22.04.2014 Views

Matthew Z. Yates - University of Rochester

Matthew Z. Yates - University of Rochester

Matthew Z. Yates - University of Rochester

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

URChE<br />

Synthesis <strong>of</strong> Proton Conducting<br />

Ceramic Membranes via<br />

Seeded Surface Crystallization<br />

<strong>Matthew</strong> Z. <strong>Yates</strong><br />

Department <strong>of</strong> Chemical Engineering<br />

Laboratory for Laser Energetics<br />

<strong>University</strong> <strong>of</strong> <strong>Rochester</strong>


URChE<br />

Proton Exchange Membrane Fuel Cells<br />

Fuel (H 2 )<br />

H 2<br />

H +<br />

H +<br />

e -<br />

e -<br />

H 2 O<br />

Oxidant (Air/O 2 )<br />

1/2O 2<br />

Anode Electrolyte Cathode<br />

• Advantages: high efficiency, low emission, simplicity, and silence.<br />

• Applications: portable, mobile, and stationery power sources.


URChE<br />

Fuel Cell Types<br />

PEMFC AFC PAFC p-SOFC MCFC SOFC<br />

Electrolyte<br />

Proton<br />

conducting<br />

polymer<br />

(Nafion)<br />

30 to 50%<br />

solution <strong>of</strong><br />

potassium<br />

hydroxide<br />

(KOH)<br />

100%<br />

phosphoric<br />

acid (H 3 PO 4 )<br />

Ceramic<br />

YSZ/Gd-<br />

CeO 2<br />

Molten<br />

carbonates<br />

in LiAlO 3 ,<br />

Li 2 CO 3 /Na 2 C<br />

O 3<br />

Ceramic<br />

<strong>of</strong> 5YSZ<br />

or 8YSZ<br />

Charge<br />

carrier<br />

H + OH - H + H + CO 3<br />

2-<br />

O 2-<br />

Operating<br />

temperature<br />

80 to<br />

120°C<br />

23 to<br />

250°C<br />

150 to<br />

220°C<br />

300 to<br />

700°C<br />

~650°C<br />

700 to<br />

1300°C<br />

Adapted from: Larminie, J.; Dicks, A., Fuel cell systems explained. 2 nd ed.; 2003.


URChE<br />

Research Needs for Fuel Cell Membranes<br />

Power Density (W/cm 2 )<br />

1.5<br />

1.0<br />

PEMFC<br />

0.5<br />

Breakthrough<br />

Membranes<br />

SOFC<br />

PAFC<br />

MCFC<br />

0 200 400 600 800<br />

Temperature (°C)<br />

Ease <strong>of</strong> hydrocarbon reforming<br />

Ease <strong>of</strong> fuel cell construction<br />

PEFC: Polymer electrolyte fuel cells MCFC: Molten carbonate fuel cells<br />

PAFC: Phosphoric acid fuel cells SOFC: Solid oxide fuel cells<br />

Adapted from: Ito, et al J. Power Sources, 2005


URChE<br />

Hydrogen Membrane Fuel Cell (Toyota)<br />

On-board<br />

reformer<br />

H 2<br />

gases<br />

e -<br />

H +<br />

H +<br />

e -<br />

H 2 O<br />

Air/O 2<br />

1/2O 2<br />

Palladium<br />

membrane<br />

Anode Electrolyte Cathode<br />

Ito, et al J. Power Sources 2005:<br />

demonstrated 1.4 W/cm 2 at 600°C using 700 nm thick ceramic electrolyte


URChE<br />

Membrane Development for Intermediate<br />

Temperature Fuel Cells<br />

• Create new materials with high ion conductivity<br />

--- O 2- conductive ceramics: fluorite-, perovskite-, apatite-,<br />

and brownmillerite-based oxides<br />

--- H + conductive ceramics: perovskite oxides, fluorite-related<br />

binary oxides, and apatite phosphates<br />

• Reduce existing SOFC membrane thickness to lower ohmic<br />

resistance <strong>of</strong> ceramic electrolytes<br />

• Engineer membrane microstructures (orientation <strong>of</strong> crystals,<br />

