13.04.2014 Views

A Family of Wavelets and ...

A Family of Wavelets and ...

A Family of Wavelets and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Revista da Sociedade Brasileira de Telecomunicações<br />

Volume xx Número XX, xxxxx 2xxxx<br />

( deO )<br />

( deO )<br />

Denoting by s ( t ) ↔ S ( w ) the corresponding<br />

transform pair, it follows that ( deO ) ( deO ) 1<br />

ψ ( t ) = s ( t − ) .<br />

2<br />

The shaping pulse can be rewritten as:<br />

( )<br />

⎛ 1 π (1 + α)<br />

⎞<br />

2π<br />

S deO ( w)<br />

= PCOS⎜w;<br />

, − , π , πα ⎟ +<br />

⎝ 4α<br />

4α<br />

⎠<br />

⎛ 3π<br />

α π ⎞ ⎛ 1 2π<br />

(1 − α)<br />

⎞<br />

PCOS⎜<br />

w;0,0,<br />

(1 − ), (1 − 3α<br />

) ⎟ + PCOS⎜w;<br />

, − ,2π<br />

,2πα<br />

⎟<br />

⎝ 2 3 2 ⎠ ⎝ 8α<br />

8α<br />

⎠<br />

Figure 8. Modulo <strong>of</strong> "de Oliveira" Wavelet on frequency<br />

domain varying the roll-<strong>of</strong>f parameter (depth axis).<br />

Finally, applying the inverse transform, we have<br />

( ) ⎛ 1 π (1 + α)<br />

⎞<br />

2π<br />

s deO ( t)<br />

= pcos⎜t;<br />

, − , π , πα ⎟ +<br />

(17)<br />

⎝ 4α<br />

4α<br />

⎠<br />

⎛ 3π<br />

α π ⎞ ⎛ 1 2π<br />

(1 − α)<br />

⎞<br />

pcos⎜t;0,0,<br />

(1 − ), (1 − 3α<br />

) ⎟ + pcos⎜t;<br />

, − ,2π<br />

,2πα<br />

⎟<br />

⎝ 2 3 2 ⎠ ⎝ 8α<br />

8α<br />

⎠<br />

The pcos(.) signal is a complex signal when there are no<br />

symmetries in PCOS(.). The real <strong>and</strong> imaginary parts <strong>of</strong> the<br />

pcos function can be h<strong>and</strong>led separately, according to<br />

pcos ( t;t0 , θ 0 ,w0<br />

,B) = rpcos( t) + j.ipcos( t)<br />

, where<br />

rpcos( t) : = R e( pcos( t;t0 , θ 0 ,w0<br />

,B))<br />

<strong>and</strong><br />

ipcos( t) : = Im( pcos( t;t0 , θ 0 ,w0<br />

,B))<br />

.<br />

Aiming to investigate the wavelet behaviour, we propose to<br />

separate the Real <strong>and</strong> Imaginary parts <strong>of</strong> s (deO) (t),<br />

