16.04.2014 Views

Language Engineering Applications Hearing and ... - KU Leuven

Language Engineering Applications Hearing and ... - KU Leuven

Language Engineering Applications Hearing and ... - KU Leuven

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Language</strong> <strong>Engineering</strong> <strong>Applications</strong><br />

<strong>Hearing</strong> <strong>and</strong> cochlear implants<br />

Laboratory for<br />

Experimental ORL<br />

K.U. <strong>Leuven</strong>


The auditory system<br />

Lab Exp ORL<br />

<strong>KU</strong><strong>Leuven</strong><br />

The outer ear - the visible part that collects <strong>and</strong> directs sound<br />

to the middle ear<br />

The middle ear- includes the eardrum <strong>and</strong> three tiny bones<br />

that send sound to the inner ear.<br />

The inner ear - contains the cochlea, that includes the sensory<br />

cells for hearing. These sensory cells are called hair cells.


Normal hearing in a nutshell<br />

Lab Exp ORL<br />

• Sound is picked up from the environment by the outer ear <strong>and</strong> transmitted as<br />

sound waves down the ear canal to the eardrum.<br />

• The sound waves cause the eardrum to vibrate which sets the three tiny bones<br />

(malleus, incus <strong>and</strong> stapes) in the middle ear into motion.<br />

• The motion of these tiny bones makes the fluid in the inner ear, or cochlea,<br />

vibrate.<br />

• The vibration of the inner ear fluid causes the hair cells in the cochlea to move<br />

(organ of Corti). The hair cells change this movement into electrical impulses.<br />

• The electrical impulses are carried by the hearing (auditory) nerve fibers up to<br />

the brain where they are interpreted as sound.<br />

<strong>KU</strong><strong>Leuven</strong>


The organ of Corti - crucial for hearing!<br />

Lab Exp ORL<br />

<strong>KU</strong><strong>Leuven</strong><br />

3500 inner hair cells<br />

25000 outer hair cells


Coding of frequency by place in the cochlea<br />

Lab Exp ORL<br />

• Base: basilar membrane is stiffest<br />

• Apex (the top): basilar membrane is wider <strong>and</strong> less stiff<br />

<strong>KU</strong><strong>Leuven</strong>


<strong>Hearing</strong> loss<br />

Lab Exp ORL<br />

• Audiograms of otitis media<br />

(inflammations of the middle<br />

ear). Results in conductive<br />

hearing loss (hair cells are<br />

not damaged).<br />

<strong>KU</strong><strong>Leuven</strong>


Lab Exp ORL<br />

<strong>Hearing</strong> loss continued<br />

• Noise-induced hearing loss (damaging effect due to stimulation as high sound<br />

levels: sensorineural)<br />

<strong>KU</strong><strong>Leuven</strong>


Lab Exp ORL<br />

<strong>Hearing</strong> loss continued<br />

• Presbycusis: age-related auditory impairments<br />

<strong>KU</strong><strong>Leuven</strong>


Lab Exp ORL<br />

<strong>Hearing</strong> loss (Cochlear)<br />

• Any of the three sections of the ear, outer, middle or inner may not work<br />

correctly <strong>and</strong> cause a hearing loss.<br />

• Sensorineural <strong>Hearing</strong> Loss<br />

• If the inner ear is not functioning correctly, this can cause a sensorineural<br />

hearing loss or nerve deafness. When there is sensorineural hearing loss the<br />

hair cells that line the cochlea have been damaged. The damaged hair cells<br />

cannot send the electrical impulses (release of a neurotransmitter) to the<br />

hearing nerve so the brain does not receive complete sound information. The<br />

greater the hair cell damage, the greater the hearing loss.<br />

• Inner <strong>and</strong> outer parts of hair cells contain chemical substances with a different<br />

ionic composition. Displacement of the basilar membrane cause release of<br />

neurotransmitter: generation of action potentials.<br />

<strong>KU</strong><strong>Leuven</strong><br />

• Sensorineural loss can be caused by many factors including genetics (born<br />

deaf), injury, illness, or can be part of the natural ageing process. Sometimes<br />

drugs, which are used to treat life-threatening illnesses, can also damage the<br />

inner ear.


