24.04.2014 Views

The Grothendieck Conjecture on the Fundamental Groups of ...

The Grothendieck Conjecture on the Fundamental Groups of ...

The Grothendieck Conjecture on the Fundamental Groups of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Fundamental</strong> <strong>Groups</strong> <strong>of</strong> Algebraic Curves<br />

Hiroaki Nakamura, Akio Tamagawa, Shinichi Mochizuki<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> “<str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>” in <strong>the</strong> title is, in a word, a c<strong>on</strong>jecture to <strong>the</strong> effect that<br />

<strong>the</strong> arithmetic fundamental group <strong>of</strong> a hyperbolic algebraic curve completely determines <strong>the</strong><br />

algebraic structure <strong>of</strong> <strong>the</strong> curve. Research c<strong>on</strong>cerning this problem was begun at <strong>the</strong> end <strong>of</strong> <strong>the</strong><br />

1980’s by <strong>the</strong> first author (Nakamura), given significant impetus (including <strong>the</strong> case <strong>of</strong> positive<br />

characteristic) by <strong>the</strong> sec<strong>on</strong>d author (Tamagawa), and brought to a final soluti<strong>on</strong> by means <strong>of</strong><br />

anewp-adic interpretati<strong>on</strong> <strong>of</strong> <strong>the</strong> problem due to <strong>the</strong> third author (Mochizuki).<br />

In this paper, after briefly reviewing <strong>the</strong> background and history <strong>of</strong> <strong>the</strong> problem, we would<br />

like to report <strong>on</strong> how <strong>the</strong> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> was gradually brought to a soluti<strong>on</strong> by <strong>the</strong> work <strong>of</strong> <strong>the</strong><br />

three authors.<br />

§1. <str<strong>on</strong>g>The</str<strong>on</strong>g> Arithmetic <strong>Fundamental</strong> Group — a Bridge between Algebraic Geometry<br />

and Group <str<strong>on</strong>g>The</str<strong>on</strong>g>ory —<br />

§1.1. <str<strong>on</strong>g>The</str<strong>on</strong>g> Étale <strong>Fundamental</strong> Group<br />

As is well-known, <strong>the</strong> usual “topological fundamental group” is a so-called homotopy invariant,<br />

i.e., invariant with respect to c<strong>on</strong>tinuous deformati<strong>on</strong>s <strong>of</strong> shape. For instance, in <strong>the</strong> case<br />

<strong>of</strong> a compact complex algebraic curve, <strong>the</strong> <strong>on</strong>ly invariant <strong>of</strong> <strong>the</strong> curve determined by its topological<br />

fundamental group is its genus. Thus, taken al<strong>on</strong>e, <strong>the</strong> topological fundamental group<br />

cannot possibly be a sufficiently fine invariant to distinguish <strong>the</strong> algebraic structure <strong>of</strong> different<br />

algebraic curves. Indeed, <strong>the</strong> “arithmetic fundamental group” appearing in <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g><br />

<str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> is a noti<strong>on</strong> which is naturally defined — as an extensi<strong>on</strong> <strong>of</strong> <strong>the</strong> noti<strong>on</strong> <strong>of</strong> “Galois<br />

group” — by means <strong>of</strong> <strong>the</strong> noti<strong>on</strong> <strong>of</strong> “étale (i.e., as opposed to topological) fundamental group”<br />

introduced by A. <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>.<br />

This noti<strong>on</strong> <strong>of</strong> “étale fundamental group” was introduced into algebraic geometry in <strong>the</strong><br />

1960’s in [SGA1] as an accounting device to keep track <strong>of</strong> <strong>the</strong> “Galois <strong>the</strong>ory <strong>of</strong> schemes.”<br />

According to [SGA1], given a geometric point ¯x <strong>on</strong> a c<strong>on</strong>nected scheme X,<strong>the</strong>étale fundamental<br />

group π 1 (X, ¯x) is defined as a group <strong>of</strong> permutati<strong>on</strong>s <strong>of</strong> a system <strong>of</strong> “sets <strong>of</strong> soluti<strong>on</strong>s” as follows:<br />

As Y ranges over all <strong>of</strong> <strong>the</strong> finite étale coverings (in <strong>the</strong> following, we shall frequently abbreviate<br />

this expressi<strong>on</strong> by <strong>the</strong> phrase “finite coverings”) <strong>of</strong> X, <strong>the</strong> fiber sets Y (¯x) over <strong>the</strong> geometric<br />

point ¯x form a projective system <strong>of</strong> finite sets. <str<strong>on</strong>g>The</str<strong>on</strong>g>n π 1 (X, ¯x) is defined as <strong>the</strong> group formed by<br />

all <strong>the</strong> self-permutati<strong>on</strong>s <strong>of</strong> this system that arise geometrically. Observe that, since it arises<br />

as <strong>the</strong> projective limit <strong>of</strong> permutati<strong>on</strong> groups <strong>of</strong> <strong>the</strong> various finite sets Y (¯x), this group admits<br />

a natural structure <strong>of</strong> pr<strong>of</strong>inite topological group 1) . Since <strong>on</strong>e knows that <strong>the</strong> isomorphism<br />

class (as a topological group) <strong>of</strong> <strong>the</strong> étale fundamental group does not depend <strong>on</strong> <strong>the</strong> choice<br />

Typeset by AMS-TEX<br />

1


2 HIROAKI NAKAMURA, AKIO TAMAGAWA, SHINICHI MOCHIZUKI<br />

<strong>of</strong> base-point ¯x appearing in <strong>the</strong> definiti<strong>on</strong>, in discussi<strong>on</strong>s where <strong>on</strong>e is <strong>on</strong>ly c<strong>on</strong>cerned with<br />

<strong>the</strong> group-<strong>the</strong>oretic structure <strong>of</strong> <strong>the</strong> étale fundamental group, we shall frequently omit <strong>the</strong><br />

base-point and write π 1 (X).<br />

Given an arbitrary finite covering Y → X, <strong>the</strong> set Y (¯x) defines a c<strong>on</strong>tinuous finite permutati<strong>on</strong><br />

representati<strong>on</strong> <strong>of</strong> π 1 (X, ¯x); moreover, this corresp<strong>on</strong>dence (that associates <strong>the</strong> permutati<strong>on</strong><br />

representati<strong>on</strong> Y (¯x) to <strong>the</strong> covering Y → X) defines a categorical equivalence between <strong>the</strong> category<br />

<strong>of</strong> finite coverings <strong>of</strong> X and <strong>the</strong> category <strong>of</strong> c<strong>on</strong>tinuous finite permutati<strong>on</strong> representati<strong>on</strong>s<br />

<strong>of</strong> π 1 (X, ¯x). In particular, (when Y is c<strong>on</strong>nected) <strong>the</strong> stabilizati<strong>on</strong> group at each point <strong>of</strong><br />

Y (¯x) determines a (c<strong>on</strong>jugacy class <strong>of</strong>) open subgroup(s) 2) ; c<strong>on</strong>versely, an open subgroup H <strong>of</strong><br />

π 1 (X, ¯x) determines (an equivalence class <strong>of</strong>) finite c<strong>on</strong>nected covering(s) Y → X corresp<strong>on</strong>ding<br />

to <strong>the</strong> permutati<strong>on</strong> representati<strong>on</strong> <strong>on</strong> <strong>the</strong> set <strong>of</strong> left cosets <strong>of</strong> π 1 (X, ¯x) with respect to <strong>the</strong><br />

subgroup H. This corresp<strong>on</strong>dence H ↔ Y appears frequently in <strong>the</strong> discussi<strong>on</strong>s to come, so<br />

we will denote corresp<strong>on</strong>ding objects by <strong>the</strong> notati<strong>on</strong> Y = Y H , H = H Y . In particular, <strong>on</strong>e<br />

has <strong>the</strong> fundamental observati<strong>on</strong> that H Y is n<strong>on</strong>e o<strong>the</strong>r than <strong>the</strong> fundamental group π 1 (Y )<strong>of</strong><br />

Y itself.<br />

When <strong>the</strong> scheme X is a point, especially, when it is <strong>the</strong> spectrum Spec (K) <strong>of</strong>afieldK,<br />

<strong>the</strong> fiber set Y (¯x) <strong>of</strong> a c<strong>on</strong>nected finite covering Y is n<strong>on</strong>e o<strong>the</strong>r than <strong>the</strong> set <strong>of</strong> soluti<strong>on</strong>s <strong>of</strong><br />

<strong>the</strong> algebraic equati<strong>on</strong>s defining Y , and <strong>the</strong> fundamental group π 1 (Spec (K)) may be identified<br />

with <strong>the</strong> absolute Galois group Gal(K) def<br />

= Gal(K/K), i.e., with <strong>the</strong> collecti<strong>on</strong> <strong>of</strong> “permutati<strong>on</strong>s<br />

<strong>of</strong> soluti<strong>on</strong>s” <strong>of</strong> all possible algebraic equati<strong>on</strong>s. (Here, K denotes <strong>the</strong> separable closure <strong>of</strong> K.)<br />

In general, when <strong>on</strong>e is given a morphism <strong>of</strong> schemes f : X 1 → X 2 and a geometric point ¯x 1<br />

<strong>on</strong> X 1 , if <strong>on</strong>e denotes <strong>the</strong> image <strong>of</strong> ¯x 1 in X 2 by ¯x 2 , <strong>the</strong>n <strong>on</strong>e obtains an induced homomorphism<br />

π 1 (X 1 , ¯x 1 ) → π 1 (X 2 , ¯x 2 ). Indeed, <strong>the</strong> pull-back to X 1 (i.e., <strong>the</strong> fiber product with X 1 over <strong>the</strong><br />

base X 2 ) <strong>of</strong> <strong>the</strong> finite étale covering Y → X 2 is a finite étale covering Y ′ → X 1 over X 1 ,<br />

and, moreover, <strong>on</strong>e always has Y (¯x 2 ) ∼ = Y ′ (¯x 1 ). Thus, <strong>on</strong>e obtains <strong>the</strong> above homomorphism<br />

<strong>of</strong> fundamental groups by simply restricting <strong>the</strong> corresp<strong>on</strong>ding homomorphism <strong>of</strong> systems <strong>of</strong><br />

permutati<strong>on</strong> groups. If <strong>on</strong>e changes <strong>the</strong> base-point ¯x 1 , <strong>the</strong> resulting homomorphism <strong>of</strong> fundamental<br />

groups is equivalent to <strong>the</strong> previous <strong>on</strong>e (by an appropriate commutative diagram).<br />

Thus, in <strong>the</strong> following, we shall frequently omit menti<strong>on</strong> <strong>of</strong> <strong>the</strong> base-point and simply write<br />

π 1 (X 1 ) → π 1 (X 2 ).<br />

When X is an algebraic variety defined over a field K, <strong>the</strong> natural morphisms X → Spec (K)<br />

def<br />

and Spec (K) → Spec (K) induce a morphism X K<br />

→ X (X K<br />

= X × K K). Moreover, <strong>on</strong>e has<br />

an exact sequence <strong>of</strong> fundamental groups<br />

(1.1) 1 −→ π 1 (X K<br />

) −−−−→ π 1 (X)<br />

pr X<br />

−−−−→ Gal(K) −→ 1<br />

arising from <strong>the</strong>se morphisms. <str<strong>on</strong>g>The</str<strong>on</strong>g> group π 1 (X K<br />

), which forms <strong>the</strong> kernel <strong>of</strong> <strong>the</strong> projecti<strong>on</strong><br />

pr X , is called <strong>the</strong> “geometric” fundamental group <strong>of</strong> X. In <strong>the</strong> case when K is <strong>of</strong> characteristic<br />

0, this group is isomorphic to <strong>the</strong> pr<strong>of</strong>inite completi<strong>on</strong> (i.e., <strong>the</strong> projective limit <strong>of</strong> all <strong>the</strong> finite<br />

quotients) <strong>of</strong> <strong>the</strong> usual topological fundamental group <strong>of</strong> <strong>the</strong> corresp<strong>on</strong>ding complex manifold.<br />

Thus, in particular, it is invariant with respect to deformati<strong>on</strong>s 3) . It is <strong>the</strong>n natural to inquire


THE GROTHENDIECK CONJECTURE 3<br />

as to how <strong>the</strong> “arithmetic” fundamental group π 1 (X) varies as an extensi<strong>on</strong> <strong>of</strong> Gal(K) (cf.<br />

(1.1)), as <strong>on</strong>e deforms X.<br />

In <strong>the</strong> above exact sequence (1.1), π 1 (X K<br />

) is a normal subgroup <strong>of</strong> π 1 (X), hence determines<br />

a homomorphism π 1 (X) → Aut(π 1 (X K<br />

)) (by c<strong>on</strong>jugating <strong>the</strong> subgroup π 1 (X K<br />

)byelements<br />

<strong>of</strong> π 1 (X)). This homomorphism clearly maps π 1 (X K<br />

) into <strong>the</strong> group <strong>of</strong> inner automorphisms<br />

<strong>of</strong> π 1 (X K<br />

). Thus, by taking quotients, <strong>on</strong>e obtains a homomorphism — called an outer Galois<br />

representati<strong>on</strong> —<br />

(1.2) ρ X : Gal(K) → Out(π 1 (X K<br />

))<br />

from Gal(K) to <strong>the</strong> outer automorphism group Out(π 1 (X K<br />

)) <strong>of</strong> <strong>the</strong> geometric fundamental<br />

group. Just now we defined ρ X : Gal(K) → Out(π 1 (X K<br />

)) starting from pr X : π 1 (X) → Gal(K)<br />

by means <strong>of</strong> purely group-<strong>the</strong>oretic operati<strong>on</strong>s. C<strong>on</strong>versely, when <strong>the</strong> center <strong>of</strong> π 1 (X K<br />

) is trivial,<br />

<strong>on</strong>e can recover pr X from ρ X by means <strong>of</strong> purely group-<strong>the</strong>oretic operati<strong>on</strong>s. For instance, in<br />

<strong>the</strong> case <strong>of</strong> a hyperbolic algebraic curve (i.e., a smooth algebraic curve such that if g is its genus,<br />

and n is <strong>the</strong> number <strong>of</strong> points “at infinity,” <strong>the</strong>n (g, n) ≠(0, 0), (0, 1), (0, 2), (1, 0)) defined over<br />

a field <strong>of</strong> characteristic 0, <strong>the</strong> geometric fundamental group is isomorphic to ei<strong>the</strong>r a n<strong>on</strong>abelian<br />

free group or <strong>the</strong> pr<strong>of</strong>inite completi<strong>on</strong> <strong>of</strong> a (n<strong>on</strong>abelian) surface group, hence well-known to be<br />

center-free, so <strong>the</strong> above observati<strong>on</strong> applies in this case. In this sort <strong>of</strong> situati<strong>on</strong>, to c<strong>on</strong>sider<br />

“<strong>the</strong> outer Galois acti<strong>on</strong> ρ X <strong>on</strong> π 1 (X K<br />

