18.04.2014 Views

Effects of MR Damper Placement on Equivalent Damping ... - MCEER

Effects of MR Damper Placement on Equivalent Damping ... - MCEER

Effects of MR Damper Placement on Equivalent Damping ... - MCEER

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>MR</str<strong>on</strong>g> <str<strong>on</strong>g>Damper</str<strong>on</strong>g> <str<strong>on</strong>g>Placement</str<strong>on</strong>g> <strong>on</strong><br />

Structure Vibrati<strong>on</strong> Parameters<br />

By: Karla Villarreal<br />

Advisors:<br />

Claudia Wils<strong>on</strong><br />

Makola M. Abdullah, Ph.D.


Introducti<strong>on</strong><br />

C<strong>on</strong>trol Systems<br />

<str<strong>on</strong>g>MR</str<strong>on</strong>g> <str<strong>on</strong>g>Damper</str<strong>on</strong>g><br />

Background<br />

Objective<br />

Methodology<br />

Results<br />

C<strong>on</strong>clusi<strong>on</strong><br />

Future Work<br />

Overview


Introducti<strong>on</strong><br />

Parking garage (FEMA 2004) (1)<br />

Damage <strong>on</strong> 12 th street (Paso<br />

Robles Earthquake 2003) (2)<br />

Collapsed apartment buildings (Kandilli Observatory<br />

and Earthquake Research Institute 1999) (3)


C<strong>on</strong>trol Systems<br />

Systems that absorb vibrati<strong>on</strong> or movement<br />

– Passive<br />

– Active<br />

No power required<br />

Directly damps vibrati<strong>on</strong><br />

Requires power<br />

Applies a force directly into the system to damp vibrati<strong>on</strong><br />

– Semi-Active<br />

Requires minimal power<br />

Applies a force that changes the system<br />

Change helps dampen the vibrati<strong>on</strong>


Magneto-Rheological <str<strong>on</strong>g>Damper</str<strong>on</strong>g><br />

Semi-Active<br />

Magneto<br />

Rheology<br />

C<strong>on</strong>trollable fluid<br />

Para-magnetic<br />

particles<br />

20-t<strong>on</strong> large-scale <str<strong>on</strong>g>MR</str<strong>on</strong>g> Fluid <str<strong>on</strong>g>Damper</str<strong>on</strong>g> (Yang 2001) (4)


Background<br />

1940s<br />

Serviceability<br />

– Suspensi<strong>on</strong> systems<br />

Shock absorbers<br />

Seat suspensi<strong>on</strong>s<br />

Prosthetics<br />

– Other Uses<br />

Exercise machines<br />

Washing machines<br />

– Semi-Active vibrati<strong>on</strong> c<strong>on</strong>trol<br />

Bridges<br />

Buildings<br />

LORD Corporati<strong>on</strong> (2004) (5)


Research Objective<br />

To find the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>MR</str<strong>on</strong>g> damper placement <strong>on</strong><br />

the equivalent damping ratio and <strong>on</strong> the natural<br />

frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> a building.


MATLAB:<br />

– Unc<strong>on</strong>trolled<br />

– C<strong>on</strong>trolled<br />

Simulink:<br />

– <str<strong>on</strong>g>MR</str<strong>on</strong>g> damper<br />

– Free vibrati<strong>on</strong> resp<strong>on</strong>se<br />

Graphical Analysis:<br />

Methodology<br />

– Free Vibrati<strong>on</strong> Building Resp<strong>on</strong>se vs. Time<br />

– Modal Building Resp<strong>on</strong>se vs. Time<br />

Data Analysis:<br />

– <strong>Damping</strong> ratio (ζ)(<br />

– Natural frequency shift<br />

– Determine the sensitive current range<br />

– Comparing <str<strong>on</strong>g>MR</str<strong>on</strong>g> damper placement results


Equati<strong>on</strong>s<br />

Equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> building with earthquake<br />

m ! x<br />

+ cx!<br />

+ kx = − f − mx !<br />

g<br />

<str<strong>on</strong>g>Damper</str<strong>on</strong>g> Equati<strong>on</strong>s (Spencer et al. 1997) (6)<br />

A, γ , β , k , n,<br />

x , k1 =<br />

o<br />

o<br />

c<strong>on</strong>stants<br />

f<br />

y!<br />

= c<br />

=<br />

c<br />

0<br />

o<br />

y!<br />

+ k ( x−x<br />

1<br />

+ c<br />

1<br />

1<br />

o<br />

)<br />

[ αz<br />

+ c x!<br />

+ k ( x−<br />

y)<br />

]<br />

o<br />

o<br />

Mechanical Model <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>MR</str<strong>on</strong>g> <str<strong>on</strong>g>Damper</str<strong>on</strong>g> (6)<br />

z!<br />

=−γ<br />

x!<br />

− y!<br />

z z<br />

n−1<br />

−β(<br />

x!<br />

− y!<br />

) z<br />

n<br />

+ A(<br />

x!<br />

− y!<br />

)


