HP units<br />

• Sophisticated electronic system<br />

Variable speed fluid drives<br />

• Used for 400 – over 40,000 HP units<br />

36


Pump test at frequent <strong>in</strong>tervals<br />

Performance deterioration with time<br />

Need for repair or change of components<br />

<strong>in</strong>clud<strong>in</strong>g impellers<br />

37


Efficiency of variable-speed drives<br />

Efficiency, %<br />

Design Speed, %<br />

38


Efficiency of Electric Motors (Four-Pole)<br />

Premium Efficiency Motor<br />

Efficiency, %<br />

EPAct Motor<br />

Typical Older Motor<br />

Horsepower<br />

39


Energy Consumption <strong>in</strong> Fans<br />

System Design<br />

Choice of type<br />

• Efficiency<br />

• Reliability<br />

• Noise<br />

Centrifugal Type<br />

Airfoil BEP > 80%<br />

Backward <strong>in</strong>cl<strong>in</strong>ed / Curved BEP > 75%<br />

Axial<br />

Vane Axial BEP >75%<br />

40


Handl<strong>in</strong>g Fan Over design & Part Load<br />

Throttl<strong>in</strong>g by dampers<br />

Orifice <strong>in</strong> discharge<br />

Inlet vane control<br />

Speed control<br />

• Variable Speed Motor<br />

• 2 Speed Motor<br />

Variable Pitch<br />

• Vane Axial Fan<br />

41


Outlet Damper & Variable Speed Control<br />

42


Inlet Vane Control on Backward<br />

Curved Centrifugal Fan<br />

43


Blade Pitch Change on Vaneaxial Fan<br />

44


Power Consumption for Part-Load<br />

Conditions<br />

45


Power Consumption for Part-Load<br />

Conditions …..<br />

46


Power Consumption for Part-Load by<br />

Different Methods<br />

47


Compressor<br />

System Design<br />

Choice of Type<br />

In FCC Service<br />

• S<strong>in</strong>ce 1950 Centrifugal Compressors<br />

• Presently axial <strong>compressors</strong> turndown 75% with<br />

little efficiency loss<br />

• Efficiency 12% higher<br />

48


Handl<strong>in</strong>g Overdesign & Part Load<br />

Inlet damper control<br />

Bypass valve control<br />

Inlet vane control<br />

Variable speed control<br />

Diffuser vane control<br />

49


Types of System Curves<br />

50


Control of a Gas Compressor<br />

Suction Volume V o 5.5 M ³ /S @ 3.63 BAR & 37°C<br />

Pressure Ratio (P d /P s ) o 9.73<br />

No of Stages 7<br />

Power P io<br />

51


Part Load Operation<br />

<br />

Constant Pressure Ratio<br />

P d /P s =9.73<br />

Flow (V/V o<br />

) – 0.75<br />

Regulation<br />

Power<br />

P i<br />

/P io<br />

REL<br />

Power<br />

Surge<br />

V s /V o<br />

Speed<br />

Variation<br />

0.78<br />

100<br />

0.67<br />

Suction<br />

Throttl<strong>in</strong>g<br />

0.83<br />

107<br />

0.65<br />

Adjustable Inlet<br />

Vane<br />

0.80<br />

103<br />

0.60<br />

By Pass<strong>in</strong>g<br />

1.00<br />

128<br />

52


Part Load Operation<br />

<br />

Parabolic System Resistance Curve<br />

P d /P s -9.73<br />

Flow (V/V o ) – 0.85<br />

Regulation<br />

Speed Variation<br />

Suction<br />

Throttl<strong>in</strong>g<br />

Adjustable Inlet<br />

Vane<br />

By Pass<strong>in</strong>g<br />

Power<br />

P i /P io<br />

0.62<br />

0.75<br />

0.73<br />

0.90<br />

Relative<br />

Power<br />

100<br />

121<br />

118<br />

145<br />

53


Power Input <strong>in</strong> Refrigeration<br />

Compressors at Part-Load<br />

GAS COMPRESSION POWER INPUT, %<br />

SPEED CONTROL<br />

VANE CONTROL<br />

SYSTEM VOLUMETRIC FLOW, %<br />

54


Part Load Operation Comparison of<br />

Power Consumption<br />

At constant P d / P s speed variation is only slightly<br />

better than adjustable vane & suction throttl<strong>in</strong>g<br />

With parabolic system resistance curve speed<br />

variation is superior to adj. <strong>in</strong>let vane & suction<br />

throttl<strong>in</strong>g<br />

For refrigeration compressor speed control & adj. <strong>in</strong>let<br />

vane are superior <strong>in</strong> different ranges.<br />

55


Summary of Energy Sav<strong>in</strong>g<br />

56

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!