)” is equivalent to c<strong>on</strong>sidering “<strong>the</strong> group π 1 (X) asan<br />

extensi<strong>on</strong> <strong>of</strong> Gal(K).”<br />

§1.2. <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>’s Anabelian <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>s<br />

In [G1-3], <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> set forth a collecti<strong>on</strong> <strong>of</strong> c<strong>on</strong>jectures based <strong>on</strong> his intuiti<strong>on</strong> that for<br />

varieties X which are “anabelian” (a vaguely defined class <strong>of</strong> manifolds that includes hyperbolic<br />

algebraic curves) and base fields K which are finitely generated over <strong>the</strong> prime field, <strong>the</strong><br />

structure <strong>of</strong> π 1 (X) as an extensi<strong>on</strong> <strong>of</strong> Gal(K) (cf. (1.1)) should be sufficient to c<strong>on</strong>trol <strong>the</strong><br />

geometry <strong>of</strong> X.<br />

Most notable am<strong>on</strong>g this collecti<strong>on</strong> <strong>of</strong> c<strong>on</strong>jectures was <strong>the</strong> following general asserti<strong>on</strong>, which<br />

<str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> referred to as <strong>the</strong> “<strong>Fundamental</strong> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> <strong>of</strong> Anabelian Algebraic Geometry.”<br />

(GC1) “<strong>Fundamental</strong> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>.”<br />

An anabelian algebraic variety X over a field K which is finitely generated over a prime<br />

field may be “rec<strong>on</strong>stituted” from <strong>the</strong> structure <strong>of</strong> <strong>the</strong> arithmetic fundamental group π 1 (X) as<br />

a topological group equipped with its associated surjecti<strong>on</strong> pr X : π 1 (X) → Gal(K).<br />

Here, <strong>the</strong> term “anabelian algebraic variety” means roughly “an algebraic variety whose<br />

geometry is c<strong>on</strong>trolled by its fundamental group, which is assumed to be ‘far from abelian.’ ”<br />

This term was invented by <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>. Since he refrained from giving a precise definiti<strong>on</strong> <strong>of</strong><br />

this term in arbitrary dimensi<strong>on</strong> (i.e., for varieties <strong>of</strong> dimensi<strong>on</strong> > 1), and, moreover, used <strong>the</strong><br />

term “rec<strong>on</strong>stituted” in a similarly ambiguous fashi<strong>on</strong>, it is to this day not clear precisely for<br />

which varieties <strong>the</strong> c<strong>on</strong>jecture was asserted to hold in higher dimensi<strong>on</strong>s 4) . For algebraic curves<br />

in characteristic 0, however, <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> himself made <strong>the</strong> following explicit c<strong>on</strong>jecture:


4 HIROAKI NAKAMURA, AKIO TAMAGAWA, SHINICHI MOCHIZUKI<br />

(GC2) <str<strong>on</strong>g>The</str<strong>on</strong>g> “Hom <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>.” For hyperbolic algebraic curves X, Y over a field K which<br />

is finitely generated over <strong>the</strong> rati<strong>on</strong>als, <strong>the</strong> natural map<br />

Hom K (X, Y ) → Hom Gal(K) (π 1 (X),π 1 (Y ))/ ∼<br />

defines a bijective corresp<strong>on</strong>dence between dominant K-morphisms and equivalence classes <strong>of</strong><br />

Gal(K)-compatible open homomorphisms (modulo compositi<strong>on</strong> with an inner automorphism<br />

induced by an element <strong>of</strong> π 1 (Y K<br />

)). (In o<strong>the</strong>r words, open homomorphisms <strong>of</strong> <strong>the</strong> fundamental<br />

group always arise from algebro-geometric morphisms.)<br />

As <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> himself observes, <strong>the</strong> above c<strong>on</strong>jecture bears some resemblance to <strong>the</strong> Tate<br />

<str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> (proved by G. Faltings [F1]) c<strong>on</strong>cerning <strong>the</strong> 1-dimensi<strong>on</strong>al étale homology groups<br />

<strong>of</strong> abelian varieties:<br />

Hom K (A, B) ⊗ Ẑ ∼ = Hom Gal(K) (H 1 (A K<br />

, Ẑ),H 1(B K<br />

, Ẑ))<br />

(Here, A and B are abelian varieties defined over a global field K, and Ẑ is <strong>the</strong> pr<strong>of</strong>inite<br />

completi<strong>on</strong> <strong>of</strong> Z.) Moreover, if <strong>on</strong>e applies <strong>the</strong> Tate <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> toge<strong>the</strong>r with <strong>the</strong> “isogeny<br />

<strong>the</strong>orem” (as well as <strong>the</strong> Shafarevich <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>, etc., which were proven by Faltings al<strong>on</strong>g with<br />

<strong>the</strong> Tate <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>) to <strong>the</strong> Jacobian variety <strong>of</strong> <strong>the</strong> curves in questi<strong>on</strong>, it follows immediately<br />

that <strong>the</strong>re are <strong>on</strong>ly finitely many curves with homology group H 1 isomorphic (as a Galois<br />

module) to <strong>the</strong> H 1 <strong>of</strong> a given proper algebraic curve <strong>of</strong> genus ≥ 2. If <strong>on</strong>e observes that H 1<br />

is just <strong>the</strong> abelianizati<strong>on</strong> <strong>of</strong> π 1 , <strong>the</strong>n <strong>on</strong>e may regard <strong>the</strong> <strong>Fundamental</strong> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> (GC1) as<br />

<strong>the</strong> asserti<strong>on</strong> that, if <strong>on</strong>e increases <strong>the</strong> data that <strong>on</strong>e is given from just <strong>the</strong> homology group<br />

to <strong>the</strong> entire fundamental group, <strong>the</strong>n <strong>the</strong> number <strong>of</strong> possibilities for a curve possessing <strong>the</strong><br />

same invariant (i.e., <strong>the</strong> same π 1 ) is narrowed down from some unknown finite number to “just<br />

<strong>on</strong>e.” In fact, even effective versi<strong>on</strong>s <strong>of</strong> this sort <strong>of</strong> finiteness <strong>the</strong>orem (i.e., <strong>the</strong> Shafarevich<br />

c<strong>on</strong>jecture, etc.) tend (with few excepti<strong>on</strong>s 5) ) to give <strong>on</strong>ly inordinately large estimates for<br />

<strong>the</strong> number <strong>of</strong> such possibilities. Thus, from this point <strong>of</strong> view, <strong>the</strong>re is quite a substantial<br />

gap between <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>’s c<strong>on</strong>jectures (GC1), (GC2) and <strong>the</strong> Tate <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> applied to <strong>the</strong><br />

Jacobian varieties <strong>of</strong> <strong>the</strong> curves in questi<strong>on</strong>. <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> argued, in support <strong>of</strong> his c<strong>on</strong>jecture,<br />

that <strong>the</strong> arithmetic fundamental group π 1 (X) possesses an “extraordinary rigidity,” i.e., that<br />

<strong>the</strong> outer acti<strong>on</strong> (1.2) <strong>of</strong> its “arithmetic quotient” Gal(K) <strong>on</strong> its “geometric porti<strong>on</strong>” π 1 (X K<br />

)<br />

should be “extraordinarily rigid,” citing by way <strong>of</strong> comparis<strong>on</strong> <strong>the</strong> n<strong>on</strong>triviality <strong>of</strong> <strong>the</strong> Galois<br />

representati<strong>on</strong>s arising from cohomology <strong>the</strong>ory which were studied by A. Weil and P. Deligne<br />

([G3]).<br />

Finally, am<strong>on</strong>g (unsolved) c<strong>on</strong>jectures which may be rigorously formulated, <strong>on</strong>e interesting<br />

c<strong>on</strong>jecture is <strong>the</strong> following “Secti<strong>on</strong> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>.” A K-rati<strong>on</strong>al point x ∈ X(K) <strong>of</strong> an algebraic<br />

variety X over K may be regarded as a secti<strong>on</strong> x :Spec(K) → X <strong>of</strong> <strong>the</strong> structure morphism<br />

X → Spec (K). Thus, a K-rati<strong>on</strong>al point x induces a (π 1 (X K<br />

)-c<strong>on</strong>jugacy class <strong>of</strong>) secti<strong>on</strong><br />

homomorphism(s) α x : Gal(K) → π 1 (X) which splits <strong>the</strong> fundamental exact sequence (1.1)<br />

discussed above.<br />

(GC3) <str<strong>on</strong>g>The</str<strong>on</strong>g> Secti<strong>on</strong> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>. For an X/K as in (GC2), every secti<strong>on</strong> homomorphism<br />

α :Gal(K) → π 1 (X) <strong>of</strong> <strong>the</strong> projecti<strong>on</strong> pr X : π 1 (X) → Gal(K) arises ei<strong>the</strong>r from a K-rati<strong>on</strong>al<br />

point <strong>of</strong> X (in <strong>the</strong> usual sense), or from <strong>the</strong> K-rati<strong>on</strong>al points “at infinity” 6) <strong>of</strong> X.


THE GROTHENDIECK CONJECTURE 5<br />

We will discuss <strong>the</strong> (tangential) secti<strong>on</strong>s arising from <strong>the</strong> points at infinity in <strong>the</strong> following<br />

§. With respect to <strong>the</strong> Hom <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>, <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> ([G2]) also menti<strong>on</strong>s 7) <strong>the</strong> possibility <strong>of</strong><br />

extending <strong>the</strong> c<strong>on</strong>jecture to <strong>the</strong> case where X is an arbitrary smooth algebraic variety and Y is<br />

an “elementary anabelian variety” (i.e., a variety obtained as <strong>the</strong> successive smooth fibrati<strong>on</strong><br />

<strong>of</strong> families <strong>of</strong> hyperbolic curves). In this c<strong>on</strong>text, <strong>the</strong> Secti<strong>on</strong> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> may be regarded as<br />

a variant <strong>of</strong> <strong>the</strong> Hom <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> where “X” is replaced by <strong>the</strong> spectrum <strong>of</strong> <strong>the</strong> base field 8) .<br />

<str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> also c<strong>on</strong>siders <strong>the</strong> case where X and Y are replaced by <strong>the</strong> spectra <strong>of</strong> functi<strong>on</strong><br />

fields and c<strong>on</strong>jectures that a “birati<strong>on</strong>al versi<strong>on</strong> <strong>of</strong> <strong>the</strong> anabelian c<strong>on</strong>jecture” 9) holds in this<br />

case.<br />

§1.3. C<strong>on</strong>cerning <strong>the</strong> Arithmetic <strong>Fundamental</strong> Group<br />

In his writings ([G1-3]), <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> also discourses <strong>on</strong> various dreams <strong>of</strong> his ranging from<br />

<strong>the</strong> possibility <strong>of</strong> treating algebraic curves over number fields as graphs <strong>on</strong> topological surfaces<br />

(“dessins d’enfant”) to <strong>the</strong> explicit descripti<strong>on</strong> <strong>of</strong> <strong>the</strong> close relati<strong>on</strong>ship between <strong>the</strong> arithmetic<br />

fundamental groups <strong>of</strong> various moduli spaces <strong>of</strong> curves, to <strong>the</strong> possibility <strong>of</strong> revoluti<strong>on</strong>izing <strong>the</strong><br />

c<strong>on</strong>cept <strong>of</strong> a “space” by means <strong>of</strong> a new categorical point <strong>of</strong> view. On <strong>the</strong> o<strong>the</strong>r hand, G. V.<br />

Belyi’s result ([B]) as <strong>the</strong> end <strong>of</strong> <strong>the</strong> 1970’s to <strong>the</strong> effect that <strong>the</strong> outer Galois representati<strong>on</strong><br />

(1.2) in <strong>the</strong> case K = Q, X= P 1 −{0, 1, ∞} is injective drew <strong>the</strong> attenti<strong>on</strong> <strong>of</strong> a large number<br />

<strong>of</strong> ma<strong>the</strong>maticians as a classical example <strong>of</strong> <strong>the</strong> highly n<strong>on</strong>trivial relati<strong>on</strong>ship between Galois<br />

groups and fundamental groups. Ever since <strong>the</strong> appearance <strong>of</strong> this result, various research<br />

topics and unsolved problems arising both from [G1-3] and from o<strong>the</strong>r independent sources<br />

gradually came to be recognized as being related and c<strong>on</strong>tinue to this day to be <strong>the</strong> focus <strong>of</strong><br />

active research (e.g., <strong>the</strong> inverse Galois problem, mixed motives, adèlic special functi<strong>on</strong>s, <strong>the</strong><br />

<str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>-Teichmüller group, etc.). With regard to <strong>the</strong> numerous important issues and<br />

recent developments c<strong>on</strong>cerning <strong>the</strong>se topics, we apologize that due to <strong>the</strong> lack <strong>of</strong> space, we are<br />

unable to discuss <strong>the</strong>se topics in detail in this paper, and instead restrict ourselves to quoting<br />

several reference books ([1–6]) and surveys ([I2], [H]). One may think <strong>of</strong> <strong>the</strong> “<str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g><br />

<str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>” which is <strong>the</strong> topic <strong>of</strong> <strong>the</strong> present paper as being simply a branch – <strong>of</strong> a somewhat<br />

c<strong>on</strong>ceptual hue – <strong>on</strong> <strong>the</strong> great tree <strong>of</strong> numerous research topics (as discussed above) c<strong>on</strong>cerning<br />

<strong>the</strong> arithmetic fundamental group.<br />

§2. From Finiteness <str<strong>on</strong>g>The</str<strong>on</strong>g>orems to Rigidity <str<strong>on</strong>g>The</str<strong>on</strong>g>orems<br />

(mainly <strong>the</strong> case X: genus0, K: number field)<br />

§2.1. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g>orem <strong>of</strong> Anders<strong>on</strong>-Ihara<br />

Any approach to <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> must begin by addressing <strong>the</strong> questi<strong>on</strong> <strong>of</strong><br />

precisely where in <strong>the</strong> extensi<strong>on</strong> structure (1.1) <strong>of</strong> <strong>the</strong> arithmetic fundamental group, or, alternatively,<br />

in <strong>the</strong> outer Galois representati<strong>on</strong> (1.2) arising from this extensi<strong>on</strong>, <strong>on</strong>e should look<br />

to find some sort <strong>of</strong> reflecti<strong>on</strong> <strong>of</strong> <strong>the</strong> algebraic structure <strong>of</strong> <strong>the</strong> original space. Now when <strong>on</strong>e<br />

fixes a prime number l, <strong>the</strong> outer Galois representati<strong>on</strong> (1.2) also naturally induces an outer<br />

acti<strong>on</strong><br />

ρ (l)<br />

X<br />

:Gal(K) → Out(π(l) 1 (X K ))


6 HIROAKI NAKAMURA, AKIO TAMAGAWA, SHINICHI MOCHIZUKI<br />

<strong>on</strong> <strong>the</strong> maximal pro-l quotient group 10) π (l)<br />

