19.04.2014 Views

The effect of sonication power on the sonochemical synthesis of ...

The effect of sonication power on the sonochemical synthesis of ...

The effect of sonication power on the sonochemical synthesis of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>power</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> s<strong>on</strong>ochemical syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> titania nanoparticles<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Department, Islamic Azad University, Karaj Branch, Tehran, Iran<br />

Engineering<br />

Advanced Materials and Nanotechnology Research Center, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering, K.N. Toosi University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<br />

dioxide (TiO 2 ) nanoparticles were syn<strong>the</strong>sized by a s<strong>on</strong>ochemical method. C 12 H 28 O 4 Ti (Tetraisopropyl titanate),<br />

Titanium<br />

(C 2 H 5 OH), sodium hydroxide (NaOH) and dei<strong>on</strong>ized water were used as <strong>the</strong> initial materials. <str<strong>on</strong>g>The</str<strong>on</strong>g> output <str<strong>on</strong>g>power</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

ethanol<br />

device plays <strong>the</strong> most important role in <strong>the</strong> size and morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> final products. S<strong>on</strong>ochemical processes at<br />

ultras<strong>on</strong>ic<br />

<str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>power</str<strong>on</strong>g> were carried out at syn<strong>the</strong>sis temperature (50 o C) for 1.5 h and <strong>the</strong>n <strong>the</strong> materials were washed and<br />

different<br />

at room temperature for 48 h. To determine <strong>the</strong> particle size and also evaluate <strong>the</strong> morphological properties, X-ray<br />

dried<br />

(XRD) and transmissi<strong>on</strong> electr<strong>on</strong> microscopy (TEM) were used. TG/DTA analysis was used to for determine <strong>the</strong><br />

diffracti<strong>on</strong><br />

and time <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallizati<strong>on</strong>. From TEM observati<strong>on</strong>s <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> titanium dioxide nanoparticles is estimated to be<br />

temperature<br />

smaller than ~12 to ~30 nm.<br />

significantly<br />

nano-semic<strong>on</strong>ductors have become <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Nowadays<br />

most attractive aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> materials research. Am<strong>on</strong>g<br />

<strong>the</strong><br />

nano materials, titanium dioxide has become <strong>the</strong> most<br />

<strong>the</strong>se<br />

material due to its physical and chemical<br />

interesting<br />

properties.<br />

c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> morphology, particle size, particle size<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

phase compositi<strong>on</strong> and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2<br />

nanoparticles<br />

distributi<strong>on</strong>,<br />

are vital factors in determining <strong>the</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

final material. TiO 2<br />

has three polymorphic phases<br />

<strong>the</strong><br />

anatase, rutile and brookite. Am<strong>on</strong>g <strong>the</strong>se three<br />

namely<br />

phases, <strong>the</strong> anatase phase exhibits <strong>the</strong> highest<br />

crystalline<br />

activity.Rutile- TiO 2<br />

is known as a white<br />

photocatalytic<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> its high scattering <str<strong>on</strong>g>effect</str<strong>on</strong>g> which leads<br />

pigment<br />

protecti<strong>on</strong> from <strong>the</strong> ultraviolet light [1, 2].<br />

to<br />

2<br />

is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> most extensively studied oxides because<br />

TiO<br />

its remarkable optical and electrical properties [3]. TiO 2<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extensive applicati<strong>on</strong>s in photocatalysts [4], gas sensors<br />

has<br />

self cleaning surfaces [6], water and air purificati<strong>on</strong><br />

[5],<br />

[7] and pigments [8]. Moreover, <strong>the</strong> rutile<br />

comp<strong>on</strong>ents<br />

a has high dielectric c<strong>on</strong>stant, electrical resistivity<br />

structure<br />

and refractive index which makes it a relevant choice<br />

[9]<br />

dye-sensitized solar cells(DSCs) [10] and capacitors<br />

for<br />

as well.<br />

[11]<br />

recent years, nano TiO 2<br />

has been syn<strong>the</strong>sized via<br />

In<br />

author:<br />

*Corresp<strong>on</strong>ding<br />

: +98-21-33362478<br />

Tel<br />

+98-261-6201888<br />

Fax:<br />

amir_hassanjani@yahoo.com<br />

E-mail:<br />

methods such as <strong>the</strong>rmal hydrolysis [12], chemical<br />

different<br />

depositi<strong>on</strong> (CBD) [13], sol-gel [14-17], hydro<strong>the</strong>rmal<br />