Cochlear implant<br />

Lab Exp ORL<br />

• A cochlear implant device bypasses the outer, middle, <strong>and</strong> part of the<br />

ear, including the hair cells, <strong>and</strong> stimulates the auditory nerve directly<br />

through an array of electrodes placed as well as possible in the<br />

bone.<br />

<strong>KU</strong><strong>Leuven</strong><br />

• <strong>Hearing</strong> aid versus cochlear implant<br />

– While a conventional hearing aid amplifies the acoustic signal<br />

outer, middle <strong>and</strong> inner ear, a cochlear implant stimulates the<br />

nerve electrically.<br />

– Designed to provide hearing <strong>and</strong> improved communication ability to<br />

individuals who are profoundly hearing impaired <strong>and</strong> who derive<br />

or no benefit from conventional hearing aids.<br />

– Amplification does not help the profoundly deaf<br />

– For implantees with good nerve survival, multiple electrodes can<br />

‘place’ representation of frequencies in the normal cochlea:<br />

towards the base of the cochlea stimulate high-frequency sounds,<br />

towards the apex stimulate lower frequencies.


Inclusion criteria<br />

Lab Exp ORL<br />

• Patients with profound bilateral sensorineural hearing loss (FI 90dB) in both<br />

ears as determined by st<strong>and</strong>ard audiometrical testing<br />

• Pre- <strong>and</strong> postlingually deafened<br />

• Patients scoring less than 40% on open-set sentence recognition in the bestaided<br />

listening condition with conventional hearing aids.<br />

• Patients can also be considered c<strong>and</strong>idates after extensive consideration by a<br />

knowledgeable NKO surgeon.<br />

• Patients must have past ORL, audiological, anaesthesiological <strong>and</strong> radiological<br />

tests as well as psychological evaluations.<br />

• Patients must be capable of performing tests, although mentally impaired<br />

people can also benefit from an implant<br />

• Multidisciplinary team at work!<br />

<strong>KU</strong><strong>Leuven</strong>


Exclusion criteria<br />

Lab Exp ORL<br />

<strong>KU</strong><strong>Leuven</strong><br />

• Patients who have a marked benefit from conventional hearing aid as<br />

determined by st<strong>and</strong>ard audiometrical tests<br />

• Patients with a lack of recognizable acoustic nerve on MRI examination <strong>and</strong>/or<br />

negative results on the pre-operative electro-stimulation test.<br />

• Patients with a medical contra-indications to electrode insetion or receiver<br />

placement e.g. malformation <strong>and</strong>/or ossification of the cochlea<br />

• Patients with chronic ear disease such as tinnitus<br />

• Patients with deafness due to lesions of the acoustic nerve or central auditory<br />

pathway<br />

• Patients with negative results of the pre-operative electro-stimulation test<br />

• Patients with a duration of deafness exceeding 15 yrs<br />

• .Patients with allergy to the insertion gel Triamcinolone acetonide (= Kenacort<br />

A®)<br />

• Motivation!<br />

• ....


Lab Exp ORL<br />

Cochlear implant<br />

• Sound is received by the microphone<br />

• The sound is analyzed <strong>and</strong> digitized into coded signals by an internal chip.<br />

• Coded signals are sent to the transmitter.<br />

• Transmitter sends the code across the skin to the internal implant where it is<br />

converted to electronic signals.<br />

• Signals are sent to the electrode array to stimulate the hearing nerve fibres in<br />

the cochlea.<br />

• Signals travel to the brain where they are recognized as sounds producing a<br />

hearing sensation.<br />

<strong>KU</strong><strong>Leuven</strong>


The Laura cochlear implant<br />

Lab Exp ORL<br />

Coil on the<br />

skin<br />

Coil under<br />

the skin<br />

BTE +<br />

microphone<br />

Decoding +<br />

Current<br />

Sources<br />

Speech<br />

Processor<br />

(DSP)<br />

Electrode array<br />

inserted in cochlea<br />

External<br />

Internal<br />

<strong>KU</strong><strong>Leuven</strong><br />

ps. L. Geurts


Insertion of electrode array<br />

Lab Exp ORL<br />

<strong>KU</strong><strong>Leuven</strong>


Specifications of LAURA implant device<br />

Lab Exp ORL<br />

• Array of 16 electrodes of which each adjacent pair of electrodes is defined as a<br />