1 (X K )<strong>of</strong>π 1(X K<br />

). In <strong>the</strong> 1980’s, building <strong>on</strong> his<br />

previous work, Yasutaka Ihara ([I1]) initiated research <strong>on</strong> <strong>the</strong> pro-l outer Galois representati<strong>on</strong><br />

associated to X = P 1 −{0, 1, ∞}, independently <strong>of</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> and Deligne. This research<br />

led to <strong>the</strong> elucidati<strong>on</strong> 11) <strong>of</strong> <strong>the</strong> deep arithmeticity (especially, <strong>the</strong> relati<strong>on</strong>ship to Jacobi sums<br />

and circular units) <strong>of</strong> this outer Galois representati<strong>on</strong>. Moreover, Ihara’s success spurred<br />

researchers 12) — mainly in Japan — to work <strong>on</strong> applicati<strong>on</strong>s as well as generalizati<strong>on</strong>s to<br />

various o<strong>the</strong>r curves <strong>of</strong> Ihara’s work.<br />

Already by <strong>the</strong> late 1980’s, <strong>the</strong> following fact came to be known as a <strong>the</strong>orem <strong>of</strong> G. Anders<strong>on</strong>-<br />

Ihara ([AI]). For a finite set Λ ⊂ P 1 (K) thatc<strong>on</strong>tains0, 1, ∞,<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>orem (Anders<strong>on</strong> − Ihara). <str<strong>on</strong>g>The</str<strong>on</strong>g> fixed field K (l)<br />

X<br />

representati<strong>on</strong> ρ (l)<br />

X<br />

associated to a genus 0 curve X = P1 K<br />

<strong>of</strong> <strong>the</strong> kernel <strong>of</strong> <strong>the</strong> pro-l outer Galois<br />

− Λ is <strong>the</strong> extensi<strong>on</strong> field <strong>of</strong> K<br />

obtained by adjoining to K all <strong>of</strong> <strong>the</strong> algebraic numbers arising by repeating <strong>the</strong> operati<strong>on</strong>s <strong>of</strong><br />

taking <strong>the</strong> cross-ratio and l-th root.<br />

This <strong>the</strong>orem gives a descripti<strong>on</strong> <strong>of</strong> <strong>the</strong> subfield K (l)<br />

X<br />

<strong>the</strong> pro-l outer Galois representati<strong>on</strong> ρ (l)<br />

X<br />

<strong>of</strong> K which arises naturally from<br />

by means <strong>of</strong> a system <strong>of</strong> “numbers” generated by<br />

a fixed procedure from <strong>the</strong> coordinates <strong>of</strong> <strong>the</strong> set Λ ⊂ P 1 (K) <strong>of</strong> ramificati<strong>on</strong> points. From<br />

ano<strong>the</strong>r point <strong>of</strong> view, this <strong>the</strong>orem may be regarded as giving an explicit c<strong>on</strong>structi<strong>on</strong>, for<br />

each prime number l, <strong>of</strong> group-<strong>the</strong>oretic invariants (i.e., <strong>the</strong> system <strong>of</strong> numbers referred to<br />

above) with values in <strong>the</strong> subfield K (l)<br />

X<br />

<strong>of</strong> K, using nothing more than <strong>the</strong> structure <strong>of</strong> <strong>the</strong><br />

arithmetic fundamental group π 1 (X) asaGal(K)-extensi<strong>on</strong>. Nakamura’s idea was to approach<br />

<strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> by c<strong>on</strong>structing, in a more systematic fashi<strong>on</strong>, invariants <strong>of</strong> <strong>the</strong><br />

arithmetic fundamental group which are defined as subfields <strong>of</strong> K like those above in such a<br />

way that <strong>the</strong>se invariants would serve to distinguish distinct genus 0 algebraic curves more<br />

effectively.<br />

§2.2. A Group-<str<strong>on</strong>g>The</str<strong>on</strong>g>oretic Descripti<strong>on</strong> <strong>of</strong> Galois Permutati<strong>on</strong>s<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> point <strong>of</strong> <strong>the</strong> method <strong>of</strong> Anders<strong>on</strong>-Ihara is to translate <strong>the</strong> pro-l outer Galois representati<strong>on</strong><br />

<strong>on</strong> π 1 (P 1 − Λ) into <strong>the</strong> language <strong>of</strong> Galois permutati<strong>on</strong>s <strong>of</strong> <strong>the</strong> “pro-cusp points” over<br />

Λ distributed <strong>on</strong> <strong>the</strong> “rim” <strong>of</strong> <strong>the</strong> pro-l universal covering <strong>of</strong> P 1 − Λ; this serves to reduce<br />

<strong>the</strong> issue <strong>of</strong> understanding <strong>the</strong> outer Galois representati<strong>on</strong> to <strong>the</strong> more manageable task <strong>of</strong><br />

understanding <strong>the</strong> Galois permutati<strong>on</strong>s <strong>of</strong> <strong>the</strong> cuspidal points lying <strong>on</strong> <strong>the</strong> genus 0 covers <strong>of</strong><br />

P 1 − Λ. Thus, we shall first c<strong>on</strong>sider how to translate <strong>the</strong> phenomen<strong>on</strong> <strong>of</strong> “cuspidal points <strong>of</strong><br />

a finite covering which are permuted by Galois” into group-<strong>the</strong>oretic language that is phrased<br />

entirely in terms <strong>of</strong> <strong>the</strong> group extensi<strong>on</strong> structure <strong>of</strong> <strong>the</strong> arithmetic fundamental group.<br />

In general, let X be an affine hyperbolic curve (<strong>of</strong> arbitrary genus) defined over K, andlet<br />

Y be a finite covering <strong>of</strong> X; Y ∗ its n<strong>on</strong>singular compactificati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>n <strong>the</strong> set <strong>of</strong> cuspidal<br />

points <strong>of</strong> Y is <strong>the</strong> set Σ Y<br />

def<br />

= Y ∗ − Y . First <strong>of</strong> all, <strong>the</strong> natural field <strong>of</strong> definiti<strong>on</strong> <strong>of</strong> <strong>the</strong> covering<br />

Y may be obtained as <strong>the</strong> field K Y fixed by <strong>the</strong> image <strong>of</strong> <strong>the</strong> open subgroup H Y = π 1 (Y )<br />

(corresp<strong>on</strong>ding to <strong>the</strong> covering Y ) under <strong>the</strong> projecti<strong>on</strong> pr X : π 1 (X) → Gal(K). Next, <strong>the</strong><br />

geometric fundamental group <strong>of</strong> Y may be recovered as <strong>the</strong> intersecti<strong>on</strong> H Y ∩ π 1 (X K<br />

). If g Y is<br />

<strong>the</strong> genus <strong>of</strong> Y ∗ ,andn Y is <strong>the</strong> cardinality <strong>of</strong> Σ Y (K), <strong>the</strong>n this geometric fundamental group


THE GROTHENDIECK CONJECTURE 7<br />

is a n<strong>on</strong>abelian free pr<strong>of</strong>inite group <strong>of</strong> rank 2g Y + n Y − 1. Taking <strong>the</strong> maximal pro-l abelian<br />

quotient <strong>of</strong> this group <strong>the</strong>n gives <strong>the</strong> l-adic étale homology group H 1 (Y K<br />

, Z l )(=π (l)<br />

1 (Y K )ab );<br />

moreover, by c<strong>on</strong>jugati<strong>on</strong>, <strong>on</strong>e sees that <strong>on</strong>e obtains a structure <strong>of</strong> Gal(K Y )-module <strong>on</strong> this<br />

homology group. Now since <strong>the</strong> cyclotomic permutati<strong>on</strong> representati<strong>on</strong> 13) <strong>on</strong> <strong>the</strong> set <strong>of</strong> cuspidal<br />

points (almost) includes into this homology group (as a submodule <strong>of</strong> rank n Y − 1), it suffices<br />

to recover this submodule group-<strong>the</strong>oretically. That <strong>on</strong>e can, in fact, do this is guaranteed by<br />

<strong>the</strong> Riemann-Weil <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>. Indeed, <strong>the</strong> quotient module <strong>of</strong> H 1 (Y K<br />

, Z l ) by <strong>the</strong> “cuspidal<br />

part” in questi<strong>on</strong> is <strong>of</strong> rank 2g Y and is, in fact, isomorphic to <strong>the</strong> l-adic Tate module (made<br />

up <strong>of</strong> <strong>the</strong> l-power torsi<strong>on</strong> points) <strong>of</strong> <strong>the</strong> Jacobian variety <strong>of</strong> Y ∗ . <str<strong>on</strong>g>The</str<strong>on</strong>g> Riemann-Weil c<strong>on</strong>jecture<br />

asserts that <strong>the</strong> radii <strong>of</strong> <strong>the</strong> eigenvalues (i.e., <strong>the</strong> “weights”) <strong>of</strong> <strong>the</strong> Frobenius acti<strong>on</strong> arising<br />

from <strong>the</strong> acti<strong>on</strong> <strong>of</strong> Gal(K Y ) <strong>on</strong> this Tate module are <strong>of</strong> a different size from <strong>the</strong> eigenvalue(s)<br />

arising from a cyclotomic acti<strong>on</strong>. Thus, <strong>the</strong> cuspidal part <strong>of</strong> H 1 (Y K<br />

, Z l ) may be distinguished<br />

from <strong>the</strong> rest <strong>of</strong> H 1 (Y K<br />

, Z l ) group-<strong>the</strong>oretically.<br />

§2.3. Finiteness <str<strong>on</strong>g>The</str<strong>on</strong>g>orems ([N1])<br />

Now let us c<strong>on</strong>sider, for instance, those Galois coverings Y <strong>of</strong> X = P 1 K − Λ(Λ⊃{0, 1, ∞})<br />

whose field <strong>of</strong> definiti<strong>on</strong> is <strong>the</strong> field K( N√ 1) and whose Galois group over X K(<br />

N √ 1)<br />

is equal to<br />

(Z/N Z) |Λ|−1 . If <strong>on</strong>e <strong>the</strong>n computes <strong>the</strong> intersecti<strong>on</strong>, ranging over Y as above and all prime<br />

numbers l, <strong>of</strong> <strong>the</strong> fixed fields <strong>of</strong> <strong>the</strong> kernels <strong>of</strong> <strong>the</strong> Galois representati<strong>on</strong>s <strong>on</strong> <strong>the</strong> cupidal parts<br />

<strong>of</strong> each H 1 (Y K<br />

, Z l ), <strong>on</strong>e obtains <strong>the</strong> field K((λ − λ ′ ) 1/N | λ, λ ′ ∈ Λ − {∞}). This field is<br />

an invariant which can be group-<strong>the</strong>oretically extracted from <strong>the</strong> surjecti<strong>on</strong> pr X : π 1 (X) →<br />

Gal(K), whenever a natural number N is given. If, moreover, <strong>on</strong>e lets N vary, <strong>the</strong>n it follows<br />

from a simple Kummer <strong>the</strong>ory argument (toge<strong>the</strong>r with <strong>the</strong> fact that <strong>the</strong> group <strong>of</strong> units <strong>of</strong><br />

a number field is finitely generated) that <strong>the</strong> subgroup generated inside <strong>the</strong> multiplicative<br />

group K × by <strong>the</strong> finite set {λ − λ ′ | λ, λ ′ ∈ Λ − {∞},λ ≠ λ ′ } is also, <strong>the</strong>refore, a group<strong>the</strong>oretic<br />

invariant. This invariant shows, am<strong>on</strong>g o<strong>the</strong>r things, that (up to linear fracti<strong>on</strong>al<br />

transformati<strong>on</strong>s) <strong>the</strong>re are <strong>on</strong>ly finitely many subsets Λ ⊂ P 1 (K) that give rise to <strong>the</strong> same<br />

arithmetic fundamental group, as well as that, in <strong>the</strong> case <strong>of</strong> certain special number fields<br />

K, <strong>the</strong> (outer acti<strong>on</strong> <strong>on</strong> <strong>the</strong> meta-abelianizati<strong>on</strong> <strong>of</strong> <strong>the</strong> geometric) fundamental group already<br />

determines a curve <strong>of</strong> <strong>the</strong> form P 1 −{4 points}.<br />

§2.4. Rigidity <str<strong>on</strong>g>The</str<strong>on</strong>g>orems<br />

In order to use <strong>the</strong> informati<strong>on</strong> arising from <strong>the</strong> Galois permutati<strong>on</strong>s <strong>of</strong> <strong>the</strong> cuspidal points<br />

more efficiently, this time we would like to c<strong>on</strong>sider <strong>the</strong> informati<strong>on</strong> that <strong>on</strong>e obtains from <strong>the</strong><br />

cuspidal part ⊂ H 1 ((Y H ) K<br />

, Z l ) <strong>of</strong> <strong>the</strong> homology <strong>of</strong> <strong>the</strong> covering Y H associated to H, where<br />

we let H vary, as a parameter, am<strong>on</strong>g all <strong>the</strong> open subgroups <strong>of</strong> π 1 (X). (As was stated in<br />

§2.2) this cupsidal part may be characterized by <strong>the</strong> weight filtrati<strong>on</strong>. Thus, if <strong>on</strong>e c<strong>on</strong>siders<br />

<strong>the</strong> uni<strong>on</strong> <strong>of</strong> <strong>the</strong> cyclic subgroups I <strong>of</strong> π 1 (X K<br />

) that land inside <strong>the</strong> cuspidal part <strong>of</strong> <strong>the</strong> l-adic<br />

homology (for all prime numbers l) <strong>of</strong> all open subgroups H <strong>of</strong> π 1 (X K<br />

)thatc<strong>on</strong>tainI, <strong>the</strong>n<br />

<strong>on</strong>e obtains a subset <strong>of</strong> π 1 (X K<br />

) which may be c<strong>on</strong>structed entirely group-<strong>the</strong>oretically from<br />

<strong>the</strong> Gal(K)-extensi<strong>on</strong> group π 1 (X).<br />

One can show that this subset is precisely <strong>the</strong> uni<strong>on</strong> <strong>of</strong> (all c<strong>on</strong>jugates <strong>of</strong>) <strong>the</strong> “cuspidal<br />

isotropy subgroups,” that is to say, <strong>the</strong> uni<strong>on</strong> <strong>of</strong> all <strong>the</strong> inertia groups ( ∼ = Ẑ) insideπ 1(X K<br />

)


8 HIROAKI NAKAMURA, AKIO TAMAGAWA, SHINICHI MOCHIZUKI<br />

at <strong>the</strong> points at infinity <strong>of</strong> X (i.e., <strong>the</strong> cuspidal points <strong>of</strong> X itself) — cf. <strong>the</strong> “anabelian<br />

weight filtrati<strong>on</strong>” <strong>of</strong> [N2,4]. One can <strong>the</strong>n recover <strong>the</strong> decompositi<strong>on</strong> groups inside π 1 (X) as<br />

<strong>the</strong> normalizers <strong>of</strong> <strong>the</strong> inertia groups. <str<strong>on</strong>g>The</str<strong>on</strong>g> secti<strong>on</strong> homomorphisms α : Gal(K) → π 1 (X)<br />