bath<br />

[18-20], microemulsi<strong>on</strong> processes [21-24] and<br />

processes<br />

laser evaporati<strong>on</strong> [25] etc. Am<strong>on</strong>g <strong>the</strong> different<br />

pulsed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> syn<strong>the</strong>sis which have been used by several<br />

methods<br />

<strong>the</strong> direct chemical method has some advantages<br />

researchers,<br />

easy operati<strong>on</strong>, being fast, low cost and high<br />

including<br />

In additi<strong>on</strong> to TiO 2<br />

, this method has been also<br />

efficient.<br />

applied for <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> several o<strong>the</strong>r<br />

successfully<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nanostructured materials such as ZnO [26].<br />

types<br />

s<strong>on</strong>ochemical methods, a chemical reacti<strong>on</strong><br />

Recently,<br />

<strong>the</strong> starting materials in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> applied high<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ultras<strong>on</strong>ic waves, has been employed for several<br />

frequency<br />

and <strong>the</strong> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ultrasound <strong>on</strong> chemical reacti<strong>on</strong>s<br />

purposes<br />

not well understood, however it is mostly believed that<br />

is<br />

<str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g> acoustic cavitati<strong>on</strong> phenomen<strong>on</strong> generates<br />

a<br />

in <strong>the</strong> liquid soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reactants. <str<strong>on</strong>g>The</str<strong>on</strong>g> cavitati<strong>on</strong><br />

cavities<br />

c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> creati<strong>on</strong>, growth and implosive<br />

processes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gas vacuoles in <strong>the</strong> soluti<strong>on</strong>. According to <strong>the</strong><br />

collapse<br />

<strong>the</strong>ory, extreme temperatures (> 5000 K) and<br />

‘‘hot-spot’’<br />

pressures (> 1000 atm) occur within <strong>the</strong> bubbles during<br />

high<br />

collapse [27-30]. Under such extreme c<strong>on</strong>diti<strong>on</strong>s<br />

cavitati<strong>on</strong>al<br />

solvent undergo hemolytic b<strong>on</strong>d breakage<br />

<strong>the</strong> +<br />

molecules<br />

radicals, H and OH − when H 2<br />

O is s<strong>on</strong>icated<br />

generate to<br />

example. <str<strong>on</strong>g>The</str<strong>on</strong>g> liberated radicals <strong>the</strong>refore, may lead to<br />

for<br />

chemical and physical <str<strong>on</strong>g>effect</str<strong>on</strong>g>s in reacti<strong>on</strong> pathways<br />

various<br />

mechanisms. Moreover, <strong>the</strong> o<strong>the</strong>r benefit in using<br />

and<br />

waves in reacti<strong>on</strong>s is believed to be providing<br />

ultras<strong>on</strong>ic<br />

mixing especially in viscous media. This<br />

highly-intensive<br />

lead to an accelerati<strong>on</strong> <str<strong>on</strong>g>effect</str<strong>on</strong>g> in chemical dynamics<br />

would<br />

J O U R N A L O F<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ceramic Processing Research. Vol. 12, No. 3, pp. 299~303 (2011)<br />

Ceramic<br />

Processing Research<br />

a,b,<br />

*, a c<br />

a,b Kazemzadeh , Mohammad Reza Vaezi and Ali Shokuhfar Amir Hassanjani-Roshan Seyed Mohammad<br />

Research Center, P.O. Box 14155-4777, Karaj, Iran<br />

Energy and Materials<br />

a<br />

b<br />

Technology, Tehran, Iran<br />

Key words: S<strong>on</strong>ochemical, Cavitati<strong>on</strong>, S<strong>on</strong>icati<strong>on</strong> <str<strong>on</strong>g>power</str<strong>on</strong>g>, Nanoparticles, Titanium dioxide.<br />

Introducti<strong>on</strong><br />

and rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, by this circumstance,<br />