introducing new functions rpc(.) <strong>and</strong> ipc(.)<br />

( deO ) ⎧ ( deO ) 1 ⎫ ( deO ) ⎧ ( deO ) 1 ⎫<br />

R e ( t ) = Re<br />

s ( t − ) I mψ ( t ) = Im<br />

s (t − )<br />

. (18)<br />

ψ<br />

, { }<br />

⎨<br />

⎩<br />

⎬<br />

2 ⎭<br />

∆ w ( + ) : = w0<br />

+ B<br />

⎨<br />

⎩<br />

⎬<br />

2 ⎭<br />

∆w ( −1 ) : = w0<br />

− ;<br />

Proposition 2. Let<br />

1 <strong>and</strong> B<br />

1<br />

∆ θ ( + )<br />

: = Bt0<br />

+ w0t0<br />

+θ <strong>and</strong> ( 1<br />

0 ∆θ − )<br />

: = Bt0<br />

− w0t0<br />

−θ be auxiliary<br />

0<br />

parameters. Then<br />

rpc<br />

ipc<br />

1<br />

2π<br />

− t .<br />

0<br />

∑<br />

sen ∆θ<br />

( i )<br />

( i )<br />

cos ∆w<br />

t + t.<br />

i∈{<br />

−1,<br />

+ 1}<br />

i∈{<br />

−1,<br />

+ 1}<br />

( t) =<br />

,<br />

− t0.<br />

1<br />

sen ∆θ<br />

( i )<br />

2<br />

2<br />

0<br />

t − t<br />

( i )<br />

sen ∆w<br />

t + t.<br />

∑<br />

( i )cos ∆θ<br />

( i )<br />

sen ∆w<br />

i∈{<br />

−1,<br />

+ 1}<br />

i∈{<br />

−1,<br />

+ 1}<br />

( t) =<br />

.<br />

2π<br />

∑<br />

2<br />

2<br />

0<br />

t − t<br />

∑<br />

( −i<br />

)cos ∆θ<br />

( i )<br />

( i )<br />

cos ∆w<br />

Pro<strong>of</strong>. Follows from trigonometry identities.<br />

At this point, an alternative notation<br />

( + 1 ) ( −1<br />

) ( + 1 ) ( −1<br />

)<br />

rpc( t ) = rpc( t; ∆w<br />

, ∆w<br />

, ∆θ , ∆θ<br />

)<br />

<strong>and</strong><br />

( + 1)<br />

( −1)<br />

( + 1 ) ( −1)<br />

ipc( t ) = ipc( t; ∆w<br />

, ∆w<br />

, ∆θ , ∆θ<br />

) can be introduced<br />

to explicit the dependence on these new parameters.<br />

( )<br />

H<strong>and</strong>ling apart the real <strong>and</strong> imaginary parts <strong>of</strong> s deO ( t)<br />

, we<br />

arrive at<br />

( deO )<br />

( s ( t ))<br />

⎛<br />

π ⎞<br />

2π Re<br />

= rpc⎜t;<br />

π(<br />

1 + α ), π(<br />

1 − α ), 0,<br />

⎟ +<br />

⎝<br />

2 (19)<br />

⎠<br />

⎛<br />

π ⎞<br />

rpc( t; 2π<br />

( 1 − α ), π(<br />

1 + α ), 0,<br />

0) + rpc⎜t;<br />

2π<br />

( 1 + α ), 2π<br />

( 1 − α ), , 0⎟.<br />

⎝<br />

2 ⎠<br />

t<br />

( i )<br />

t<br />

❏<br />

Applying now proposition 2, after many algebraic<br />

manipulations:<br />

( deO)<br />

2π<br />

R e s ( t)<br />

( ) =<br />

1 1−α<br />

2(1+<br />

α<br />

{ Η ( ) ( ) ( )<br />

)<br />

2(1−α<br />

)<br />

t − Η<br />

(1+<br />

α )<br />

t + Μ1+<br />

α<br />

t + Μ<br />

2(1−α<br />

)<br />

( t)<br />

}<br />

2<br />

<strong>and</strong><br />

( deO)<br />

( deO)<br />

Re( ψ ( t)<br />

) = Re( s ( t −1/<br />

2) ).<br />

= , (20)<br />

The analysis <strong>of</strong> the imaginary part can be done in a<br />

similar way.<br />

Definition 3. (Special functions); ν is a real number,<br />

cos( νπt<br />

)<br />

Hν ( t ) : = ν , 0≤ν≤1, <strong>and</strong><br />

νπt<br />

ν 1 2 | ν1<br />

−ν<br />

|<br />

( t ) :<br />

[ ] { sin t ( )t.cos t}<br />

1<br />

2<br />

Μν<br />

=<br />

πν<br />

2 1 − 2 ν<br />

2<br />

1 −ν<br />

2 πν ❏<br />

2<br />

π 1−<br />

2t(<br />

ν1<br />

−ν<br />

2 )<br />

The imaginary part <strong>of</strong> the wavelet can be found mutatus<br />

mut<strong>and</strong>i:<br />

( deO )<br />

2π I m( s ( t )) =<br />

1−α<br />

2(<br />

1+<br />

α )<br />

= { Η2(<br />

1−α<br />

)( t ) − Η(<br />

1+<br />

α )( t ) + Μ1+<br />

α ( t ) + Μ2<br />

( 1−α<br />

)( t )}<br />

2<br />

( deO)<br />

( deO)<br />

<strong>and</strong> Im( ψ ( t)<br />

) = Im( s ( t −1/<br />

2) ).<br />

1 , (21)<br />

The real part (as well as the imaginary part) <strong>of</strong> the<br />

(<br />

complex wavelet ψ deO ) ( t ) are plotted in figure 9, for<br />

α =0.1, 0.2 <strong>and</strong> 1/3.<br />

Re<br />

Im<br />

( deO )<br />

( ψ ( t ))<br />

( deO )<br />

( ψ ( t ))<br />

(<br />

Figure 9. Wavelet ψ<br />

deO ) ( t ) : (a) real part <strong>of</strong> the wavelet<br />

<strong>and</strong> (b) imaginary part <strong>of</strong> the wavelet. (Sketches for α = 0.1,<br />

0.2 <strong>and</strong> 1/3). The effective support <strong>of</strong> such wavelets is the<br />

interval [-12,12].<br />

(a)<br />

(b)<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!