<strong>of</strong> <strong>the</strong> projecti<strong>on</strong> pr X : π 1 (X) → Gal(K) whose images lie inside a decompositi<strong>on</strong> group<br />

are <strong>the</strong>n called <strong>the</strong> tangential secti<strong>on</strong>s arising from <strong>the</strong> K-rati<strong>on</strong>al points at infinity <strong>of</strong> X.<br />

Am<strong>on</strong>g those secti<strong>on</strong> homomorphisms that are at issue in <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>’s Secti<strong>on</strong> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g><br />

(GC3), those arising from <strong>the</strong> K-rati<strong>on</strong>al points at infinity may thus be given a group-<strong>the</strong>oretic<br />

characterizati<strong>on</strong> in this way.<br />

Now since we have given a group-<strong>the</strong>oretic characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong> set <strong>of</strong> inertia groups (as<br />

well as <strong>the</strong> corresp<strong>on</strong>ding decompositi<strong>on</strong> groups), if, for instance, we are given an isomorphism<br />

π 1 (X 1 ) ∼ = π 1 (X 2 ) over Gal(K) between <strong>the</strong> arithmetic fundamental groups <strong>of</strong> two curvess X 1<br />

and X 2 over K, <strong>the</strong>n this group isomorphism must automatically preserve <strong>the</strong> set <strong>of</strong> inertia<br />

groups, as well as <strong>the</strong> residue fields <strong>of</strong> <strong>the</strong> various corresp<strong>on</strong>ding points at infinity (since <strong>the</strong>se<br />

residue fields are just <strong>the</strong> fixed fields <strong>of</strong> <strong>the</strong> image under pr X <strong>of</strong> <strong>the</strong> corresp<strong>on</strong>ding decompositi<strong>on</strong><br />

group in Gal(K)). <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, if X 1 maybeembeddedinX 1,<strong>the</strong>nX ′ 2 may also be embedded in<br />

some X 2 ′ such that π 1 (X 1) ′ ∼ = π 1 (X 2). ′ In particular, <strong>the</strong> problem <strong>of</strong> rec<strong>on</strong>structing (from <strong>the</strong>ir<br />

arithmetic fundamental groups) curves P 1 −{n points} <strong>of</strong> genus 0 (where n is arbitrary) may<br />

be reduced to <strong>the</strong> case where n = 4. If, moreover, <strong>on</strong>e uses <strong>the</strong> fact that <strong>on</strong>e can specify those<br />

geometric cyclic covers that ramify <strong>on</strong>ly at two points entirely in <strong>the</strong> language <strong>of</strong> fundamental<br />

groups and inertia groups, <strong>on</strong>e sees that by applying <strong>the</strong> method <strong>of</strong> [N1], <strong>on</strong>e can extract (as<br />

an invariant <strong>of</strong> π 1 (P 1 −{0, 1, ∞,λ})) <strong>the</strong> triple 〈λ〉, 〈1 − λ〉, 〈 λ<br />

λ−1<br />

〉 <strong>of</strong> multiplicative subgroups<br />

<strong>of</strong> K × . This is, in fact, sufficient to characterize <strong>the</strong> isomorphism class <strong>of</strong> P 1 −{0, 1, ∞,λ}. In<br />

this way, <strong>on</strong>e can show that hyperbolic algebraic curves <strong>of</strong> genus 0 over a field which is finitely<br />

generated over Q may be “rec<strong>on</strong>stituted” from <strong>the</strong>ir arithmetic fundamental groups ([N2]).<br />

Moreover, since <strong>the</strong> characterizati<strong>on</strong> <strong>of</strong> inertia groups may be applied even to <strong>the</strong> pro-l fundamental<br />

groups <strong>of</strong> affine curves <strong>of</strong> arbitrary genus, <strong>the</strong> possibility thus arose <strong>of</strong> approaching a<br />

versi<strong>on</strong> <strong>of</strong> <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> reformulated for <strong>the</strong> pro-l fundamental group “quantitatively”<br />

via <strong>the</strong> lower central series (<strong>of</strong> <strong>the</strong> pro-l fundamental group). In particular, when <strong>on</strong>e<br />

specializes this to <strong>the</strong> problem <strong>of</strong> computing <strong>the</strong> group <strong>of</strong> (Galois-compatible) automorphisms<br />

<strong>of</strong> <strong>the</strong> pro-l fundamental group, <strong>on</strong>e can to some extent systematically obtain affirmative results<br />

by combining <strong>on</strong>e’s knowledge <strong>of</strong> <strong>the</strong> pro-l outer Galois representati<strong>on</strong>s <strong>of</strong> curves <strong>of</strong> higher<br />

genus and <strong>the</strong>ir c<strong>on</strong>figurati<strong>on</strong> spaces by means <strong>of</strong> a method involving various filtrati<strong>on</strong>s (cf. <strong>the</strong><br />

survey [N7], as well as [NTs],[NTa],[MT], etc.). One can regard this problem <strong>of</strong> rec<strong>on</strong>structing<br />

<strong>the</strong> automorphism groups <strong>of</strong> curves from <strong>the</strong> groups <strong>of</strong> Galois-compatible automorphisms <strong>of</strong><br />

<strong>the</strong>ir geometric fundamental groups as a preliminary first step to <strong>the</strong> isomorphism versi<strong>on</strong> <strong>of</strong><br />

(GC2). However, in order to obtain a more decisive breakthrough, <strong>on</strong>e had to first wait for <strong>the</strong><br />

work <strong>of</strong> Tamagawa (§3).<br />

Incidentally, this procedure that we carried out above for <strong>the</strong> tangential secti<strong>on</strong>s arising<br />

from <strong>the</strong> points at infinity, i.e., <strong>of</strong>


THE GROTHENDIECK CONJECTURE 9<br />

Distinguishing group-<strong>the</strong>oretically those secti<strong>on</strong> homomorphisms<br />

α : Gal(K) → π 1 (X) <strong>of</strong> <strong>the</strong> extensi<strong>on</strong> group structure pr X : π 1 (X)<br />

→ Gal(K) <strong>of</strong> <strong>the</strong> arithmetic fundamental group <strong>of</strong> an algebraic curve<br />

that arise geometrically.<br />

may also be seen in <strong>the</strong> later work <strong>of</strong> Tamagawa and Mochizuki. Moreover, in <strong>the</strong> course<br />

<strong>of</strong> carrying out this procedure, it became standard in this later work to apply <strong>the</strong> method<br />

by “compiling in an anabelian fashi<strong>on</strong>” <strong>the</strong> arithmetic-geometric data included in <strong>the</strong> étale<br />

cohomology groups <strong>of</strong> <strong>the</strong> covering curves Y H that arise when <strong>on</strong>e allows H to vary as a<br />

parameter am<strong>on</strong>g all <strong>the</strong> open subgroups <strong>of</strong> π 1 (X). On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> issues <strong>of</strong> just what<br />

geometric informati<strong>on</strong> <strong>on</strong>e extracts from <strong>the</strong> étale cohomology <strong>of</strong> Y H in <strong>the</strong> various arithmetic<br />

settings that arise (in <strong>the</strong> later work <strong>of</strong> Tamagawa and Mochizuki), and how <strong>on</strong>e compiles<br />

this informati<strong>on</strong> in order to arrive at <strong>the</strong> final result are highly n<strong>on</strong>trivial problems which<br />

required more sophisticated technology and fresh ideas to solve. In <strong>the</strong> following secti<strong>on</strong>s, we<br />

will discuss <strong>the</strong> development <strong>of</strong> <strong>the</strong> ideas <strong>of</strong> Tamagawa and Mochizuki that were applied to<br />

solve <strong>the</strong>se problems in various specific arithmetic settings. In order, however, to allow even<br />

n<strong>on</strong>-specialist readers to get a taste <strong>of</strong> <strong>the</strong> evoluti<strong>on</strong> <strong>of</strong> <strong>the</strong> comm<strong>on</strong> issues that underlie <strong>the</strong>se<br />

developments, we will attempt to proceed, step by step, in as pedestrian a fashi<strong>on</strong> as is possible.<br />

§3. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> and <strong>the</strong> <strong>Fundamental</strong> <strong>Groups</strong> <strong>of</strong> Algebraic<br />

Curves in Positive Characteristic<br />

§3.1. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> over Finite Fields<br />

In this §, weletk be a finite field, and X a (n<strong>on</strong>singular) affine curve over k. One <strong>of</strong> <strong>the</strong><br />

main results <strong>of</strong> Tamagawa ([T1]) states that <strong>the</strong> scheme X may be recovered from π 1 (X) (more<br />

precisely, this is an analogue <strong>of</strong> <strong>the</strong> isomorphism versi<strong>on</strong> <strong>of</strong> (GC2)). <str<strong>on</strong>g>The</str<strong>on</strong>g> pro<strong>of</strong> <strong>of</strong> this result<br />

is modeled <strong>on</strong> <strong>the</strong> work <strong>of</strong> K. Uchida ([U]), who showed that <strong>the</strong> functi<strong>on</strong> field k(X) maybe<br />

recovered from its absolute Galois group Gal(k(X)), and may be roughly divided into three<br />

steps:<br />

(i) <strong>the</strong> group-<strong>the</strong>oretic characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong> decompositi<strong>on</strong> groups <strong>of</strong> each closed point <strong>of</strong><br />

X ∗ ;<br />

(ii) <strong>the</strong> rec<strong>on</strong>structi<strong>on</strong> <strong>of</strong> <strong>the</strong> multiplicative group k(X) × ;<br />

(iii) <strong>the</strong> rec<strong>on</strong>structi<strong>on</strong> <strong>of</strong> <strong>the</strong> additive structure <strong>on</strong> k(X) =k(X) × ∪{0}.<br />

Here, just as in §2, we denote <strong>the</strong> n<strong>on</strong>singular compactificati<strong>on</strong> <strong>of</strong> X by X ∗ .<br />

In Step (i), Uchida used an idea <strong>of</strong> Neukirch involving Brauer groups, but in our case, since<br />

<strong>the</strong> inertia groups <strong>of</strong> <strong>the</strong> closed points <strong>of</strong> X are trivial, <strong>the</strong> decompositi<strong>on</strong> groups <strong>of</strong> <strong>the</strong>se points<br />

are isomorphic to <strong>the</strong> absolute Galois group <strong>of</strong> <strong>the</strong>ir residue fields (which are finite fields), hence<br />

have no (n<strong>on</strong>zero) H 2 . Thus, we shall use instead an idea that we explain in <strong>the</strong> following.<br />

First, observe that each closed point <strong>of</strong> X defines a c<strong>on</strong>tinuous group homomorphism<br />

α x : Gal(k(x)) = π 1 (Spec (k(x))) → π 1 (X)


10 HIROAKI NAKAMURA, AKIO TAMAGAWA, SHINICHI MOCHIZUKI<br />

such that pr X ◦ α x coincides with <strong>the</strong> natural injecti<strong>on</strong> Gal(k(x)) ↩→ Gal(k), and that <strong>the</strong><br />

image <strong>of</strong> α x is <strong>the</strong> decompositi<strong>on</strong> group <strong>of</strong> x. In particular, when x is a k-rati<strong>on</strong>al point, <strong>the</strong><br />

homomorphism α x determines a secti<strong>on</strong> <strong>of</strong> pr X . Below, for simplicity, we shall c<strong>on</strong>centrate <strong>on</strong><br />

this case (where x is k-rati<strong>on</strong>al). <str<strong>on</strong>g>The</str<strong>on</strong>g> problem <strong>the</strong>n is to give a group-<strong>the</strong>oretic c<strong>on</strong>diti<strong>on</strong> that<br />

will guarantee that an arbitrary secti<strong>on</strong> homomorphism α <strong>of</strong> pr X in fact arises as <strong>the</strong> α x <strong>of</strong><br />

some x ∈ X(k). (Observe that since Gal(k) ∼ = Ẑ is a free pr<strong>of</strong>inite group, <strong>the</strong> precise analogue<br />

<strong>of</strong> <strong>the</strong> Secti<strong>on</strong> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> (GC3) could not possibly hold.) First, let us note that <strong>the</strong> c<strong>on</strong>diti<strong>on</strong><br />

in questi<strong>on</strong> is equivalent to <strong>the</strong> following:<br />

(∗)<br />

For any open subgroup H <strong>of</strong> π 1 (X) that c<strong>on</strong>tains <strong>the</strong> image Im(α) <strong>of</strong>α, <strong>the</strong> set<br />

<strong>of</strong> k-rati<strong>on</strong>al points Y H (k) <strong>of</strong> <strong>the</strong> corresp<strong>on</strong>ding covering Y H <strong>of</strong> X is n<strong>on</strong>empty.<br />

Indeed, necessity follows immediately from <strong>the</strong> fundamental properties <strong>of</strong> <strong>the</strong> decompositi<strong>on</strong><br />

group, while sufficiency follows from <strong>the</strong> following argument: Since any projective limit <strong>of</strong><br />

n<strong>on</strong>empty finite sets is itself n<strong>on</strong>empty, <strong>the</strong> (pro-)covering <strong>of</strong> X corresp<strong>on</strong>ding to <strong>the</strong> subgroup<br />

Im(α) <strong>of</strong>π 1 (X) possesses a k-rati<strong>on</strong>al point. Hence, if <strong>on</strong>e takes such a k-rati<strong>on</strong>al point <strong>of</strong><br />

this (pro-)covering and denotes <strong>the</strong> image <strong>of</strong> this point in X by x, <strong>on</strong>e sees immediately that<br />

α = α x . Thus, it remains to solve <strong>the</strong> problem <strong>of</strong> how to determine group-<strong>the</strong>oretically from<br />

<strong>the</strong> arithmetic fundamental group whe<strong>the</strong>r or not (∗) holds, or, more generally, just when a<br />

curve over a finite field k admits a rati<strong>on</strong>al point. This problem may be solved by using <strong>the</strong><br />

Lefshetz Trace Formula, which allows <strong>on</strong>e to calculate <strong>the</strong> number (≥ 0) <strong>of</strong> rati<strong>on</strong>al points by<br />

means <strong>of</strong> <strong>the</strong> acti<strong>on</strong> <strong>of</strong> <strong>the</strong> Frobenius element <strong>on</strong> l-adic étale cohomology (where l is a prime<br />

number distinct from <strong>the</strong> characteristic <strong>of</strong> k). For <strong>the</strong> points at infinity x ∈ Σ def<br />

