21.04.2014 Views

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Fundamental</strong> <strong>Theorem</strong> <strong>of</strong> <strong>Calculus</strong><br />

Definition <strong>of</strong> a Definite Integral.<br />

Let f be a continuous function on a closed interval [a, b]. We divide [a, b] into n subintervals<br />

<strong>of</strong> equal width ∆x = (b−a)/n. Let a = x 0 , x 1 , x 2 , . . . , x n−1 , x n = b be the endpoints<br />

<strong>of</strong> these subintervals. If c i is any point in the subinterval [x i−1 , x i ] for i = 1, 2, . . . , n,<br />

then the definite integral <strong>of</strong> f from a to b is defined as follows.<br />

y<br />

∫ b<br />

a<br />

f(x) dx = lim<br />

n→∞<br />

n∑<br />

f(c i )∆x<br />

i=1<br />

y = f(x)<br />

f(c i )<br />

a = x 0 x 1 x 2 x i−1 x i x n−1 x n = b<br />

c i<br />

∆x<br />

<strong>Fundamental</strong> <strong>Theorem</strong> <strong>of</strong> <strong>Calculus</strong>. Let f be a continuous function on the closed<br />

interval [a, b]. Then,<br />

∫ b<br />

a<br />

f(x) dx = F (b) − F (a)<br />

where F is any antiderivative <strong>of</strong> f, i.e., F ′ = f.<br />

The following notation is <strong>of</strong>ten used.<br />

∣<br />

F (x)<br />

∣ b a<br />

= F (b) − F (a)<br />

Example.<br />

Since F (x) = 1 3 x3 is an antiderivative <strong>of</strong> f(x) = x 2 , then<br />

∫ 2<br />

1<br />

x 2 dx = 1 3 x3 ∣ ∣∣<br />

2<br />

1 = 1 3 (2)3 − 1 3 (1)3 = 7 3 .<br />

x<br />

Gilles Cazelais. Typeset with LATEX on January 3, 2007.


The pro<strong>of</strong> <strong>of</strong> the <strong>Fundamental</strong> <strong>Theorem</strong> <strong>of</strong> <strong>Calculus</strong> requires the Mean Value <strong>Theorem</strong>.<br />

Mean Value <strong>Theorem</strong>. If f is continuous on the closed interval [a, b] and differentiable<br />

on the open interval (a, b), then there exists a number c in (a, b) such that<br />

y<br />

f ′ (c) =<br />

f(b) − f(a)<br />

.<br />

b − a<br />

f(b)<br />

f(a)<br />

y = f(x)<br />

a<br />

c<br />

b<br />

x<br />

Let’s now prove the <strong>Fundamental</strong> <strong>Theorem</strong>.<br />

Pro<strong>of</strong>. Let f be a continuous function on the interval [a, b], and let F be an antiderivative<br />

<strong>of</strong> f. Let n be a positive integer and divide [a, b] into n subintervals <strong>of</strong> equal width<br />

∆x = (b − a)/n. Let x 0 = a, x 1 , x 2 , . . . , x n = b be the endpoints <strong>of</strong> these subintervals.<br />

Then,<br />

F (b) − F (a) = F (x n ) − F (x 0 )<br />

= F (x n ) + ( − F (x n−1 ) + F (x n−1 ) ) + · · · + ( − F (x 1 ) + F (x 1 ) ) − F (x 0 )<br />

= ( F (x n ) − F (x n−1 ) ) + · · · + ( F (x 1 ) − F (x 0 ) )<br />

n∑ (<br />

F (b) − F (a) = F (xi ) − F (x i−1 ) ) .<br />

i=1<br />

By the Mean Value <strong>Theorem</strong>, there exists a number c i in each subinterval [x i−1 , x i ] such<br />

that<br />

F ′ (c i ) = F (x i) − F (x i−1 )<br />

= F (x i) − F (x i−1 )<br />

.<br />

x i − x i−1 ∆x<br />

Then,<br />

F (x i ) − F (x i−1 ) = F ′ (c i )∆x.<br />

Since F is an antiderivative <strong>of</strong> f, we have F ′ (c i ) = f(c i ), therefore<br />

n∑<br />

F (b) − F (a) = f(c i )∆x.<br />

By taking the limit as n → ∞, we obtain<br />

F (b) − F (a) =<br />

i=1<br />

∫ b<br />

a<br />

f(x) dx.<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!