<str<strong>on</strong>g>MR</str<strong>on</strong>g> <str<strong>on</strong>g>Damper</str<strong>on</strong>g>


C<strong>on</strong>trolled and Unc<strong>on</strong>trolled Systems<br />

• 3 DOF Building (8)<br />

– Mass: 3.456*10 5 kg<br />

– Stiffness: 1.2*10 8 kN/m<br />

– 1 st natural frequency: 1.319 Hz<br />

• 1 st simulati<strong>on</strong> unc<strong>on</strong>trolled<br />

• Subjected to FVR<br />

– C<strong>on</strong>stant input <str<strong>on</strong>g>of</str<strong>on</strong>g> zero force<br />

– Given initial c<strong>on</strong>diti<strong>on</strong>s<br />

– 5 cm displacement <strong>on</strong> each<br />

floor<br />

• 2 nd simulati<strong>on</strong> c<strong>on</strong>trolled by <str<strong>on</strong>g>MR</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Damper</str<strong>on</strong>g>


Equiv. <strong>Damping</strong> and Freq. Shift<br />

Frequency Shift<br />

<strong>Equivalent</strong> <strong>Damping</strong><br />

Equati<strong>on</strong> (7)<br />

= 1<br />

ζ<br />

2π<br />

*<br />

ln<br />

u<br />

u<br />

i<br />

j<br />

i +<br />

j


Freq. Resp<strong>on</strong>se<br />

<str<strong>on</strong>g>Placement</str<strong>on</strong>g>:<br />

1 st<br />

st Floor<br />

2 nd<br />

nd Floor<br />

3 rd<br />

rd Floor<br />

Current (A)<br />

Res<strong>on</strong>ant<br />

Freq. (Hz)<br />

Freq. Shift<br />

(Hz)<br />

Res<strong>on</strong>ant<br />

Freq. (Hz)<br />

Freq. Shift<br />

(Hz)<br />

Res<strong>on</strong>ant<br />

Freq. (Hz)<br />

Freq. Shift<br />

(Hz)<br />

No <str<strong>on</strong>g>Damper</str<strong>on</strong>g> 1.31977 0 1.31977 0 1.31977 0<br />

0 1.32681 .00702 1.32443 .00467 1.32320 .00657<br />

1 1.33374 .01396 1.325117 .00535 1.30979 .00997<br />

2 1.33404 .01426 1.324994 .00523 1.30981 .00996<br />

3 1.33576 .01597 1.320271 .01599 1.30933 .01044<br />

4 1.33620 .01642 1.319383 .00038 1.30911 .01066<br />

5 1.33590 .01611 1.319156 .00061 1.30904 .01073<br />

6 1.35586 .01608 1.319104 .00066 1.30899 .01078


<strong>Equivalent</strong> <strong>Damping</strong> Ratios<br />

<str<strong>on</strong>g>Placement</str<strong>on</strong>g>:<br />

1 st<br />

st Floor<br />

2 nd<br />

nd Floor<br />

3 rd<br />

rd Floor<br />

Current (A)<br />

<strong>Damping</strong><br />

Ratio (%)<br />

Add.<br />

<strong>Damping</strong> (%)<br />

<strong>Damping</strong><br />

Ratio (%)<br />

Add.<br />

<strong>Damping</strong> (%)<br />

<strong>Damping</strong><br />

Ratio (%)<br />

Add.<br />

<strong>Damping</strong> (%)<br />

No <str<strong>on</strong>g>Damper</str<strong>on</strong>g> 2.19365 0 2.19365 0 2.19365 0<br />

0 2.80357 .60992 3.91337 1.71972 1.59208 -.60157<br />

1 5.99476 3.80111 3.60766 1.41401 1.27050 -.092315<br />

2 6.28860 4.09495 4.86715 2.67350 2.30744 .011379<br />

3 7.14884 4.95519 3.38542 1.19177 1.13409 -1.05956<br />

4 7.42823 5.23458 2.19772 0.00408 1.08789 -1.10576<br />

5 7.47207 5.27843 2.20284 0.00919 1.06836 -1.12529<br />

6 7.47976 5.28612 2.20450 0.01086 1.05826 -1.13539


<str<strong>on</strong>g>Damper</str<strong>on</strong>g> <str<strong>on</strong>g>Placement</str<strong>on</strong>g> Results