= X ∗ − X, <strong>the</strong><br />

inertia group is n<strong>on</strong>trivial, so <strong>the</strong> secti<strong>on</strong> homomorphism α x into <strong>the</strong> decompositi<strong>on</strong> group is<br />

not uniquely determined; moreover, (unlike <strong>the</strong> case <strong>of</strong> points x ∈ X(k)) <strong>the</strong> image <strong>of</strong> α x is a<br />

proper subgroup <strong>of</strong> <strong>the</strong> decompositi<strong>on</strong> group. Never<strong>the</strong>less, in this case, as well, if <strong>on</strong>e applies<br />

a slightly modified versi<strong>on</strong> <strong>of</strong> <strong>the</strong> above argument, for each x ∈ Σ, <strong>on</strong>e can group-<strong>the</strong>oretically<br />

rec<strong>on</strong>struct <strong>the</strong> infinite set <strong>of</strong> all possible α x ’s. Thus, <strong>on</strong>e can rec<strong>on</strong>struct <strong>the</strong> decompositi<strong>on</strong><br />

group <strong>of</strong> x as <strong>the</strong> subgroup <strong>of</strong> π 1 (X) generated by <strong>the</strong> uni<strong>on</strong> <strong>of</strong> <strong>the</strong> images <strong>of</strong> all possible α x ’s.<br />

Step (ii) is almost <strong>the</strong> same as in [U]: <strong>on</strong>e uses <strong>the</strong> reciprocity law <strong>of</strong> class field <strong>the</strong>ory,<br />

applied to <strong>the</strong> functi<strong>on</strong> field k(X). Originally, <strong>the</strong> point <strong>of</strong> class field <strong>the</strong>ory was to calculate <strong>the</strong><br />

abelianizati<strong>on</strong> <strong>of</strong> <strong>the</strong> Galois group <strong>of</strong> a field by means <strong>of</strong> some multiplicative groups arising from<br />

<strong>the</strong> field; here, however, we view things in reverse, i.e., we think <strong>of</strong> <strong>the</strong> data <strong>of</strong> <strong>the</strong> multiplicative<br />

groups associated to a field as being encoded inside <strong>the</strong> abelianized Galois group. Since we<br />

have already rec<strong>on</strong>structed <strong>the</strong> decompositi<strong>on</strong> groups associated to each closed point x <strong>of</strong> X ∗<br />

in Step (i), it thus follows from local class field <strong>the</strong>ory that we have rec<strong>on</strong>structed (as <strong>the</strong> “Weil<br />

group part” <strong>of</strong> <strong>the</strong> abelianizati<strong>on</strong> <strong>of</strong> <strong>the</strong> decompositi<strong>on</strong> group), for x ∈ X, <strong>the</strong> group ̂K x × /Ô× x<br />

( ∼ = Z), and, for x ∈ Σ, <strong>the</strong> group ̂K x × , as well as <strong>the</strong> natural morphisms ̂K x × /Ô× x → π 1(X) ab<br />

and ̂K x<br />

× → π 1(X) ab . (Here, Ôx is <strong>the</strong> completi<strong>on</strong> <strong>of</strong> <strong>the</strong> local ring O X ∗ ,x, and ̂K x denotes <strong>the</strong><br />

quotient field <strong>of</strong> this completi<strong>on</strong>.) Thus, <strong>the</strong> Artin map<br />

∏<br />

−→ π 1 (X) ab<br />

x∈X′ ̂K× x /Ô× x × ∏ x∈Σ<br />

̂K × x


THE GROTHENDIECK CONJECTURE 11<br />

may also be rec<strong>on</strong>structed group-<strong>the</strong>oretically just from π 1 (X), hence <strong>the</strong> same may be said<br />

<strong>of</strong> its kernel, which is simply <strong>the</strong> multiplicative group k(X) × . (Here, we use for <strong>the</strong> first time<br />

that X is affine. If X = X ∗ , <strong>the</strong>n we are <strong>on</strong>ly able to rec<strong>on</strong>struct <strong>the</strong> group k(X) × /k × <strong>of</strong><br />

principal divisors.)<br />

Step (iii) is <strong>the</strong> most technically difficult step. First <strong>of</strong> all, observe that in Step (ii), we<br />

rec<strong>on</strong>structed not <strong>on</strong>ly <strong>the</strong> multiplicative group k(X) × , but also <strong>the</strong> discrete valuati<strong>on</strong> ord x :<br />

k(X) × → Z associated to each closed point x <strong>of</strong> X ∗ ,aswellas(forx ∈ Σ) <strong>the</strong> (kernel <strong>of</strong> <strong>the</strong>)<br />

reducti<strong>on</strong> map Ker(ord x )=O × X ∗ ,x → k(x)× . Now in [U], <strong>on</strong>e first rec<strong>on</strong>structs <strong>the</strong> additive<br />

structure <strong>of</strong> <strong>the</strong> base field k (or <strong>of</strong> ¯k), <strong>the</strong>n (since “Σ = X ∗ ”), by using <strong>the</strong> reducti<strong>on</strong> map for<br />

an infinite number <strong>of</strong> points, <strong>on</strong>e rec<strong>on</strong>structs <strong>the</strong> additive structure <strong>of</strong> <strong>the</strong> functi<strong>on</strong> field from<br />

<strong>the</strong> additive structure <strong>of</strong> <strong>the</strong> various residue fields. In our case, (since Σ is a finite set) this final<br />

part <strong>of</strong> <strong>the</strong> argument does not work. Instead, <strong>on</strong>e takes “lots” <strong>of</strong> “nice” functi<strong>on</strong>s f ∈ k(X)<br />

(i.e., functi<strong>on</strong>s “like” <strong>the</strong> functi<strong>on</strong> t <strong>on</strong> X = P 1 k −{0, 1, ∞} =Spec(k[t, t−1 , (t − 1) −1 ])); <strong>the</strong>n,<br />

by using <strong>the</strong> various special properties <strong>of</strong> <strong>the</strong> rati<strong>on</strong>al functi<strong>on</strong> field, <strong>on</strong>e recovers <strong>the</strong> additive<br />

structure <strong>of</strong> <strong>the</strong> subfield k(f) ⊂ k(X); and finally, by “gluing toge<strong>the</strong>r” <strong>the</strong> additive structures<br />

<strong>of</strong> <strong>the</strong>se various subfields, <strong>on</strong>e recovers <strong>the</strong> additive structure <strong>of</strong> <strong>the</strong> original functi<strong>on</strong> field k(X).<br />

§3.2. From Finite Fields to Finitely Generated Fields<br />

When X is, in additi<strong>on</strong>, hyperbolic, <strong>the</strong> results and pro<strong>of</strong>s which we explained in §3.1 remain<br />

valid when <strong>on</strong>e replaces <strong>the</strong> full (arithmetic) fundamental group π 1 (X) by <strong>the</strong> tame fundamental<br />

group π1 tame (X) (which is a quotient <strong>of</strong> π 1 (X)). In this §, we will explain how <strong>the</strong> isomorphism<br />

versi<strong>on</strong> <strong>of</strong> <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> (GC2) for affine hyperbolic curves over fields which are<br />

finitely generated over <strong>the</strong> rati<strong>on</strong>al number field may be derived from our results c<strong>on</strong>cerning <strong>the</strong><br />

tame fundamental group <strong>of</strong> affine hyperbolic curves over a finite field. In §1.2, we pointed out<br />

<strong>the</strong> analogy between <strong>the</strong> Tate <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> and <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>, but in <strong>the</strong> case <strong>of</strong><br />

<strong>the</strong> Tate <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>, it seems highly unlikely that it is possible to derive Faltings’ <str<strong>on</strong>g>The</str<strong>on</strong>g>orem via<br />

a simple argument which does not involve genuinely global c<strong>on</strong>siderati<strong>on</strong>s from Tate’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(which amounts to <strong>the</strong> Tate <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> over finite fields). This is <strong>on</strong>e difference between <strong>the</strong><br />

arithmetic nature <strong>of</strong> <strong>the</strong>se two c<strong>on</strong>jectures (cf. also §4.1).<br />

Since it is easy to derive <strong>the</strong> case over a finitely generated extensi<strong>on</strong> <strong>of</strong> <strong>the</strong> rati<strong>on</strong>al number<br />

field from <strong>the</strong> case over a number field, in <strong>the</strong> following we shall c<strong>on</strong>sider <strong>the</strong> case where K is<br />

a number field, and X is an affine hyperbolic curve over K. <str<strong>on</strong>g>The</str<strong>on</strong>g> problem is to show how to<br />

recover group-<strong>the</strong>oretically <strong>the</strong> tame fundamental group <strong>of</strong> <strong>the</strong> reducti<strong>on</strong> <strong>of</strong> X at each finite<br />

prime <strong>of</strong> K from <strong>the</strong> arithmetic fundamental group <strong>of</strong> X itself. Here, a key role is played<br />

by <strong>the</strong> fact that <strong>on</strong>e can determine whe<strong>the</strong>r or not a hyperbolic curve over a local field has<br />

good reducti<strong>on</strong> by looking at whe<strong>the</strong>r or not <strong>the</strong> outer acti<strong>on</strong> <strong>of</strong> <strong>the</strong> inertia group (<strong>of</strong> <strong>the</strong> local<br />

field) <strong>on</strong> <strong>the</strong> pro-l fundamental group (where l is a prime number which is distinct from <strong>the</strong><br />

characteristic <strong>of</strong> <strong>the</strong> residue field) is trivial. This fact is <strong>the</strong> analogue for hyperbolic curves<br />

<strong>of</strong> <strong>the</strong> good reducti<strong>on</strong> criteri<strong>on</strong> <strong>of</strong> Serre-Tate for abelian varieties. (This group-<strong>the</strong>oretic good<br />

reducti<strong>on</strong> criteri<strong>on</strong> for hyperbolic curves is due in <strong>the</strong> proper case to T. Oda ([O1,2]).)<br />

Now we let v be a finite prime <strong>of</strong> K, K v be <strong>the</strong> v-adic completi<strong>on</strong> <strong>of</strong> K, O v be its ring <strong>of</strong><br />

integers, and k v be its residue field. <str<strong>on</strong>g>The</str<strong>on</strong>g>n <strong>the</strong> absolute Galois group <strong>of</strong> K v may be naturally<br />

regarded as a subgroup <strong>of</strong> <strong>the</strong> absolute Galois group <strong>of</strong> K; moreover, <strong>the</strong> geometric fundamental


12 HIROAKI NAKAMURA, AKIO TAMAGAWA, SHINICHI MOCHIZUKI<br />

group <strong>of</strong> X coincides with <strong>the</strong> geometric fundamental group <strong>of</strong> X Kv , so <strong>on</strong>e may immediately<br />

recover <strong>the</strong> arithmetic fundamental group π 1 (X Kv )<strong>of</strong>X Kv as pr −1<br />

X (Gal(K v)) (in <strong>the</strong> notati<strong>on</strong><br />

<strong>of</strong> (1.1)). If we <strong>the</strong>n apply to this arithmetic fundamental group <strong>the</strong> above criteri<strong>on</strong>, we can<br />

determine group-<strong>the</strong>oretically whe<strong>the</strong>r or not X Kv has good reducti<strong>on</strong>. Thus, in <strong>the</strong> following,<br />

we shall assume that X Kv has good reducti<strong>on</strong>; <strong>the</strong>n we let X Ov be <strong>the</strong> “good” model <strong>of</strong><br />

X Kv over O v ,andX kv be its reducti<strong>on</strong> modulo <strong>the</strong> maximal ideal <strong>of</strong> O v . Since, under <strong>the</strong>se<br />

circumstances, it is known that π1 tame (X kv )andπ 1 (X Ov ) are naturally isomorphic, <strong>on</strong>e may<br />

identify π1 tame (X kv ) with <strong>the</strong> quotient π 1 (X Ov )<strong>of</strong>π 1 (X Kv ). In order to recover this quotient<br />

group-<strong>the</strong>oreticaly, it is sufficient to be able to determine group-<strong>the</strong>oretically, for every finite<br />

étale (Galois) covering <strong>of</strong> X Kv , whe<strong>the</strong>r or not this covering can be extended to an étale<br />

covering over X Ov . But by hyperbolicity, it follows that this is, in fact, equivalent to <strong>the</strong> (at<br />

first sight weaker) c<strong>on</strong>diti<strong>on</strong> that <strong>the</strong> covering curve also have good reducti<strong>on</strong>; thus, <strong>on</strong>e may<br />

apply <strong>the</strong> preceding criteri<strong>on</strong> to determine group-<strong>the</strong>oretically whe<strong>the</strong>r or not this c<strong>on</strong>diti<strong>on</strong><br />

holds. From <strong>the</strong> above argument, it thus follows that whenever a hyperbolic curve X over a<br />

number field K has good reducti<strong>on</strong> at <strong>the</strong> prime v, <strong>on</strong>e can rec<strong>on</strong>struct group-<strong>the</strong>oretically<br />

<strong>the</strong> tame fundamental group <strong>of</strong> <strong>the</strong> reducti<strong>on</strong> X kv (as a certain subquotient <strong>of</strong> <strong>the</strong> arithmetic<br />

fundamental group <strong>of</strong> X).<br />

Now if <strong>on</strong>e is given an isomorphism π 1 (X 1 ) ∼ = π 1 (X 2 ) over Gal(K) between <strong>the</strong> arithmetic<br />

fundamental groups <strong>of</strong> two affine hyperbolic curves X 1 and X 2 over a number field K, <strong>the</strong>n<br />

from <strong>the</strong> above argument, <strong>on</strong>e sees that <strong>on</strong>e gets an induced isomorphism π1 tame ((X 1 ) kv ) ∼ =<br />

π1 tame ((X 2 ) kv ) at almost all <strong>of</strong> <strong>the</strong> primes v <strong>of</strong> K (i.e., those primes at which X 1 and X 2 have<br />

good reducti<strong>on</strong>). Thus, <strong>on</strong>e obtains an isomorphism (X 1 ) kv<br />

∼ = (X2 ) kv from <strong>the</strong> above result<br />

c<strong>on</strong>cerning <strong>the</strong> tame fundamental groups <strong>of</strong> affine hyperbolic curves over finite fields. On <strong>the</strong><br />

o<strong>the</strong>r hand, from <strong>the</strong> hyperbolicity <strong>of</strong> <strong>the</strong> curves (which implies, in particular, that <strong>the</strong> scheme<br />

Isom <strong>of</strong> isomorphisms between <strong>the</strong> two curves is finite over <strong>the</strong> base), it follows that at almost<br />

all v, <strong>on</strong>e has:<br />

Isom(X 1 ,X 2 ) ∼ = Isom((X 1 ) kv , (X 2 ) kv )<br />

which thus implies that X 1<br />

∼ = X2 . This completes <strong>the</strong> pro<strong>of</strong> that <strong>on</strong>e may derive <strong>the</strong> isomorphism<br />

versi<strong>on</strong> <strong>of</strong> (GC2) for affine hyperbolic curves over number fields from <strong>the</strong> result discussed<br />

above c<strong>on</strong>cerning tame fundamental groups <strong>of</strong> affine hyperbolic curves over finite fields.<br />