bipolar channel.<br />

• The overall stimulation rate for the st<strong>and</strong>ard biphasic current pulses of 40 ms<br />

per phase is fixed at 10,000 pulses per second.<br />

• The rate per channel depends on the number of active channels. For a st<strong>and</strong>ard<br />

setting, a biphasic current pulse is sent to one of the active channels each 100<br />

ms. Hence, the stimulation rate for eight active channels is 1250 pulses per<br />

second per channel.<br />

• Besides the st<strong>and</strong>ard pulse width of 40 ms/phase, biphasic pulses of 100<br />

ms/phase <strong>and</strong> 200 ms/phase can also be used, but then only at lower<br />

stimulation rates.<br />

<strong>KU</strong><strong>Leuven</strong><br />

• In the Laura Flex the acoustical input received by the microphone is filtered by<br />

as many as eight fourth-order b<strong>and</strong>pass filters from 100 Hz to 5000 Hz, one for<br />

each active channel. The most important frequencies for speech intelligibility<br />

range between 100 <strong>and</strong> 5000 Hz.


Lab Exp ORL<br />

Specifications of LAURA implant device<br />

• The filters have a linear spacing from 100 Hz to a transition frequency of<br />

approximately 800 Hz, <strong>and</strong> with a logarithmic spacing from the transition<br />

frequency to 5000 Hz. If less than 8 channels are activated, the filter b<strong>and</strong>s are<br />

re-arranged over the 100-5000 Hz interval. The frequency b<strong>and</strong>s are grouped<br />

together, from high to low. The latter implies that high frequency cues become<br />

more difficult to differentiate than low frequency ones when less electrodes are<br />

active.<br />

• After envelope detection <strong>and</strong> compression, which is done in a manner<br />

comparable to the CIS algorithm (Wilson et al. 1991), the electrical variations<br />

are transmitted to the internal device through a transcutaneous link. Amplitude<br />

is coded by changing the amplitude of the electrical pulse, not the duration.<br />

<strong>KU</strong><strong>Leuven</strong>


Signal is filtered, temporal envelope is determined, compression,<br />

modulated, CIS...<br />

Lab Exp ORL<br />

verzwakking (dB)<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

/ie/<br />

100 1000<br />

frequentie (Hz)<br />

<strong>KU</strong><strong>Leuven</strong><br />

Plot L. Geurts


Top: Output of the CIS algorithm for the word ‘som’. Pulse channels reflect the envelopes<br />

of the b<strong>and</strong>pass filter output. Below: more detailed overview.<br />

8<br />

Lab Exp ORL<br />

7<br />

A<br />

amplitude per channel<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

100 200 300 400 500 600 700 800 900<br />

time (ms)<br />

8<br />

B<br />

amplitude per channel<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

<strong>KU</strong><strong>Leuven</strong><br />

1<br />

384 386 388 390 392 394 396<br />

time (ms)<br />

ps L. Geurts


Lab Exp ORL<br />

<strong>KU</strong><strong>Leuven</strong>


Transmission of /ama/ <strong>and</strong> /asa/ by the Laura implant<br />

Lab Exp ORL<br />

<strong>KU</strong><strong>Leuven</strong>


Lab Exp ORL<br />

One month after surgery<br />

• Fitting of the implant<br />

– determine thresholds <strong>and</strong> most comfortable levels for each channel<br />

(= pair of electrodes).<br />

– Determined with tones <strong>and</strong> speech.<br />

– Signal is mapped onto dynamic range (mcl-level)<br />

– Start of rehabilitation programme<br />

<strong>KU</strong><strong>Leuven</strong>


Speech perception assessment<br />

Lab Exp ORL<br />

<strong>KU</strong><strong>Leuven</strong>


• Speech perception assessment is required for<br />

• diagnostic purposes<br />

• monitoring progress in a rehabilitation program<br />

Lab Exp ORL<br />

• comparing different speech processing strategies<br />

• other research purposes<br />

• Basic test requirements:<br />

• Sensitivity refers to the extent to which a test is capable of measuring specific aspects<br />

in performance. A sensitive test should demonstrate, for example, differences in<br />

performance for persons with different degrees of hearing loss, or differences in<br />

performance for (normal hearing) persons with different psychophysical capabilities.<br />