299


properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> final products such as particle<br />

different<br />

shape and its purity would be c<strong>on</strong>trolled by as <str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g><br />

size,<br />

<str<strong>on</strong>g>power</str<strong>on</strong>g>, temperature, <strong>the</strong> solvent, <strong>the</strong> chemical species<br />

output<br />

<strong>the</strong>ir c<strong>on</strong>centrati<strong>on</strong>s in <strong>the</strong> reacti<strong>on</strong> mixture.<br />

and<br />

ultras<strong>on</strong>ic wave to syn<strong>the</strong>sis as an external source<br />

Using<br />

energy, affects <strong>the</strong> final properties <str<strong>on</strong>g>of</str<strong>on</strong>g> products. As<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

before, this energy even can change <strong>the</strong> chemical<br />

menti<strong>on</strong>ed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> syn<strong>the</strong>sized particles. Due to <strong>the</strong> menti<strong>on</strong>ed<br />

route<br />

and by c<strong>on</strong>sidering <strong>the</strong> reducti<strong>on</strong> in size by<br />

phenomena<br />

<str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>power</str<strong>on</strong>g>, <strong>the</strong> whole optical properties<br />

increasing<br />

syn<strong>the</strong>sized nano particles could change. This can cause<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

differences in <strong>the</strong> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> materials obtained.<br />

severel<br />

semic<strong>on</strong>ductors, <strong>the</strong> reducti<strong>on</strong> in size can influence <strong>the</strong><br />

In<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> optical absorpti<strong>on</strong> edge and c<strong>on</strong>sequently<br />

wavelength<br />

band gap energy [31]. Thus besides <strong>the</strong> differences in<br />

<strong>the</strong><br />

and particles size <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<strong>the</strong>sized particle,<br />

morphology<br />

band gap energy which acts as a main character <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong><br />

in all aspects, should be investigated<br />

semic<strong>on</strong>ductors<br />

[32].<br />

carefully<br />

<strong>the</strong> present paper, TiO 2 nanoparticles were syn<strong>the</strong>sized<br />

In<br />

a s<strong>on</strong>ochemical method. Temperature and <str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g><br />

via<br />

were investigated in current issue as variables. TEM<br />

<str<strong>on</strong>g>power</str<strong>on</strong>g><br />

XRD investigati<strong>on</strong>s were used to studying morphological<br />

and<br />

structural characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> nanomaterials.<br />

and<br />

and equipment<br />

Materials<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> tetraisopropyl titanate (C 12 H 28 O 4 Ti, Merck),<br />

An<br />

hydroxide (NaOH, Merck), ethanol (C 2 H 5 OH,<br />

sodium<br />

99.99%) and dei<strong>on</strong>ized water were used to syn<strong>the</strong>size<br />

Merck,<br />

pure nanosized TiO 2 particles.<br />

<strong>the</strong><br />

high-intensity ultras<strong>on</strong>ic probe (Mis<strong>on</strong>ix S3000, Ti horn,<br />

A<br />

kHz, 100 W/cm 2 , USA) and a flat-bottomed Pyrex<br />

20<br />

vessel (total volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 150 ml) were used for <strong>the</strong><br />

glass<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nano TiO 2 via s<strong>on</strong>ochemical method<br />

Syn<strong>the</strong>sis<br />

was dissolved in dei<strong>on</strong>ized water and <strong>the</strong> soluti<strong>on</strong><br />

NaOH<br />

M, 50 ml) was added drop-wise to an aqueous C 12 H 28 O 4 Ti<br />

(1<br />

that was dissolved in ethanol (0.25 M, 50 ml)<br />

soluti<strong>on</strong><br />

about 30 minutes at a syn<strong>the</strong>sis temperature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

within o C. During this process, <strong>the</strong> soluti<strong>on</strong> was irradiated<br />

50<br />

an ultras<strong>on</strong>ic horn at different <str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>power</str<strong>on</strong>g>s. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

with<br />

was irradiated with ultras<strong>on</strong>ic irradiati<strong>on</strong> for <strong>the</strong><br />

soluti<strong>on</strong><br />

initial <str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>power</str<strong>on</strong>g>s listed in Table 1. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

different<br />

<str<strong>on</strong>g>power</str<strong>on</strong>g> (W) given by <strong>the</strong> operati<strong>on</strong> and <strong>the</strong> ultrasound<br />

initial<br />

(W/cm 2 ) was determined by s<strong>on</strong>icator. <str<strong>on</strong>g>The</str<strong>on</strong>g> s<strong>on</strong>ochemical<br />

intensity<br />

reacti<strong>on</strong> was c<strong>on</strong>tinued for 60 minutes and<br />