Sensitive Current Range<br />

Sensitive Current Range<br />

Sensitive Current Range<br />

6.00000<br />

0.01800<br />

Additi<strong>on</strong>al <strong>Damping</strong> (%)<br />

5.00000<br />

4.00000<br />

3.00000<br />

2.00000<br />

1.00000<br />

Frequency Shift (Hz)<br />

0.01600<br />

0.01400<br />

0.01200<br />

0.01000<br />

0.00800<br />

0.00600<br />

0.00400<br />

0.00000<br />

0 1 2 3 4 5 6 7<br />

Current (Amps)<br />

0.00200<br />

0.00000<br />

0 1 2 3 4 5 6 7<br />

Current (Amps)


C<strong>on</strong>clusi<strong>on</strong><br />

1. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>MR</str<strong>on</strong>g> <str<strong>on</strong>g>Damper</str<strong>on</strong>g> placement <strong>on</strong> natural<br />

freq. shift:<br />

Occurs at every floor<br />

Larger shifts occur when <str<strong>on</strong>g>MR</str<strong>on</strong>g> <str<strong>on</strong>g>Damper</str<strong>on</strong>g> was<br />

placed <strong>on</strong> the 1 st floor<br />

2. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>MR</str<strong>on</strong>g> <str<strong>on</strong>g>Damper</str<strong>on</strong>g> placement <strong>on</strong> ζ:<br />

Values decreased as the <str<strong>on</strong>g>MR</str<strong>on</strong>g> <str<strong>on</strong>g>Damper</str<strong>on</strong>g> was moved<br />

up in the building<br />

C<strong>on</strong>trolled best <strong>on</strong> 1 st Floor<br />

3. Sensitive current range from 0-30<br />

3 Amps


Future Work<br />

Comparing the Sensitive<br />

Current Range to the<br />

Sensitive Voltage Range<br />

Run simulati<strong>on</strong>s for<br />

10 DOF<br />

New project <strong>on</strong> “<str<strong>on</strong>g>Effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>MR</str<strong>on</strong>g> <str<strong>on</strong>g>Damper</str<strong>on</strong>g><br />

placement <strong>on</strong> bridge<br />

vibrati<strong>on</strong> resp<strong>on</strong>se”


Acknowledgements<br />

<strong>MCEER</strong><br />

REUJAT program<br />

Makola M. Abdullah, Ph.D.<br />

Claudia Wils<strong>on</strong>, M.S.C.E.<br />

Tokyo University<br />

– Dr. Yozo Fujino


References<br />

1. Northridge picture: FEMA for Kids http://www.app1.fema.gov/cgi-<br />

shl/kids/picture.cfm?picture=002730.gif&id=10 2004.<br />

2. Paso Robles picture: Central Coast Tourist<br />

http://www.centralcoasttourist.com/San_Luis_Obispo_CO/earthquake2003/Paso_Robl<br />

es_Earthquake.htm 2004.<br />

3. Izmit earthquake picture: Kandilli Observatory and Eartquake Research Institute,<br />

Boğazi<br />

aziçi University http://www.eas.slu.edu/Earthquake_Center/TURKEY<br />

www.eas.slu.edu/Earthquake_Center/TURKEY/ 1999.<br />

4. <str<strong>on</strong>g>MR</str<strong>on</strong>g> Fluid <str<strong>on</strong>g>Damper</str<strong>on</strong>g>: G.Yang."Large<br />

"Large-Scale<br />

Magnetorheological Fluid <str<strong>on</strong>g>Damper</str<strong>on</strong>g> for<br />

Vibrati<strong>on</strong> Mitigati<strong>on</strong>: Modeling, Testing and C<strong>on</strong>trol," Ph.D dissertati<strong>on</strong>, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Notre Dame, 2001.<br />

5. LORD Corporati<strong>on</strong>, cable stayed bridge:<br />

http://www.lord.com/DesktopDefault.aspx?tabid=543 2004.<br />

6. Spencer Jr.,B.F., Dyke, S.J., Sain, , M.K. & Carls<strong>on</strong>, J.D. (1997). “Phenomenological<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> a magnetorheological damper.” J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering Mechanics, , ASCE<br />

123(3):230-238.<br />

238.<br />

7. Chopra, A.K. (2001). “Free Vibrati<strong>on</strong> Tests.” Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Structures: Theory and<br />

Applicati<strong>on</strong>s to Earthquake Engineering. 2 nd Ed. Prentice Hall, Upper Saddle River,<br />

NJ:54-57.<br />

8. Park, K.S., Koh, H.M. & Ok, S.Y. (2002). “Active C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Earthquake Excited<br />

Structures Using Fuzzy Supervisory Technique.” Advances in Engineering S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware<br />

33. 761-768.<br />

9. Reference the Stiffness stuff<br />

10. Ribakov, Y. and Reinhorn, A. M. (2003). "Design <str<strong>on</strong>g>of</str<strong>on</strong>g> Amplified Structural <strong>Damping</strong><br />

Using Optimal C<strong>on</strong>siderati<strong>on</strong>s". ASCE Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Structural Engineering, 129 (10),<br />

1422-1427.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!