• Validity: A test is valid if it measures what it is supposed to measure. Validity is a<br />

prerequisite for sensitivity. One should always be aware of the issue under interest, <strong>and</strong><br />

be reserved with using tests with populations for which they were not intended. Also,<br />

one should be careful with correlating the obtained results with other (existing speech<br />

perception) measures. This may not be appropriate.<br />

• Reliability concerns the extent to which measurements are repeatable. Each type of<br />

measurement involves some degree of r<strong>and</strong>om error. Effect of r<strong>and</strong>om errors can be<br />

reduced by repeating the stimuli several times in the same test.<br />

<strong>KU</strong><strong>Leuven</strong>


Analytical tests<br />

Lab Exp ORL<br />

• quantify transmission of speech cues (duration, F1, F2, voicing, burst,<br />

frication)<br />

• important that listener responds to auditory information only - no meaningful<br />

context<br />

<strong>KU</strong><strong>Leuven</strong>


Lab Exp ORL<br />

Formant frequencies of Dutch vowels<br />

spoken in Belgium (F1 & F2)<br />

3000<br />

i<br />

Second formant frequency (Hz)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

y<br />

i<br />

i<br />

I<br />

y<br />

u<br />

u<br />

u<br />

u<br />

i<br />

e<br />

I<br />

e<br />

y<br />

<br />

o<br />

o<br />

e<br />

<br />

o<br />

I<br />

<br />

<br />

)<br />

<br />

<br />

<br />

-<br />

)<br />

<br />

-<br />

-<br />

)<br />

a<br />

a<br />

a<br />

-<br />

a<br />

W D - fem ale<br />

MD - male<br />

JW - male<br />

0<br />

A G - fem ale<br />

200<br />

400<br />

600<br />

800<br />

1000<br />

1200<br />

<strong>KU</strong><strong>Leuven</strong><br />

First form ant frequency (Hz)


Lab Exp ORL<br />

Speech properties of consonants<br />

• voicing, /p/ vs. /b/ - low frequency<br />

• manner of articulation, nasals vs. fricatives (temporal<br />

cues)<br />

• place of articulation, /p/ vs. /t/ vs. /k/ (spectral cues)<br />

<strong>KU</strong><strong>Leuven</strong>


Lab Exp ORL<br />

Nonsense speech material<br />

• 10 vowels in context of pVt or hVt V= /u, y, i, o, e, a, ), I,<br />

,,-, /<br />

• 16 consonants in context of /a/,/u/, /i/ /p, t, k, b, d, r, l, m, n, s, f,<br />

:, z, v, g, j /<br />

• 2 male <strong>and</strong> 2 female speakers<br />

• same RMS level for all stimuli<br />

<strong>KU</strong><strong>Leuven</strong>


Lab Exp ORL<br />

APEX<br />

(Application for Psycho-Electrical Experiments)<br />

for this test: acoustical, closed-set<br />

r<strong>and</strong>om order, 12 repetitions of each stimulus<br />

to loudspeaker - acoustical presentation<br />

to coil of CI - electrical stimulation, directly to electrodes<br />

to audio input of CI - electrical stimulation with speech processor<br />

aPa<br />

aTa<br />

aSa<br />

aMa<br />

aBa<br />

aNa<br />

a<br />

aKa<br />

aCHa<br />

<strong>KU</strong><strong>Leuven</strong>


Manner of scoring<br />

Lab Exp ORL<br />

• percentage correct: the diagonal<br />

Stimulus-response confusion matrix<br />

12 repetitions of each stimulus<br />

• relative feature transmission scores<br />

(Miller & Nicely, 1955), duration, F1,<br />

F2, voicing, frication, etc..<br />

paat peet poot pat pet pot<br />

paat 4 4 2 2 0 0<br />

peet 1 11 0 0 0 0<br />

poot 0 3 9 0 0 0<br />

pat 1 0 0 11 0 0<br />

pet 0 0 0 0 12 0<br />

pot 0 0 0 0 3 9<br />

<strong>KU</strong><strong>Leuven</strong>


Lab Exp ORL<br />

To what extent are spectral <strong>and</strong> temporal cues<br />

transmitted with fidelity by Laura device?<br />

• 25 subjects fitted with Laura Flex speech processor +<br />

CIS strategy<br />

• duration of deafness from 1 to > 30 yrs<br />

• variable number of channels<br />

• implanted at St. Augustinus in Antwerp, <strong>KU</strong><strong>Leuven</strong> &<br />