Moreover, in [M1], Mochizuki derives an isomorphism versi<strong>on</strong> <strong>of</strong> (GC2) for proper hyperbolic<br />

curves over number fields from <strong>the</strong> above results <strong>on</strong> <strong>the</strong> tame fundamental group <strong>of</strong> affine<br />

hyperbolic curves over finite fields. Here, <strong>the</strong> key <strong>the</strong>orem that c<strong>on</strong>nects <strong>the</strong>se two results is an<br />

isomorphism versi<strong>on</strong> <strong>of</strong> (GC2) for <strong>the</strong> “log fundamental group” <strong>of</strong> (n<strong>on</strong>smooth) stable curves<br />

over finite fields.<br />

§3.3. <str<strong>on</strong>g>The</str<strong>on</strong>g> Geometric <strong>Fundamental</strong> Group <strong>of</strong> Algebraic Curves in Positive<br />

Characteristic<br />

In <strong>the</strong> case <strong>of</strong> characteristic 0, <strong>the</strong> isomorphism class <strong>of</strong> <strong>the</strong> geometric fundamental group<br />

<strong>of</strong> a curve is determined solely by its genus g and <strong>the</strong> number n <strong>of</strong> points at infinity <strong>of</strong> <strong>the</strong><br />

curve, but this does not hold in positive characteristic. Indeed, in [T2], it is proven that <strong>the</strong><br />

isomorphism class (as a scheme) <strong>of</strong> a curve <strong>of</strong> genus 0 over F p is completely determined by


THE GROTHENDIECK CONJECTURE 13<br />

its (geometric) fundamental group. It is <strong>of</strong> interest to determine whe<strong>the</strong>r this sort <strong>of</strong> result<br />

holds in general for arbitrary (hyperbolic) algebraic curves over an algebraically closed field<br />

<strong>of</strong> positive characteristic, and whe<strong>the</strong>r or not an analogous result holds when “fundamental<br />

group” is replaced by “tame fundamental group.”<br />

§4. Motivati<strong>on</strong> for <strong>the</strong> Versi<strong>on</strong> over Local Fields<br />

§4.1. Global Fields and Local Fields<br />

In §1, we introduced <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> as a c<strong>on</strong>jecture that c<strong>on</strong>cerns objects over<br />

global fields, i.e., fields such as finitely generated extensi<strong>on</strong>s <strong>of</strong> <strong>the</strong> rati<strong>on</strong>al number field, which<br />

have lots <strong>of</strong> primes. By c<strong>on</strong>trast, Mochizuki’s series <strong>of</strong> papers ([M1-4]) introduced <strong>the</strong> new<br />

point <strong>of</strong> view that <strong>on</strong>e should in fact regard this c<strong>on</strong>jecture as a p-adic analytic phenomen<strong>on</strong><br />

whose natural base is a local, not a global, field. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> over local<br />

fields (§5.1), which was obtained by starting from this point <strong>of</strong> view, is a general result which<br />

includes <strong>the</strong> original c<strong>on</strong>jecture (GC2) formulated over fields which are finitely generated over<br />

<strong>the</strong> rati<strong>on</strong>als. Before we discuss this new point <strong>of</strong> view and <strong>the</strong> results that arose from it,<br />

however, we would first like to examine <strong>the</strong> circumstances that existed prior to Mochizuki’s<br />

work which led people to believe that <strong>the</strong> <strong>the</strong> natural base field for <strong>the</strong> c<strong>on</strong>jecture should be a<br />

global field.<br />

(A) <str<strong>on</strong>g>The</str<strong>on</strong>g> Tate <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> for Abelian Varieties: As was discussed in §1, <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>,<br />

in <strong>the</strong> course <strong>of</strong> formulating his anabelian c<strong>on</strong>jectures, pointed out <strong>the</strong> analogy between <strong>the</strong>se<br />

c<strong>on</strong>jectures and <strong>the</strong> Tate <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> proved by Faltings ([F1]). This pro<strong>of</strong> <strong>of</strong> Faltings, however,<br />

uses in an essential way such global tools as <strong>the</strong> <strong>the</strong>ory <strong>of</strong> heights over number fields, toge<strong>the</strong>r<br />

with <strong>the</strong> fact that, when <strong>on</strong>e c<strong>on</strong>siders how <strong>the</strong> height varies under an isogeny <strong>of</strong> abelian<br />

varieties, <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong>s that arise from <strong>the</strong> finite and infinite primes occur in such a way as<br />

to just cancel each o<strong>the</strong>r out. Moreover, unlike <strong>the</strong> case with number fields (and finite fields),<br />

over such local fields as Q p , not <strong>on</strong>ly does <strong>the</strong> Tate <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> not hold, but, in many cases,<br />

<strong>the</strong> gap between <strong>the</strong> two modules which are expected to be isomorphic is quite large. Thus, if<br />

<strong>on</strong>e takes <strong>the</strong> point <strong>of</strong> view that<br />

“<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>= <str<strong>on</strong>g>The</str<strong>on</strong>g> Tate <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> for Hyperbolic Curves”<br />

<strong>the</strong>n it is most natural to c<strong>on</strong>sider a c<strong>on</strong>jecture such as (GC2) <strong>on</strong>ly over global fields.<br />

(B) Applicati<strong>on</strong>s to Diophantine Geometry: Am<strong>on</strong>g those ma<strong>the</strong>maticians who were<br />

involved with <strong>the</strong> anabelian philosophy in its early years, <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> appears<br />

to have been thought <strong>of</strong> as a new approach to Diophantine Geometry, i.e., to <strong>the</strong> study <strong>of</strong><br />

rati<strong>on</strong>al points <strong>on</strong> varieties over global fields. <str<strong>on</strong>g>The</str<strong>on</strong>g> following argument is representative <strong>of</strong> this<br />

approach. Suppose that we wish to show that a certain algebraic variety has <strong>on</strong>ly finitely<br />

many rati<strong>on</strong>al points. We <strong>the</strong>n assume that <strong>the</strong>re are infinitely many and attempt to derive<br />

a c<strong>on</strong>tradicti<strong>on</strong> by showing that any rati<strong>on</strong>al point arising as a “limit” <strong>of</strong> this infinite set <strong>of</strong><br />

rati<strong>on</strong>al points has various properties that are “too good to be true.” In order to carry out<br />

this argument, however, <strong>on</strong>e needs to know that <strong>the</strong> “limit” exists. Since a field like a number


14 HIROAKI NAKAMURA, AKIO TAMAGAWA, SHINICHI MOCHIZUKI<br />

field is not complete with respect to any n<strong>on</strong>trivial topology, <strong>the</strong> existence <strong>of</strong> such a limit<br />

is by no means clear. On <strong>the</strong> o<strong>the</strong>r hand, since Galois representati<strong>on</strong>s (as in (1.2)) are, in<br />

some sense, analytic objects, it is comparatively easy to show that a sequence <strong>of</strong> such Galois<br />

representati<strong>on</strong>s always has a c<strong>on</strong>vergent subsequence (i.e., a subsequence whose limit exists, as<br />

a Galois representati<strong>on</strong>). Thus, if <strong>on</strong>e knows, as is asserted in <strong>the</strong> Secti<strong>on</strong> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> (GC3),<br />

that rati<strong>on</strong>al points and Galois representati<strong>on</strong>s (which satisfy certain c<strong>on</strong>diti<strong>on</strong>s) are, in fact,<br />

equivalent objects, <strong>the</strong>n <strong>on</strong>e can c<strong>on</strong>clude <strong>the</strong> existence <strong>of</strong> a limit <strong>of</strong> a sequence <strong>of</strong> rati<strong>on</strong>al<br />

points from <strong>the</strong> existence <strong>of</strong> <strong>the</strong> limit <strong>of</strong> <strong>the</strong> corresp<strong>on</strong>ding sequence <strong>of</strong> Galois representati<strong>on</strong>s.<br />

If <strong>on</strong>e refines this argument somewhat, <strong>the</strong>n <strong>the</strong> possibility arises <strong>of</strong> deriving a new pro<strong>of</strong> <strong>of</strong> <strong>the</strong><br />

“Mordell <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>” 14) for algebraic curves <strong>of</strong> high genus from <strong>the</strong> Secti<strong>on</strong> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> (GC3).<br />

Thus, if <strong>on</strong>e has in mind such essentially global applicati<strong>on</strong>s as <strong>the</strong> preceding argument, <strong>the</strong>n<br />

it is most natural to c<strong>on</strong>sider <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> <strong>on</strong>ly over global fields.<br />

It was under <strong>the</strong>se circumstances that <strong>the</strong> transformati<strong>on</strong> <strong>of</strong> ideas “from global to p-adic<br />

fields” was bought about by <strong>the</strong> work <strong>of</strong> Mochizuki. Below we would like to explain <strong>the</strong> point<br />

<strong>of</strong> view that gave rise to this transformati<strong>on</strong>.<br />

§4.2. <str<strong>on</strong>g>The</str<strong>on</strong>g> Analogy with <strong>the</strong> Uniformizati<strong>on</strong> <str<strong>on</strong>g>The</str<strong>on</strong>g>ory <strong>of</strong> Hyperbolic Riemann<br />

Surfaces<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> thrust <strong>of</strong> <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> is, in a word, that <strong>on</strong>e can recover a hyperbolic<br />

curve from its associated outer Galois representati<strong>on</strong> (1.2), i.e., from:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Geometric π 1 <strong>of</strong> <strong>the</strong> Curve + Some Natural “Arithmetic Structure” <strong>on</strong> this π 1<br />

In fact, if <strong>on</strong>e forgets about <strong>the</strong> global nature <strong>of</strong> <strong>the</strong> base field and interprets <strong>the</strong> expressi<strong>on</strong><br />

“arithmetic structure” in a broad sense, <strong>the</strong>n <strong>on</strong>e sees that in fact a phenomen<strong>on</strong> analogous<br />

to this c<strong>on</strong>jecture was already known to ma<strong>the</strong>maticians in <strong>the</strong> nineteenth century. This<br />

phenomen<strong>on</strong> is <strong>the</strong> uniformizati<strong>on</strong> <strong>the</strong>ory <strong>of</strong> hyperbolic Riemann surfaces.<br />

If <strong>on</strong>e is given a hyperbolic curve X over <strong>the</strong> complex number field C, <strong>the</strong>nX defines a<br />

Riemann surface X <strong>of</strong> hyperbolic type. Thus, <strong>the</strong> universal covering ˜X →X<strong>of</strong> this Riemann<br />

surface X also admits a natural structure <strong>of</strong> Riemann surface. Now by <strong>the</strong> uniformizati<strong>on</strong><br />

<strong>the</strong>orem for Riemann surfaces, <strong>on</strong>e knows that ˜X is holomorphically isomorphic to <strong>the</strong> upper<br />

half-plane H def<br />

= {z ∈ C | Im(z) > 0}. Thus, if <strong>on</strong>e uses <strong>the</strong> fact that Aut( ˜X ) ∼ = Aut(H) =<br />

SL 2 (R)/{±1}, <strong>the</strong>n <strong>on</strong>e obtains a can<strong>on</strong>ical representati<strong>on</strong> (defined up to c<strong>on</strong>jugati<strong>on</strong> by an<br />

element <strong>of</strong> SL 2 (R)/{±1})<br />

(4.1) ρ X : π 1 (X ) → SL 2 (R)/{±1}<br />

from <strong>the</strong> acti<strong>on</strong> <strong>of</strong> <strong>the</strong> (usual topological) fundamental group π 1 (X ) <strong>of</strong> <strong>the</strong> Riemann surface X<br />

<strong>on</strong> ˜X . C<strong>on</strong>versely, if <strong>on</strong>e is given ρ X , <strong>the</strong>n <strong>the</strong> acti<strong>on</strong> <strong>of</strong> π 1 (X ) <strong>on</strong> <strong>the</strong> upper half plane H is<br />

determined; thus, by forming <strong>the</strong> quotient <strong>of</strong> H by this acti<strong>on</strong>, <strong>on</strong>e can recover <strong>the</strong> Riemann<br />

surface X , as well as <strong>the</strong> original algebraic curve X, practically effortlessly. Well aware <strong>of</strong> <strong>the</strong>se<br />

circumstances in <strong>the</strong> world <strong>of</strong> complex analysis, and spurred <strong>on</strong> fur<strong>the</strong>r by <strong>the</strong> observati<strong>on</strong> that


THE GROTHENDIECK CONJECTURE 15<br />

both <strong>the</strong> ρ X <strong>of</strong> (1.2) and <strong>the</strong> ρ X <strong>of</strong> (4.1) fit into <strong>the</strong> same pattern <strong>of</strong> “geometric π 1 <strong>of</strong> <strong>the</strong> curve<br />

+ some ‘arithmetic structure’ <strong>on</strong> this π 1 ,” Mochizuki was led to pose <strong>the</strong> following questi<strong>on</strong>:<br />

Is <strong>the</strong>re a p-adic analogue <strong>of</strong> <strong>the</strong> phenomen<strong>on</strong> that <strong>on</strong>e can (re)c<strong>on</strong>struct<br />

X (every so directly and naturally!) from <strong>the</strong> representati<strong>on</strong> ρ X ?<br />

In fact, <strong>the</strong> p-adic versi<strong>on</strong> <strong>of</strong> <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> (<str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1) that we will discuss<br />

below (§5) may be regarded as giving a sort <strong>of</strong> affirmative answer to this questi<strong>on</strong> 15) .<br />

One classical method for c<strong>on</strong>cretely c<strong>on</strong>structing <strong>the</strong> algebraic curve X from <strong>the</strong> acti<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> geometric fundamental group π 1 (X )<strong>on</strong>H is to manufacture differential forms <strong>on</strong> H which<br />

are invariant under <strong>the</strong> acti<strong>on</strong> <strong>of</strong> π 1 (X ). If <strong>on</strong>e can manufacture enough such differential forms,<br />

<strong>the</strong>n <strong>on</strong>e can define a morphism<br />

φ : H → P X<br />

from <strong>the</strong> upper half-plane H to some sort <strong>of</strong> projective space P X . It follows immediately from<br />

<strong>the</strong> general <strong>the</strong>ory <strong>of</strong> complex manifolds that <strong>the</strong> image <strong>of</strong> this morphism is an algebraic variety;<br />

moreover, in this case, (if <strong>on</strong>e imposes a certain weak technical c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> X) it follows that<br />

this image is, in fact, equal to X itself. This argument is <strong>the</strong> same as that which is used<br />

to prove, when <strong>on</strong>e c<strong>on</strong>structs Shimura varieties as quotients <strong>of</strong> symmetric spaces, that <strong>the</strong>se<br />

quotients are, in fact, algebraic varieties. In summary, <strong>the</strong> main point <strong>of</strong> this sort <strong>of</strong> argument<br />

is that although <strong>on</strong>e may ultimately c<strong>on</strong>clude that <strong>the</strong> differential forms that we use to define<br />

φ are, in fact, algebraic, during <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> <strong>of</strong> φ, <strong>the</strong>se differential forms exist <strong>on</strong>ly as<br />

analytic objects <strong>on</strong> H. This point <strong>of</strong> view <strong>of</strong> “dealing with analytic presentati<strong>on</strong>s <strong>of</strong> algebraic<br />

differential forms” will also play an important role in <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1 which we will<br />

discuss below.<br />

§4.3. <str<strong>on</strong>g>The</str<strong>on</strong>g> Relati<strong>on</strong>ship to p -adic Hodge <str<strong>on</strong>g>The</str<strong>on</strong>g>ory<br />