1. <str<strong>on</strong>g>The</str<strong>on</strong>g> samples syn<strong>the</strong>sized at different <str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>power</str<strong>on</strong>g><br />

Table<br />

50 o C at<br />

different c<strong>on</strong>diti<strong>on</strong>s.<br />

under<br />

<strong>the</strong> s<strong>on</strong>ochemical reacti<strong>on</strong>, it was observed that<br />

During<br />

color <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> slurry changed gradually from colorless<br />

<strong>the</strong><br />

<strong>the</strong> reacti<strong>on</strong>) into white-lactic. <str<strong>on</strong>g>The</str<strong>on</strong>g>se changes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(before<br />

in <strong>the</strong> soluti<strong>on</strong> occurred as TiO 2 nanoparticles<br />

colors<br />

prepared.<br />

were<br />

precipitated particles were collected, filtered and<br />

Finally,<br />

carefully with methanol and double distilled water<br />

washed<br />

remove by-products. All <strong>the</strong> prepared samples were<br />

to<br />

in air at room temperature for 48 h.<br />

dried<br />

Characterizati<strong>on</strong><br />

TiO 2 nanoparticles were characterized by different<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crystal structure and determinati<strong>on</strong><br />

techniques.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crystallite size were by X-ray diffracti<strong>on</strong> (XRD)<br />

(SIEMENS, D5000) with Cu-K α radiati<strong>on</strong> source.<br />

patterns<br />

accelerati<strong>on</strong> voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 kV with a 25 mA current<br />

An<br />

and an angular speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 o /minute were used to record<br />

flux<br />

patterns in <strong>the</strong> 2θ range <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 o -70 o . <str<strong>on</strong>g>The</str<strong>on</strong>g>rmogravimetry<br />

<strong>the</strong><br />

<strong>the</strong>rmal analysis (TG-DTA) was simultaneously<br />

differential<br />

in air at a heating rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 K·minute −1 (STA 1640).<br />

used<br />

morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> prepared samples was analyzed<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

a transmissi<strong>on</strong> electr<strong>on</strong> microscope (ZEISS, Germany).<br />

using<br />

samples were prepared by dispersing a few drops<br />

TEM<br />

TiO 2 <strong>on</strong> carb<strong>on</strong> films supported by copper grids.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Diffracti<strong>on</strong> analysis<br />

X-Ray<br />

1 shows <strong>the</strong> XRD patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 nanoparticles<br />

Fig.<br />

via a s<strong>on</strong>ochemical method. Fig. 1(a) shows<br />

prepared<br />

XRD pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 nanoparticles prepared via a<br />

<strong>the</strong><br />

method at 50 o C. Fig. 1(b) and Fig. 1(c) show<br />

s<strong>on</strong>ochemical<br />

XRD patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 for samples (I, V) that were<br />

<strong>the</strong><br />

1. XRD patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 nanoparticles prepared by a<br />

Fig.<br />

method at (a) 50 o C and (b) sample I calcined at<br />

s<strong>on</strong>ochemical<br />

300 Amir Hassanjani-Roshan, Seyed Mohammad Kazemzadeh, Mohammad Reza Vaezi and Ali Shokuhfar<br />

Experimental<br />

Results and Discussi<strong>on</strong><br />

calcined at 500 o C for 1 h. It is seen that anatase (JCPDS.<br />

ultrasound irradiati<strong>on</strong>.<br />

different TiO 2 samples were prepared by this procedure<br />

V IV III II I Sample<br />

1 3 5 7 9 Initial <str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>power</str<strong>on</strong>g> (W)<br />

500 o for 1 h (c) sample V calcined at 500 o C for 1 h.<br />

9 15 24 33 48 Ultrasound intensity (W/cm 2 )


21-1272) and rutile (JCPDS. Pattern 21-1276) phases<br />

Pattern<br />

in <strong>the</strong> diffractograms.<br />

exist<br />

<strong>the</strong> X-ray diffractogram <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>the</strong> samples, <strong>the</strong> characteristic<br />

