11.04.2014 Views

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

Linear Algebra Exercises-n-Answers.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Answers</strong> to <strong>Exercises</strong> 27<br />

One.III.1.10<br />

Routine Gauss’ method gives one:<br />

⎛<br />

−3ρ 1+ρ 2<br />

−→ ⎝ 2 1 1 3<br />

⎞<br />

0 1 −2 −7<br />

−(1/2)ρ 1 +ρ 3<br />

0 9/2 1/2 7/2<br />

⎠ −(9/2)ρ2+ρ3<br />

−→<br />

and any cosmetic change, like multiplying the bottom row by 2,<br />

⎛<br />

⎝ 2 1 1 3 ⎞<br />

0 1 −2 −7⎠<br />

0 0 19 70<br />

gives another.<br />

⎛<br />

⎝ 2 1 1 3<br />

⎞<br />

0 1 −2 −7⎠<br />

0 0 19/2 35<br />

One.III.1.11 In the cases listed below, we take a, b ∈ R. Thus, some canonical forms listed below<br />

actually ( include ) ( infinitely ) ( many)<br />

cases. ( In)<br />

particular, they includes the cases a = 0 and b = 0.<br />

0 0 1 a 0 1 1 0<br />

(a) , , ,<br />

0 0 0 0 0 0 0 1<br />

( ) ( ) ( ) ( ) ( ) ( ) ( )<br />

0 0 0 1 a b 0 1 a 0 0 1 1 0 a 1 a 0 0 1 0<br />

(b)<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

⎛<br />

0 0 0 0 0 0 0 0 0 0 0 0 0 1 b 0 0 1 0 0 1<br />

(c) ⎝ 0 0<br />

⎞ ⎛<br />

0 0⎠,<br />

⎝ 1 a<br />

⎞ ⎛<br />

0 0⎠,<br />

⎝ 0 1<br />

⎞ ⎛<br />

0 0⎠,<br />

⎝ 1 0<br />

⎞<br />

0 1⎠<br />

0 0 0 0 0 0 0 0<br />

⎛<br />

(d) ⎝ 0 0 0<br />

⎞ ⎛<br />

0 0 0⎠,<br />

⎝ 1 a b<br />

⎞ ⎛<br />

0 0 0⎠,<br />

⎝ 0 1 a<br />

⎞ ⎛<br />

0 0 0⎠,<br />

⎝ 0 0 1<br />

⎞ ⎛<br />

0 0 0⎠,<br />

⎝ 1 0 a<br />

⎞ ⎛<br />

0 1 b⎠,<br />

⎝ 1 a 0<br />

⎞ ⎛<br />

0 0 1⎠,<br />

⎝ 1 0 0<br />

⎞<br />

0 1 0⎠<br />

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1<br />

One.III.1.12 A nonsingular homogeneous linear system has a unique solution. So a nonsingular matrix<br />

must reduce to a (square) matrix that is all 0’s except for 1’s down the upper-left to lower-right diagonal,<br />

e.g.,<br />

⎛<br />

( )<br />

1 0<br />

, or ⎝ 1 0 0 ⎞<br />

0 1 0⎠ , etc.<br />

0 1<br />

0 0 1<br />

One.III.1.13 (a) The ρ i ↔ ρ i operation does not change A.<br />

(b) For instance, ( ) ( ) ( )<br />

1 2 −ρ 1+ρ 1 0 0 ρ 1+ρ 1 0 0<br />

−→ −→<br />

3 4 3 4 3 4<br />

leaves the matrix changed.<br />

(c) If i ≠ j then<br />

⎛<br />

⎞<br />

.<br />

.<br />

a i,1 · · · a i,n<br />

.<br />

⎜<br />

⎝a j,1 · · · a j,n<br />

⎟<br />

⎠<br />

.<br />

kρ i +ρ j<br />

−→<br />

−kρ i +ρ j<br />

−→<br />

⎛<br />

⎞<br />

.<br />

.<br />

a i,1 · · · a i,n<br />

.<br />

⎜<br />

⎝ka i,1 + a j,1 · · · ka i,n + a j,n<br />

⎟<br />

⎠<br />

.<br />

⎛<br />

.<br />

.<br />

a i,1 · · · a i,n<br />

.<br />

⎜<br />

⎝−ka i,1 + ka i,1 + a j,1 · · · −ka i,n + ka i,n + a j,n<br />

⎟<br />

⎠<br />

.<br />

does indeed give A back. (Of course, if i = j then the third matrix would have entries of the form<br />

−k(ka i,j + a i,j ) + ka i,j + a i,j .)<br />

⎞<br />

Subsection One.III.2: Row Equivalence<br />

One.III.2.11<br />

Bring each to reduced echelon form and compare.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!