With regard to proving <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1, <strong>the</strong> analogy with <strong>the</strong> <strong>the</strong>ory over <strong>the</strong> field <strong>of</strong> complex<br />

numbers which we discussed in <strong>the</strong> preceding § provides us with at least <strong>on</strong>e clue, but in<br />

order to actually realize this analogy in <strong>the</strong> p-adic world, <strong>on</strong>e needs to employ fairly advanced<br />

technology. This technology is provided by <strong>the</strong> p-adic Hodge <strong>the</strong>ory ([F2]) <strong>of</strong> Faltings. That<br />

<strong>the</strong>ory which is referred to as “p-adic Hodge <strong>the</strong>ory” has a l<strong>on</strong>g history going back to Tate’s<br />

pi<strong>on</strong>eering work in <strong>the</strong> mid-1960’s; what is important here, however, is <strong>the</strong> deep similarity<br />

between this <strong>the</strong>ory and <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>. <str<strong>on</strong>g>The</str<strong>on</strong>g> main <strong>the</strong>me <strong>of</strong> p-adic Hodge <strong>the</strong>ory<br />

is <strong>the</strong> so-called “comparis<strong>on</strong> <strong>the</strong>orem” between <strong>the</strong> étale cohomology (equipped with its natural<br />

Galois acti<strong>on</strong>) and <strong>the</strong> de Rham cohomology <strong>of</strong> a variety over a p-adic field (such as a finite<br />

extensi<strong>on</strong> field <strong>of</strong> Q p ). In o<strong>the</strong>r words, <strong>the</strong> sense, or c<strong>on</strong>jecture, that <strong>the</strong>re should exist some<br />

sort <strong>of</strong> “mysterious functor” that c<strong>on</strong>verts <strong>the</strong>se two types <strong>of</strong> cohomologies into <strong>on</strong>e ano<strong>the</strong>r is<br />

<strong>the</strong> starting point <strong>of</strong> p-adic Hodge <strong>the</strong>ory. Here, de Rham cohomology is an invariant <strong>of</strong> <strong>the</strong><br />

variety obtained by compiling into a single complex <strong>the</strong> various properties <strong>of</strong> <strong>the</strong> polynomial<br />

functi<strong>on</strong>s and differentials <strong>of</strong> such functi<strong>on</strong>s <strong>on</strong> X. Observe that <strong>the</strong> set <strong>of</strong> morphisms between<br />

algebraic varieties which appears in <strong>the</strong> left-hand side <strong>of</strong> (GC2) bel<strong>on</strong>gs to <strong>the</strong> same world <strong>of</strong><br />

algebraic geometry (i.e., polynomial functi<strong>on</strong>s). On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> geometric fundamental


16 HIROAKI NAKAMURA, AKIO TAMAGAWA, SHINICHI MOCHIZUKI<br />

group equipped with its outer Galois acti<strong>on</strong>, which appears <strong>on</strong> <strong>the</strong> right-hand side <strong>of</strong> (GC2),<br />

is (if <strong>on</strong>e ignores <strong>the</strong> difference between abelian and n<strong>on</strong>abelian), like <strong>the</strong> étale cohomology <strong>of</strong><br />

X, an important and natural invariant <strong>of</strong> <strong>the</strong> étale site <strong>of</strong> <strong>the</strong> variety X under c<strong>on</strong>siderati<strong>on</strong>.<br />

If <strong>on</strong>e thinks about things in this way, <strong>the</strong>n <strong>on</strong>e sees that <strong>on</strong>e may regard both <strong>the</strong> mysterious<br />

functor c<strong>on</strong>jecture and <strong>the</strong> various anabelian c<strong>on</strong>jectures 16) (such as (GC2)) as asserting that<br />

some sort <strong>of</strong> “comparis<strong>on</strong> <strong>the</strong>orem” — which realizes <strong>the</strong> philosophy<br />

“Algebro-Geometric Structure ⇐⇒<br />

Étale Topology + Galois Acti<strong>on</strong>”<br />

— holds. Let us remark, however, that although <strong>the</strong>re is this general sort <strong>of</strong> “categorical<br />

similarity” between p-adic Hodge <strong>the</strong>ory and <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>, <strong>the</strong> gap between<br />

“abelian” and “n<strong>on</strong>abelian/anabelian” is highly n<strong>on</strong>trivial. Bridging this gap was thus a major<br />

technical obstacle that had to be surmounted in order to prove <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1.<br />

§5. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> over Local Fields<br />

§5.1. <str<strong>on</strong>g>The</str<strong>on</strong>g> Main <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

In <strong>the</strong> following, we shall fix a prime number p, and we shall refer to any field which may<br />

be realized as a subfield <strong>of</strong> a finitely generated extensi<strong>on</strong> field <strong>of</strong> Q p as a “sub-p-adic field.”<br />

Typical examples <strong>of</strong> sub-p-adic fields are finitely generated extensi<strong>on</strong> fields <strong>of</strong> Q or Q p ,aswell<br />

as (for each positive integer N) <strong>the</strong> field obtained by taking <strong>the</strong> composite (in some algebraic<br />

closure <strong>of</strong> Q) <strong>of</strong>alldegreeN extensi<strong>on</strong> fields <strong>of</strong> <strong>the</strong> rati<strong>on</strong>al number field Q. (Note that this<br />

last example will, in general, be an infinite algebraic extensi<strong>on</strong> <strong>of</strong> Q.) Mochizuki’s main result<br />

([M3]) is <strong>the</strong> following <strong>the</strong>orem:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1. For any smooth algebraic variety S and any hyperbolic curve X (both) over a<br />

sub-p-adic field K, <strong>the</strong> natural maps<br />

Hom dom<br />

K<br />

(S, X) → Homopen<br />

Gal(K) (π 1(S),π 1 (X))<br />

→ Hom open<br />

Gal(K) (π(p) 1 (S),π(p) 1 (X))<br />

are bijecti<strong>on</strong>s. Here, Hom dom<br />

K denotes <strong>the</strong> “set <strong>of</strong> all dominant K-morphisms”; Homopen<br />

Gal(K)<br />

denotes <strong>the</strong> “set <strong>of</strong> all equivalent classes (relative to <strong>the</strong> acti<strong>on</strong> from <strong>the</strong> right <strong>of</strong> c<strong>on</strong>jugati<strong>on</strong><br />

by π 1 (X K<br />

)) <strong>of</strong> open homomorphisms which are compatible with <strong>the</strong> projecti<strong>on</strong> to<br />

Gal(K)”; and π (p)<br />

1 (V ) is <strong>the</strong> natural pro-p analogue <strong>of</strong> π 1(V ), i.e., <strong>the</strong> quotient <strong>of</strong> π 1 (V )by<br />

Ker(π 1 (V K<br />

) → π (p)<br />

1 (V K )).<br />

This <strong>the</strong>orem resolves c<strong>on</strong>jecture (GC2) in a fairly str<strong>on</strong>g form. In terms <strong>of</strong> <strong>the</strong> analogy<br />

with uniformizati<strong>on</strong> <strong>the</strong>ory discussed in §4.2, <strong>the</strong> left-hand side is <strong>the</strong> set <strong>of</strong> S-valued points<br />

<strong>of</strong> X, i.e., <strong>the</strong> “physical entity” <strong>of</strong> <strong>the</strong> algebraic curve X, while <strong>the</strong> right-hand side is <strong>the</strong><br />

set <strong>of</strong> “points” which arise directly from <strong>the</strong> “analytic object” c<strong>on</strong>sisting <strong>of</strong> <strong>the</strong> geometric<br />

fundamental group equipped with a certain arithmetic structure (i.e., <strong>the</strong> outer Galois acti<strong>on</strong>).<br />

In o<strong>the</strong>r words, just as in <strong>the</strong> case <strong>of</strong> <strong>the</strong> uniformizati<strong>on</strong> <strong>the</strong>ory <strong>of</strong> Riemann surfaces, <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


THE GROTHENDIECK CONJECTURE 17<br />

5.1 asserts <strong>the</strong> equivalence <strong>of</strong> <strong>the</strong> physical entity defined by <strong>the</strong> hyperbolic algebraic curve and<br />

<strong>the</strong> analytic geometric object arising directly from <strong>the</strong> geometric fundamental group equipped<br />

with its arithmetic structure.<br />

Moreover, as a corollary <strong>of</strong> a slight generalizati<strong>on</strong> (= <str<strong>on</strong>g>The</str<strong>on</strong>g>orem A <strong>of</strong> [M3]) <strong>of</strong> <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1,<br />

<strong>on</strong>e has <strong>the</strong> following birati<strong>on</strong>al versi<strong>on</strong> <strong>of</strong> <strong>the</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>:<br />

Corollary 5.2. For regular functi<strong>on</strong> fields L and M <strong>of</strong> arbitrary dimensi<strong>on</strong> over a field <strong>of</strong><br />

c<strong>on</strong>stants K which is sub-p-adic, <strong>the</strong> natural map<br />

Hom K (M,L) → Hom open<br />

Gal(K)<br />

(Gal(L), Gal(M))<br />

is bijective. Here, Hom K denotes <strong>the</strong> “set <strong>of</strong> ring homomorphisms over K”; and<br />

denotes <strong>the</strong> “set <strong>of</strong> equivalence classes (relative to <strong>the</strong> acti<strong>on</strong> from <strong>the</strong> right <strong>of</strong><br />

Hom open<br />

Gal(K)<br />

c<strong>on</strong>jugati<strong>on</strong> by Gal(M ⊗ K K)) <strong>of</strong> open homomorphisms which are compatible with <strong>the</strong> projecti<strong>on</strong><br />

to Gal(K).”<br />

When <strong>the</strong> base field K is finitely generated over <strong>the</strong> rati<strong>on</strong>al number field, F. Pop proved an<br />

isomorphism versi<strong>on</strong> <strong>of</strong> this result prior to [M3] using a completely different method ([P2]).<br />

Remarks. (i) <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1 is stated as a result c<strong>on</strong>cerning varieties and hyperbolic curves over<br />

afieldK, but in fact, a similar <strong>the</strong>orem to <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1 holds if <strong>on</strong>e takes for <strong>on</strong>e’s base any<br />

smooth algebraic variety over a sub-p-adic field (i.e., as opposed to just a sub-p-adic field, as<br />

in <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1), and <strong>the</strong>n lets S and X be smooth families over B <strong>of</strong> algebraic varieties and<br />

hyperbolic curves, respectively. In fact, such a result follows immediately (by observing that<br />

<strong>the</strong> functi<strong>on</strong> field <strong>of</strong> such a B is again a sub-p-adic field) from <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1.<br />

(ii) Ano<strong>the</strong>r c<strong>on</strong>sequence <strong>of</strong> <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1 is an isomorphism versi<strong>on</strong> <strong>of</strong> (GC2) for algebraic<br />

surfaces that may be obtained as <strong>the</strong> total space <strong>of</strong> a smooth family <strong>of</strong> hyperbolic curves over<br />

a base space which is itself a hyperbolic curve. For more details, we refer to [M4].<br />

§5.2. Sketch <strong>of</strong> <strong>the</strong> Pro<strong>of</strong> <strong>of</strong> <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1<br />

Let us c<strong>on</strong>tinue this discussi<strong>on</strong> by restricting to <strong>the</strong> most essential case, where <strong>the</strong> base field<br />

K is a finite extensi<strong>on</strong> <strong>of</strong> Q p . Moreover, for simplicity, let us assume that X and S are proper,<br />

n<strong>on</strong>-hyperelliptic hyperbolic curves. Indeed, <strong>the</strong>se various c<strong>on</strong>diti<strong>on</strong>s have nothing to do with<br />

<strong>the</strong> essence <strong>of</strong> <strong>the</strong> pro<strong>of</strong>, so <strong>the</strong> general case may be reduced immediately to <strong>the</strong> case which<br />

<strong>on</strong>e assumes that <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s hold. Finally, in <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1, a total three Hom’s appear,<br />

but we shall c<strong>on</strong>centrate <strong>on</strong> <strong>the</strong> map between <strong>the</strong> first and third Hom’s, since it is <strong>the</strong> most<br />

essential <strong>of</strong> <strong>the</strong> various maps that appear. <str<strong>on</strong>g>The</str<strong>on</strong>g> problem <strong>the</strong>n is how to rec<strong>on</strong>struct X from<br />

(X) → Gal(K).<br />

First, we let T def<br />

= π (p)<br />

1 (X K )ab .Thus,ifX is a curve <strong>of</strong> genus g, <strong>the</strong>nT is a free Z p -module<br />

<strong>of</strong> rank 2g, which also admits a natural structure <strong>of</strong> Gal(K)-module. Now as a c<strong>on</strong>sequence <strong>of</strong><br />

<strong>the</strong> oldest part <strong>of</strong> “p-adic Hodge <strong>the</strong>ory,” which, in fact, goes back to Tate, if we denote <strong>the</strong><br />

p-adic completi<strong>on</strong> <strong>of</strong> K by C p , <strong>the</strong>n we have a natural isomorphism:<br />

π (p)<br />

1<br />

(T ⊗ Zp C p ) Gal(K) ∼ = DX<br />

def<br />

= H 0 (X, ω X/K )


18 HIROAKI NAKAMURA, AKIO TAMAGAWA, SHINICHI MOCHIZUKI<br />

where <strong>the</strong> left-hand side is <strong>the</strong> Gal(K)-invariant part <strong>of</strong> <strong>the</strong> module in paren<strong>the</strong>ses, and <strong>the</strong><br />

right-hand side is <strong>the</strong> g-dimensi<strong>on</strong>al K-vector space c<strong>on</strong>sisting <strong>of</strong> all <strong>the</strong> everywhere-regular<br />

differentials <strong>on</strong> X. Next, if we denote <strong>the</strong> projective space defined by D X by <strong>the</strong> notati<strong>on</strong><br />

P X , <strong>the</strong>n <strong>on</strong>e knows from elementary algebraic geometry (by <strong>the</strong> assumpti<strong>on</strong> that X is n<strong>on</strong>hyperelliptic)<br />

that X may be can<strong>on</strong>ically embedded inside P X . In ano<strong>the</strong>r words, we have<br />

already succeeded in recovering completely group-<strong>the</strong>oretically from ρ X <strong>the</strong> space P X ,which<br />

serves as a “can<strong>on</strong>ical c<strong>on</strong>tainer” for our curve X. Thus, <strong>the</strong> problem that we must solve is<br />

how to recover group-<strong>the</strong>oretically a certain special subvariety (namely, X) <strong>of</strong>P X .<br />

At this point, we ask <strong>the</strong> reader to recall <strong>the</strong> analytic morphism φ : H → P X which appeared<br />

in §4.2. As was discussed in detail in §4.2, this morphism is defined by c<strong>on</strong>structing algebraic<br />

differentials as analytic objects. Taking this as a hint, we would like to carry out an analogous<br />