In<br />

peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase and rutile at (2θ =25.2 o , 37.8 o ,<br />

o , 48 o , 53.8 o , 55.0 o , 62.6 o , 64.1 o , 68.8 o ) and (2θ =<br />

38.5 o , 36.0 o , 39.2 o , 41.2 o , 44.1 o , 54.3 o , 69 o ) were observed,<br />

27.4<br />

Also, <strong>the</strong> present method has been shown to<br />

respectively.<br />

advantageous as it has been able to retain <strong>the</strong> anatase<br />

be<br />

rutile phases <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 even at 500 o C, while <strong>the</strong>re are<br />

and<br />

that <strong>the</strong> anatase can be c<strong>on</strong>verted to <strong>the</strong> rutile phase<br />

reports<br />

temperatures higher than 450 o C [12].<br />

at<br />

peak broadening <str<strong>on</strong>g>of</str<strong>on</strong>g> an XRD reflecti<strong>on</strong> can be used<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

estimate <strong>the</strong> crystallite size based <strong>on</strong> Scherrer’s equati<strong>on</strong><br />

to<br />

follows [33]:<br />

as<br />

D is <strong>the</strong> crystallite size (nm), k is a shape-sensitive<br />

where<br />

(0.9, assuming spherical spheres), λ <strong>the</strong> wave-<br />

coefficient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> X-ray beam (λ = 0.15406 nm for Cu-K α<br />

length<br />

β <strong>the</strong> full width at half maximum (FWHM)<br />

radiati<strong>on</strong>),<br />

<strong>the</strong> diffracti<strong>on</strong> peak under c<strong>on</strong>siderati<strong>on</strong>, and θ <strong>the</strong><br />

for<br />

angle.<br />

diffracti<strong>on</strong><br />

average crystallite sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> rutile and anatase phases<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

from Scherrer’s equati<strong>on</strong> are about 8 nm.<br />

determined<br />

analysis<br />

TG-DTA<br />

XRD results showed that <strong>the</strong> initial product had<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

characteristics. <str<strong>on</strong>g>The</str<strong>on</strong>g>rmogravimetric and differential<br />

amorphous<br />

<strong>the</strong>rmal analysis (TG/DTA) was used to determine<br />

temperature and time <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 nanoparticles.<br />

<strong>the</strong><br />

Fig. 2. Shows TG-DTA curves <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 nano-<br />

obtained from <strong>the</strong> suspensi<strong>on</strong> s<strong>on</strong>icated for<br />

particles<br />

h at 50 o C.<br />

1.5<br />

to Fig. 2, <strong>the</strong> samples were heat treated at<br />

According o C for 1.5 hour to obtain <strong>the</strong> crystalline titanium<br />

500<br />

nanoparticles. A main exo<strong>the</strong>rmic peak at around<br />

dioxide o C is detected in <strong>the</strong> TG-DTA curve. <str<strong>on</strong>g>The</str<strong>on</strong>g> exo<strong>the</strong>rmic<br />

500<br />

2. TG-DTA curves <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nanopowders syn<strong>the</strong>sized by<br />

Fig.<br />

irradiati<strong>on</strong> for 1.5 h at 50 o C.<br />

ultrasound<br />

<strong>the</strong> amorphous particles and <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 phase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

in this process. <str<strong>on</strong>g>The</str<strong>on</strong>g> TG-DTA curve shows that <strong>the</strong><br />

occurs<br />

loss is about 15%. <str<strong>on</strong>g>The</str<strong>on</strong>g> weight loss remains c<strong>on</strong>stant<br />

weight<br />

<strong>the</strong> DTA curve decreases with an increase in <strong>the</strong><br />

while<br />

because this weight loss depends <strong>on</strong> <strong>the</strong> intrinsic<br />

temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material and is realized in a special temperature<br />

value<br />

analysis<br />

TEM<br />

3. shows TEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 nanoparticles prepared<br />

Fig.<br />

different intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> ultrasound waves. <str<strong>on</strong>g>The</str<strong>on</strong>g> particle<br />

with<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 from <strong>the</strong> TEM images are listed in Table 2.<br />

sizes<br />

average size <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 nanoparticles was increased from<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

to 30 nm when <strong>the</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ultrasound waves was<br />