grains, or grain boundaries) to optimize ion conduction<br />

Objective


URChE<br />

Hydroxyapatite Ceramic as a<br />

Proton Conducting Membrane<br />

HAP: Ca 10 (PO 4 ) 6 (OH) 2<br />

(a) (b)<br />

H +<br />

c-axis<br />

O 2- <strong>of</strong> PO<br />

3-<br />

4<br />

Ca 2+<br />

OH -<br />

(c)<br />

b-axis<br />

a-axis<br />

c-axis<br />

(a) typical shape <strong>of</strong> a HAP single crystal; (b) atomic environment around OH - ions;<br />

(c) proton transportation along the c-axis <strong>of</strong> HAP.<br />

Adapted from: Satoshi Nakamura, et al., J. Applied Phys. 2001, 89, 5386-5392.


URChE<br />

Proposed Idealized Hydroxyapatite<br />

Membrane Structure<br />

c-axis<br />

c-axis<br />

Ideal HAP membrane structure: the c-axes <strong>of</strong> crystal<br />

domains span the membrane to optimize proton transport.


URChE<br />

Tertiary Growth Process for Creating<br />

Idealized Hydroxyapatite Membrane<br />

(a) (b) (c)<br />

• Seeding: electrochemical deposition to seed HAP on Pd substrate;<br />

• Secondary growth: hydrothermal deposition under conditions that favor<br />

c-out-<strong>of</strong>-plane growth to yield oriented columnar crystals;<br />

• Tertiary growth: hydrothermal deposition under conditions that favor a-<br />

plane growth to obtain oriented continuous crystalline films.<br />

Lai, Z. P., et al., Science, 2003, 300, 456.<br />

Karanikolos, G. N., et al., Chem. Mater. 2007, 19, 792.


URChE<br />

Hydroxyapatite Seed Layer Grown<br />

on Pd Membrane<br />

Top-view Side-view<br />

~1.5 µm<br />

• Set-up: Pd-cathode, Pt-Anode, current=9.3mA/cm 2 ,<br />

deposited at T=95 o C for 4 min.<br />

• Electrolyte solution: 50mM Tris, 137.8mM NaCl, 2.5mM<br />

CaCl 2 , 1.67mM K 2 HPO 4 , pH= 7.20 adjusted with 37% HCl.<br />

Pt<br />

Pd<br />

Ban, et al., J. Biomed. Mater. Res. 1998, 42, 387.


URChE<br />

Secondary Hydrothermal Growth <strong>of</strong><br />

Hydroxyapatite on Seeded Pd Membrane<br />

Top-view Side-view<br />

~7µm<br />

• HAP solution: 0.1M Ca(NO 3 ) 2 , 0.06M (NH 4 ) 2 HPO 4 ,<br />

0.1M Na 2 EDTA, pH=10 adjusted with 28% NH 4 OH.<br />

• Set-up: HAP/Pd facing to the bottom <strong>of</strong> PTFE liner,<br />

reaction at T=200 o C for 15 hours.<br />

PTFE liner<br />

HAP solution<br />

PTFE plate<br />

HAP/Pd


URChE<br />

Surfactant-Promoted a-axis Growth to<br />

Create Dense Membranes<br />

c-axis<br />

- c<br />

Anionic<br />

surfactant<br />

-<br />

-<br />

-<br />

-<br />

-<br />

a +<br />

-<br />

b-axis<br />

a-axis<br />

a-planes: positively charged<br />

c-planes: negatively charged<br />

Cationic<br />

surfactant<br />

+<br />

+<br />

+<br />

+<br />

Kawasaki, T., Journal <strong>of</strong> Chromatography 1991, 544, 147.