Univ. of Nijmegen<br />

<strong>KU</strong><strong>Leuven</strong>


Lab Exp ORL<br />

Results: vowel identification<br />

Percentage correct<br />

100<br />

90<br />

80<br />

70<br />

Percentage correct (%)<br />

60<br />

50<br />

40<br />

30<br />

% correct<br />

chance<br />

signif.<br />

20<br />

10<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25<br />

Laura implantees (1-25)<br />

<strong>KU</strong><strong>Leuven</strong>


Lab Exp ORL<br />

Results: consonant identification<br />

Percentage correct<br />

100<br />

90<br />

80<br />

Percentage correct (%)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

% correct<br />

chance<br />

signif.<br />

20<br />

10<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25<br />

Laura implantees (1-25)<br />

<strong>KU</strong><strong>Leuven</strong>


Perceptual dimensions vowels<br />

Lab Exp ORL<br />

.6<br />

<br />

i<br />

I<br />

D2: Duration<br />

0.0<br />

y<br />

u<br />

)<br />

a<br />

e<br />

o<br />

<br />

-.6<br />

-.6<br />

0.0<br />

.6<br />

<strong>KU</strong><strong>Leuven</strong><br />

D1: Peak level energy


Perceptual dimensions consonants<br />

Lab Exp ORL<br />

.6<br />

r<br />

D2: Amplitude-envelope<br />

0.0<br />

:<br />

f<br />

g<br />

z<br />

v<br />

s<br />

b<br />

j<br />

d<br />

l<br />

mn<br />

k<br />

p t<br />

-.6<br />

-.4<br />

0.0<br />

.4<br />

<strong>KU</strong><strong>Leuven</strong><br />

D1: Turbulence


Important perceptual cues<br />

Lab Exp ORL<br />

Vowels<br />

Energy<br />

Duration<br />

F1<br />

Consonants<br />

Turbulence<br />

Amplitude envelope<br />

Other tim e-intensity cues<br />

F2<br />

<strong>KU</strong><strong>Leuven</strong>


Lab Exp ORL<br />

Use of analytical information<br />

in a clinical setting<br />

• appropriate settings of the CI device?<br />

• monitor progress in a rehabilitation program<br />

• time restrictions!<br />

<strong>KU</strong><strong>Leuven</strong>


Study<br />

Lab Exp ORL<br />

• select subset of stimuli: 6 vowels, 6 consonants<br />

• 5 Laura implantees<br />

• follow-up once a month during a year<br />

• determine test-retest variability<br />

<strong>KU</strong><strong>Leuven</strong>


Follow-up of one subject<br />

Lab Exp ORL<br />

% correct & information transmission (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

cons. S4 - preling.<br />

0<br />

% corr<br />

voice<br />

burst<br />

place<br />

fric.<br />

manner<br />

<strong>KU</strong><strong>Leuven</strong><br />

% correct & information transmission (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% correct<br />

duration<br />

5 ch's, f, 42 yrs<br />

F1<br />

F2<br />

Dates<br />

09/05<br />

30/05<br />

20/06<br />

01/08<br />

05/09<br />

06/03a<br />

06/03b<br />

27/03a<br />

27/03b


Conclusions<br />

Lab Exp ORL<br />

• sensitivity, reliability, validity<br />

• spectral <strong>and</strong> temporal cues are transmitted with fidelity by Laura<br />

• vowels:energy, duration, F1 &F2<br />

• consonants: amplitude envelope, frication...<br />

• small tests yield sufficient analytical information about subject’s<br />

progress <strong>and</strong> its auditory limitations<br />

<strong>KU</strong><strong>Leuven</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!