12<br />

from 48 W/cm 2 to 9 W/cm 2 in this process<br />

decreased<br />

4). (Fig.<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoparticles in this<br />

A<br />

process showed that with different ultrasound<br />

s<strong>on</strong>ochemical<br />

<strong>the</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 nanoparticles is nearly<br />

intensity,<br />

and semi spherical with a smooth geometry. From<br />

spherical<br />

images <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se nanoparticles, it can be clearly seen<br />

TEM<br />

<strong>the</strong> nanoparticles have some aggregati<strong>on</strong>. Also, <strong>the</strong><br />

that<br />

proved that <strong>the</strong> TiO 2 nanoparticles were agglomerated<br />

images<br />

some places.<br />

in<br />

3. Transmissi<strong>on</strong> electr<strong>on</strong> microscopy (TEM) images <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2<br />

Fig.<br />

calcined at 500 o C and syn<strong>the</strong>sized at (a) 48 W/cm 2<br />

nanoparticles<br />

Table 2. Particle sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<strong>the</strong>sized samples from TEM images<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>power</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> s<strong>on</strong>ochemical syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> titania nanoparticles 301<br />

range and is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> an increase in <strong>the</strong> temperature.<br />

k.λ<br />

D<br />

β.Cosθ<br />

(1)<br />

= ----------------<br />

peak at around 500 o C shows <strong>the</strong> crystallizati<strong>on</strong> temperature<br />

(b) 33 W/cm 2 (c) 24 W/cm 2 (d) 15 W/cm 2 (e) 9 W/cm 2 .<br />

Sample<br />

Particles Size(nm)<br />

I 12<br />

II 18<br />

III 23<br />

IV 28<br />

V 30


Fig. 4. Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles size vs. <strong>the</strong> ultrasound intensity.<br />

output <str<strong>on</strong>g>power</str<strong>on</strong>g>)<br />

(<str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g><br />

results obtained in this secti<strong>on</strong> show that <strong>the</strong> ultrasound<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

plays very important roles in <strong>the</strong> morphological<br />

intensity<br />

dimensi<strong>on</strong>al properties <str<strong>on</strong>g>of</str<strong>on</strong>g> titanium dioxide nanoparticles.<br />

and<br />

in this process, <strong>the</strong> ultrasound intensity plays two<br />

Also,<br />

roles. 1) <strong>the</strong> dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 nanoparticles<br />

different<br />

2) <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO 2 nanoparticles with broken<br />

and<br />

b<strong>on</strong>ds.<br />

chemical<br />

<strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> ultrasound intensity, increasing <strong>the</strong> ultrasound<br />

In<br />

increases <strong>the</strong> cavitati<strong>on</strong>s phenomen<strong>on</strong> so <strong>the</strong><br />

intensity<br />

cavity in <strong>the</strong> soluti<strong>on</strong> creates a shockwave and<br />

collapsed<br />

<strong>the</strong> particles size is decreased. Also, <strong>the</strong> shockwaves<br />

hence<br />

<strong>the</strong> surface are known to create a localized erosi<strong>on</strong><br />

<strong>on</strong><br />

is resp<strong>on</strong>sible for many s<strong>on</strong>ochemical <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <strong>on</strong><br />

which<br />

reacti<strong>on</strong>s [34]. Moreover, <strong>the</strong> shockwaves<br />

heterogeneous<br />

by homogeneous cavitati<strong>on</strong>s can create high velocity<br />

created<br />

collisi<strong>on</strong>s [34-36].<br />

inter-particle<br />

final results indicate that <strong>the</strong> s<strong>on</strong>ochemical method<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

be easily c<strong>on</strong>trolled and is expected to be applicable<br />

can<br />

fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r nanosized particles.<br />

for<br />

this paper, TiO 2 nanopowders were synthsized via<br />

In<br />

s<strong>on</strong>ochemical method successfully. <str<strong>on</strong>g>The</str<strong>on</strong>g> processing c<strong>on</strong>-<br />

a<br />

have important <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <strong>on</strong> <strong>the</strong> morphology, particle<br />

diti<strong>on</strong>s<br />

and <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a stable phase. Also, increasing<br />

size<br />

ultrasound intensity decreases <strong>the</strong> particle size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>the</strong><br />