URChE<br />

Surfactant-Modified Tertiary Growth<br />

on Pd Membrane<br />

Top-view Side-view<br />

~25 µm<br />

• HAP solution: 0.1M Ca(NO 3 ) 2 , 0.06M (NH 4 ) 2 HPO 4 ,<br />

0.1M Na 2 EDTA, 0.01M Cetylpyridinium Chloride,<br />

pH=8 adjusted with 28% NH 4 OH.<br />

• Set-up: HAP/Pd facing to the bottom <strong>of</strong> PTFE liner,<br />

reaction at T=200 o C for 15 hours. (repeat 3 times)<br />

Cetylpyridinium<br />

Chloride


URChE<br />

XRD Patterns <strong>of</strong> Hydroxyapatite Membranes<br />

HAP 3 rd growth<br />

(002)<br />

Intensity (a.u.)<br />

HAP 2 nd growth<br />

HAP seeds<br />

(211)<br />

HAP powder<br />

(300)<br />

20 22 24 26 28 30 32 34 36 38<br />

2 θ (degree)


URChE<br />

Proton Conductivity (σ) <strong>of</strong> 25 micron thick<br />

Hydroxyapatite Membrane<br />

10 -2<br />

10 -3<br />

10 -4<br />

Introduce H 2<br />

σ (s/cm)<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -8<br />

N 2<br />

atmosphere<br />

H 2<br />

atmosphere<br />

10 -9<br />

0 200 400 600 800 1000<br />

T ( o C)<br />

• Literature data: σ~ 5 x 10 -7 s/cm -1 measured at 800 ° C on a sintered<br />

~1 mm thick disc.<br />

Yamashita, K., et al., Solid State Ionics 1990, 40-41, 918.


URChE<br />

Area Specific Resistance (ASR)<br />

<strong>of</strong> Hydroxyapatite Membrane<br />

N 2<br />

atmosphere-25μm thick<br />

10 6 0.5(Ω cm 2 )<br />

N 2<br />

atmosphere-2.5μm thick<br />

N 2<br />

atmosphere-0.5μm thick<br />

ASR (Ω cm 2 )<br />

10 4<br />

10 2<br />

10 0<br />

0.1(Ω cm 2 )<br />

H 2<br />

atmosphere-25μm thick<br />

H 2<br />

atmosphere-2.5μm thick<br />

H 2<br />

atmosphere-0.5μm thick<br />

10 -2<br />

0 200 400 600 800 1000<br />

T ( o C)<br />

Steele, B. C. H. and Heinzel, A., Nature 2001, 414, 345.


URChE<br />

Reducing Membrane Thickness<br />

• Shorter HAP seeding time (2 min)<br />

• Lower (NH 4 ) 2 HPO 4 concentration (0.01 M)<br />

• Film thickness ~ 5µm<br />

• Shorter HAP seeding time (1 min)<br />

• Lower (NH 4 ) 2 HPO 4 concentration (0.01 M)<br />

• Film thickness ~ 2.5µm


URChE<br />

Density <strong>of</strong> Thin Membranes<br />

Top-view Bottom-view<br />

Thin membrane (~2.5µm thick) prepared by<br />

electrochemical and hydrothermal depositions.


URChE<br />

Doped Hydroxyapatite to Enhance<br />

Proton Conductivity<br />

• Similar tertiary growth process applied to yttrium and fluorine<br />

doped hydroxyapatite (shown by others to have enhanced<br />

conductivity<br />

Yttrium-substituted HAP<br />

Fluorine-substituted HAP


URChE<br />

Conclusions<br />

• Continuous, dense, hydroxyapatite membranes <strong>of</strong><br />

tunable thickness can be grown directly onto palladium<br />

hydrogen membranes<br />

• Crystal growth conditions have been identified that<br />

produce hydroxyapatite membranes with the crystal<br />

domains aligned to promote proton conductivity.<br />

• The optimized membrane structure results in significant<br />

enhancement proton conductivity.


URChE<br />

Acknowledgments<br />

• Support from the Department <strong>of</strong> Energy (DOE) (DE-<br />

FG02-05ER15722)<br />

• DOE through the Laboratory for Laser Energetics (DE-<br />

FC03-92SF19460)<br />

• Horton Fellowship in Laboratory for Laser Energetics<br />

• Researchers: Dongxia Liu, Yong-Gu Kim

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!