2 . With an increase in <strong>the</strong> calcinati<strong>on</strong> temperature about<br />

TiO<br />

o C, <strong>the</strong> anatase phase can be c<strong>on</strong>verted to <strong>the</strong> rutile phase.<br />

450<br />

to <strong>the</strong> results, <strong>the</strong> median size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> particles<br />

According<br />

about 12-30 nm and <strong>the</strong> average size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crystallite<br />

is<br />

two stable phases (anatase and rutile) in this process<br />

for<br />

about 8 nm. <str<strong>on</strong>g>The</str<strong>on</strong>g> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> particles is spherical<br />

is<br />

semi spherical.<br />

and<br />

4725-4730.<br />

(2007)<br />

M.R. H<str<strong>on</strong>g>of</str<strong>on</strong>g>fman, S.T. Martin and W. Choi, Chem. Rev. 95[5]<br />

2.<br />

69-75.<br />

(1995)<br />

M.R. Vaezi, j. mater. Process. tech. 205[1-3] (2008) 332-337.<br />

3.<br />

S.Y. Kim, T.S. Changand and C.H. Shin, Catalysis Letters.<br />

4.<br />

(2007) 224-230.<br />

118[1-2]<br />

L. Zheng, M. Xu and T. Xu, Sens.Actuators B: Chem.<br />

5.<br />

(2000) 28-30.<br />

66[1-3]<br />

J. Yang, Q. Liu and X. Sun, Mate. Lett. 61[8-9] (2007)<br />

6.<br />

1855-1858.<br />

X.H. Xia, Y.S. Luo, Z. Wang, Y. Liang, J. Fan, Z.J. Jia, Z.H.<br />

7.<br />

Mater. Lett. 61[11-12] (2007) 2571-2574.<br />

Chen:<br />

Z. Tang, J. Zhang, Z. Cheng and Z. Zhang, Mater. Chem &<br />

8.<br />

77[2] (2003) 314-317.<br />

Phys.<br />

Y. Wang, H. Yang and H. Xu, Mate. Lett. 64[2] (2010)164-166.<br />

9.<br />

S.C. Yang, H.G. Yo<strong>on</strong>, S.S. Lee and H. Lee, Mate. Lett.<br />

10.<br />

(2009)1465-1467.<br />

63[17]<br />

S. Qiu and S.J. Kalita, Mater. Sci. Eng. 435[30] (2006)<br />

11.<br />

327-332.<br />

M.R. Mohammadi, D.J. Fray and M.C. Cordero-Cabrera,<br />

12.<br />

and Actuators B. 124[1] (2007) 74-83.<br />

Sensors<br />

M.R. Vaezi, A. Esmaielzadeh Kandjani, L. Nikzad, N.A.<br />

13.<br />

S. Alibeigi, F M. arzalipour Tabriz, S.H. Mirshah-<br />

Arefian,<br />

and J. Samei, Mater. Sci. Pola. 25[4] (2007)<br />

Ghasemi<br />

1109-1117.<br />

M.R. Mohammadi, D.J. Fray and A. Mohammadi, Micro.<br />

14.<br />

Mater. 112[1] (2008) 392-402.<br />

Meso.<br />

M. Xi<strong>on</strong>g, B. You, S. Zhou and L. Wu, Polymer. 45[7]<br />

15.<br />

2967-2975.<br />

(2004)<br />

K. KyaingLatt and T. Kobayashi, Ultras<strong>on</strong>ics S<strong>on</strong>ochemistry.<br />

16.<br />

(2008) 484-491.<br />

15[6]<br />

S. Akbar, S.K. Hasanain, N. Azmat and M. Nadeem, C<strong>on</strong>den.<br />

17.<br />

480[4] (2004) 1-19.<br />

Mat.<br />

A.M. Ruiz, J. Arbiol, A. Cornet, K. Shimanoe, J.R. Morante<br />

18.<br />

N. Yamazoe, Mater. Res. Soc. 828 (2005) A4.10.1-<br />

and<br />

A4.10.6.<br />

A.M. Ruiz, A. Cornet, K. Shimanoe, J.R. Morante and N.<br />

19.<br />

Sens. Actuators B: Chem.109[2] (2005) 7-12.<br />

Yamazoe,<br />

E.J. Kim and S.H. Hahn, Mater. Sci. and Engin. A. 303[1-2]<br />

20.<br />

24-29.<br />

(2001)<br />

M.S. Lee, G.D. Lee, C.S. Ju and S.S. H<strong>on</strong>g, Solar Ene. Mat<br />

21.<br />

Solar cells. 88[1-2] (2005) 389-401.<br />

&<br />

E.J. Kim and S.H. Hahn, Mater. Lett. 49[3-4] (2001) 244-249.<br />

22.<br />

S.C. Tj<strong>on</strong>g and H. Chen, Mater. Sci. and Engin. 45[1-2]<br />

23.<br />

1-88.<br />

(2004)<br />

C.H. Lu and M.C. Wen, J. Allo. and Comp. 448[1-2] (2008)<br />

24.<br />

153-158.<br />

M.C. Carotta, M. Ferr<strong>on</strong>i, D. Gnani, V. Guidi, M. Merli, G.<br />

25.<br />

M.C. Casale and M. Notaro, Sens.Actuators B:<br />

Martinelli,<br />

58[1-3] (1999) 310-317.<br />

Chem.<br />

A. Esmaielzadeh Kandjani, M. Farzalipour Tabriz and B.<br />

26.<br />

Mater. Resea. Bulle. 43[3] (2008) 645-654.<br />

Pourabbas,<br />

M. Ashokkumar, J. Lee, S. Kentish and F. Grieser,<br />

27.<br />

14[4] (2007) 470-475.<br />

ultra.s<strong>on</strong>ochem.<br />

X.K. Wang, G.H. Chen and W.L. Guo, Molecules. 8[2] (2003)<br />

28.<br />

40-44.<br />

T.J. Mas<strong>on</strong> and J.P. Lorimer, Applied S<strong>on</strong>ochemistry. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

29.<br />

Power Ultrasound in Chemistry and Processing, 2002,<br />

Useso<br />

VCH, Weinheim.<br />

Wiley,<br />

B. Avvaru and A. Pandit, Ultra. S<strong>on</strong>ochem. 15[4] (2008)<br />

30<br />

578-589.<br />

C.F. Bohren and D.R. Huffman, Absorpti<strong>on</strong> and Scattering<br />

31.<br />

Light by Small Particles, 1983, John Wiley & S<strong>on</strong>s,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

NewYork.<br />

302 Amir Hassanjani-Roshan, Seyed Mohammad Kazemzadeh, Mohammad Reza Vaezi and Ali Shokuhfar<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> ultrasound intensity<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

References<br />

1. P.K. Khanna, M. Singh and N.S. Charan, Mater. Lett. 61[25]<br />

32. T.A. Egert<strong>on</strong>, N.J. Everall, J.A. Mattins<strong>on</strong>, L.M. Kessell


I.R. Tooley, J. Photochem and Photobio A: Chemistry.<br />

and<br />

(2008) 10-17.<br />

[193]<br />

B.D. Cullity, Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray Diffracti<strong>on</strong>, 2 nd Editi<strong>on</strong>,<br />

33.<br />

Addis<strong>on</strong>-Wesley, L<strong>on</strong>d<strong>on</strong>.<br />

1978,<br />

K.S. Suslick, S<strong>on</strong>ochemistry. Kirk-Othmer Encyclopedia<br />

34.<br />

Chemical Technology, four<strong>the</strong>d, 1998, John Wiley and<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

NewYork. 517-541.<br />

S<strong>on</strong>s,<br />

T.J. Mas<strong>on</strong> and J.P. Lorimer, Applied S<strong>on</strong>ochemistry, <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

35.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Power Ultrasound in Chemistry and Processing,<br />

Use<br />

Wiley-VCH.<br />

2002,<br />

S. Ghasemi, M.F. Mousavi, M. Shamsipur and H. Karami,<br />

36.<br />

S<strong>on</strong>ochem. 15[4] (2008) 448-455.<br />

Ultra.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>s<strong>on</strong>icati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>power</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> s<strong>on</strong>ochemical syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> titania nanoparticles 303

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!