(in some sense) c<strong>on</strong>structi<strong>on</strong> in <strong>the</strong> present p-adic situati<strong>on</strong>. Thus, we must determine what<br />

will take <strong>the</strong> place (in <strong>the</strong> p-adic case) <strong>of</strong> <strong>the</strong> upper half-plane H. In <strong>the</strong> pro<strong>of</strong>s <strong>of</strong> [M2] and [M3],<br />

<strong>the</strong> role <strong>of</strong> <strong>the</strong> upper half-plane is played by a certain field which is obtained by first completing<br />

<strong>the</strong> functi<strong>on</strong> field <strong>of</strong> X at a p-adic valuati<strong>on</strong> with certain “good properties,” <strong>the</strong>n taking <strong>the</strong><br />

maximal tame extensi<strong>on</strong> <strong>of</strong> this completi<strong>on</strong>, and finally, p-adically completing this maximal<br />

tame extensi<strong>on</strong>. In <strong>the</strong> following, we shall denote this field 17) by L. ThisfieldL is, just like <strong>the</strong><br />

finite extensi<strong>on</strong>s <strong>of</strong> Q p , a complete valuati<strong>on</strong> field equipped with a p-adic valuati<strong>on</strong>, but, unlike<br />

finite extensi<strong>on</strong>s <strong>of</strong> Q p , it c<strong>on</strong>tains <strong>on</strong>e “geometric dimensi<strong>on</strong>.” For instance, <strong>on</strong>e manifestati<strong>on</strong><br />

<strong>of</strong> this geometric dimensi<strong>on</strong> is <strong>the</strong> fact that <strong>the</strong> residue field <strong>of</strong> L is <strong>the</strong> maximal separated<br />

extensi<strong>on</strong> <strong>of</strong> a functi<strong>on</strong> field in <strong>on</strong>e variable over a finite field. Ano<strong>the</strong>r important property<br />

<strong>of</strong> L, which follows immediately from its definiti<strong>on</strong>, is that it admits a natural (tautological)<br />

morphism<br />

ξ :Spec(L) → X<br />

Yet ano<strong>the</strong>r remarkable property <strong>of</strong> this field L is that its isomorphism class does not depend<br />

<strong>on</strong> <strong>the</strong> moduli <strong>of</strong> X. This property is reminiscent <strong>of</strong> <strong>the</strong> fact that <strong>the</strong> isomorphism class (as a<br />

Riemann surface) <strong>of</strong> ˜X ∼ = H does not depend <strong>on</strong> <strong>the</strong> moduli <strong>of</strong> X .<br />

One more thing guaranteed by <strong>the</strong> existence <strong>of</strong> <strong>the</strong> geometric dimensi<strong>on</strong> <strong>of</strong> L is <strong>the</strong> property<br />

that if <strong>on</strong>e pulls back (by ξ) a n<strong>on</strong>zero differential <strong>on</strong> X to L to obtain a differential <strong>on</strong><br />

Spec(L), <strong>the</strong>n this pulled-back differential will always be n<strong>on</strong>zero. Thus, <strong>the</strong> operati<strong>on</strong> <strong>of</strong><br />

pulling back a differential <strong>on</strong> X to Spec(L) is a faithful operati<strong>on</strong>, and, in fact, <strong>on</strong>e may even<br />

regard this pulled-back differential as a sort <strong>of</strong> “analytic presentati<strong>on</strong>” <strong>of</strong> <strong>the</strong> original algebraic<br />

differential. Relative to <strong>the</strong> analogy with <strong>the</strong> complex analytic case, this operati<strong>on</strong> corresp<strong>on</strong>ds<br />

to <strong>the</strong> operati<strong>on</strong> <strong>of</strong> pulling back a differential <strong>on</strong> a compact (hyperbolic) Riemann surface X<br />

to <strong>the</strong> upper half-plane H ∼ = ˜X (where it has an “analytic presentati<strong>on</strong>”).<br />

Now we would like to return to <strong>the</strong> problem <strong>of</strong> rec<strong>on</strong>structing X as a subvariety <strong>of</strong> P X<br />

group-<strong>the</strong>oretically. As a c<strong>on</strong>sequence <strong>of</strong> Faltings’ p-adic Hodge <strong>the</strong>ory, any c<strong>on</strong>tinuous homomorphism<br />

α : Gal(L) → π (p)<br />

1 (X) (which satisfies certain weak, group-<strong>the</strong>oretic c<strong>on</strong>diti<strong>on</strong>s)<br />

defines a morphism<br />

φ α :Spec(L) → P X<br />

over K. In o<strong>the</strong>r words, for “analytic L-rati<strong>on</strong>al points,” <strong>on</strong>e obtains a p-adic analytic morphism<br />

φ α which is analogous to <strong>the</strong> morphism φ : H → P X that appeared in <strong>the</strong> complex


THE GROTHENDIECK CONJECTURE 19<br />

analytic discussi<strong>on</strong> <strong>of</strong> §4.2. <str<strong>on</strong>g>The</str<strong>on</strong>g> problem <strong>the</strong>n is to determine what happens to <strong>the</strong> image <strong>of</strong><br />

<strong>the</strong> morphism φ α . For instance, if α arises 18) from a “geometric” L-rati<strong>on</strong>al point (i.e., element<br />

<strong>of</strong> X(L)) like ξ, <strong>the</strong>n <strong>the</strong> closure <strong>of</strong> <strong>the</strong> scheme-<strong>the</strong>oretic image <strong>of</strong> φ α coincides precisely with<br />

X. Thus,<br />

if we can rewrite <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> “α arises geometrically” in terms in which, am<strong>on</strong>g<br />

<strong>the</strong> various objects associated to X, <strong>on</strong>lyπ (p)<br />

1 (X) → Gal(K) appearsexplicitly,<br />

<strong>the</strong>n <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1 will be complete.<br />

At this point, we make use <strong>of</strong> <strong>the</strong> following argument, which was inspired by <strong>the</strong> pro<strong>of</strong><br />

<strong>of</strong> Tamagawa 19) . <str<strong>on</strong>g>The</str<strong>on</strong>g> homomorphism α defines a secti<strong>on</strong> α L :Gal(L) → π (p)<br />

1 (X L)<strong>of</strong><strong>the</strong><br />

arithmetic fundamental group π (p)<br />

1 (X L) → Gal(L) <strong>of</strong><strong>the</strong>curveX L obtained by base-changing<br />

X from K to L. <str<strong>on</strong>g>The</str<strong>on</strong>g> image Im(α L ) <strong>of</strong> this secti<strong>on</strong> homomorphism α L in π (p)<br />

1 (X L) forms a<br />

closed subgroup <strong>of</strong> π (p)<br />

1 (X L) which is isomorphic to Gal(L). Thus, for each open subgroup<br />

H ⊆ π (p)<br />

1 (X L) that c<strong>on</strong>tains this image, we obtain a finite étale cover Y H → X L . Here, Y H<br />

is a hyperbolic curve which is geometrically c<strong>on</strong>nected over L. Moreover, it is important to<br />

note that <strong>the</strong> “family <strong>of</strong> coverings” obtained by taking all <strong>the</strong> coverings {Y H → X L } which<br />

arise in this way depends <strong>on</strong> α. Thus, <strong>on</strong>e can formulate <strong>the</strong> following c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> <strong>the</strong> secti<strong>on</strong><br />

homomorphism α L which arises from <strong>the</strong> homomorphism α:<br />

(∗)<br />

For every open subgroup H <strong>of</strong> π (p)<br />

1 (X L) which c<strong>on</strong>tains Im(α L ),<br />

<strong>the</strong> set <strong>of</strong> L-rati<strong>on</strong>al points Y H (L) <strong>of</strong>Y H is n<strong>on</strong>empty.<br />

Let us suppose that this we know that this c<strong>on</strong>diti<strong>on</strong> holds. If <strong>on</strong>e <strong>the</strong>n allows <strong>the</strong> open subgroup<br />

H to vary in a suitable fashi<strong>on</strong>, <strong>the</strong>n, since Y H (L) ≠ ∅, <strong>the</strong> various points <strong>of</strong> Y H (L) mapdown<br />

to points <strong>of</strong> X L (L). On <strong>the</strong> o<strong>the</strong>r hand, by applying <strong>the</strong> mod p N versi<strong>on</strong> <strong>of</strong> [F2], <strong>on</strong>e sees that,<br />

for each point <strong>of</strong> X L (L) which arises in this way, <strong>on</strong>e can c<strong>on</strong>struct <strong>the</strong> mod p N versi<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

preceding map φ α ; moreover, by using <strong>the</strong>se maps, <strong>on</strong>e can prove that <strong>the</strong> points <strong>of</strong> X L (L) that<br />

arise in this way necessarily c<strong>on</strong>verge to a certain specific point x ∞ ∈ X L (L). In fact, it also<br />

(X) that<br />

arises from this point x ∞ necessarily coincides with <strong>the</strong> original homomorphism α. In o<strong>the</strong>r<br />

words, we have shown <strong>the</strong> geometricity <strong>of</strong> α. Thus, in summary, if we can just show that <strong>the</strong><br />

c<strong>on</strong>diti<strong>on</strong> (∗) that we just imposed <strong>on</strong> α L is, in fact, purely “group-<strong>the</strong>oretic,” <strong>the</strong>n <strong>the</strong> pro<strong>of</strong><br />

<strong>of</strong> <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1 will be complete.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> problem now is to find a “group-<strong>the</strong>oretic” criteri<strong>on</strong> for <strong>the</strong> existence <strong>of</strong> an L-rati<strong>on</strong>al<br />

point <strong>of</strong> Y H . In <strong>the</strong> present p-adic c<strong>on</strong>text, this problem is not amenable to a direct approach<br />

<strong>of</strong> “counting <strong>the</strong> number <strong>of</strong> rati<strong>on</strong>al points” as in <strong>the</strong> finite field case treated by Tamagawa,<br />

so <strong>on</strong>e must resort to <strong>the</strong> following somewhat less direct argument. That is to say, instead <strong>of</strong><br />

thinking about L-rati<strong>on</strong>al points, <strong>on</strong>e must c<strong>on</strong>sider <strong>the</strong> existence <strong>of</strong> line bundles (<strong>of</strong> degree<br />

prime to p) which are rati<strong>on</strong>al over L. One reas<strong>on</strong> for this is that line bundles define Chern<br />

classes, hence can be regarded as classes in <strong>the</strong> étale cohomology <strong>of</strong> <strong>the</strong> curve Y H ;moreover,<br />

<strong>the</strong> étale cohomology <strong>of</strong> a hyperbolic curve is naturally isomorphic to <strong>the</strong> group cohomology <strong>of</strong><br />

its arithmetic fundamental group, hence is an entirely “group-<strong>the</strong>oretic” object. Thus, we see<br />

follows immediately from this c<strong>on</strong>structi<strong>on</strong> that <strong>the</strong> homomorphism Gal(L) → π (p)<br />

1


20 HIROAKI NAKAMURA, AKIO TAMAGAWA, SHINICHI MOCHIZUKI<br />

that <strong>the</strong> problem boils down to giving a group-<strong>the</strong>oretic characterizati<strong>on</strong> <strong>of</strong> those classes inside<br />

<strong>the</strong> relevant cohomology group that arise as <strong>the</strong> Chern classes <strong>of</strong> line bundles <strong>of</strong> degree prime<br />

to p. This problem may be handled 20) by applying <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>the</strong> p-adic exp<strong>on</strong>ential map<br />

<strong>of</strong> [BK]. In o<strong>the</strong>r words, unlike <strong>the</strong> case <strong>of</strong> L-rati<strong>on</strong>al points <strong>on</strong> Y H , L-rati<strong>on</strong>al line bundles<br />

(<strong>of</strong> degree prime to p) admit a relatively straightforward group-<strong>the</strong>oretic existence criteri<strong>on</strong>.<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>on</strong>e sees easily from elementary algebraic geometry that <strong>on</strong>ce <strong>on</strong>e knows<br />

<strong>the</strong> existence <strong>of</strong> an L-rati<strong>on</strong>al line bundle <strong>of</strong> degree prime to p <strong>on</strong> Y H , <strong>on</strong>e can c<strong>on</strong>clude <strong>the</strong><br />

existence <strong>of</strong> an L-rati<strong>on</strong>al ample line bundle <strong>of</strong> degree prime to p <strong>on</strong> Y H . Thus, by writing this<br />

line bundle as an effective divisor (which is étale over L), <strong>on</strong>e sees that Y H admits a rati<strong>on</strong>al<br />

point over an extensi<strong>on</strong> field <strong>of</strong> L whose degree (over L) isprimetop. On <strong>the</strong> o<strong>the</strong>r hand, since<br />

such an extensi<strong>on</strong> field is necessarily a tame extensi<strong>on</strong> <strong>of</strong> L, and since, moreover, L, byitsvery<br />

definiti<strong>on</strong>, does not have any n<strong>on</strong>trivial tame extensi<strong>on</strong>s, we thus c<strong>on</strong>clude that Y H already<br />

admits a rati<strong>on</strong>al point over L. In o<strong>the</strong>r words, <strong>the</strong> existence criteri<strong>on</strong> for a line bundle as<br />

above is automatically also an existence criteri<strong>on</strong> for L-rati<strong>on</strong>al points. Thus, by establishing<br />

this existence criteri<strong>on</strong>, we see that we have completed <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1.<br />

Footnotes<br />

1) A topological group which can be written as a projective limit <strong>of</strong> finite groups is called<br />

a pr<strong>of</strong>inite group. Equivalently, a pr<strong>of</strong>inite group is a compact, totally disc<strong>on</strong>nected Hausdorff<br />

topological group.<br />

2) For pr<strong>of</strong>inite groups, <strong>the</strong> open subgroups are <strong>the</strong> same as <strong>the</strong> closed subgroups <strong>of</strong> finite<br />

index.<br />

3) Recent work <strong>of</strong> Tamagawa has begun to illuminate <strong>the</strong> extent to which, in positive<br />

characteristic, <strong>the</strong> geometric fundamental group depends quite essentially <strong>on</strong> <strong>the</strong> moduli <strong>of</strong> <strong>the</strong><br />

curve in questi<strong>on</strong>. See [H], as well as §3.3 <strong>of</strong> <strong>the</strong> present paper, for more details.<br />

4) <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> indicates that in additi<strong>on</strong> to hyperbolic algebraic curves, successive smooth<br />

fibrati<strong>on</strong>s <strong>of</strong> such curves, as well as moduli spaces <strong>of</strong> such curves should be c<strong>on</strong>sidered as<br />

candidates for anabelian varieties (cf., e.g., [M4]). Recent work suggests that as a necessary<br />

c<strong>on</strong>diti<strong>on</strong> for anabelianness, <strong>the</strong> geometric fundamental group should be more like a free group<br />

than like a matrix group (see [IN]).<br />

5) For instance, in <strong>the</strong> case <strong>of</strong> elliptic curves without complex multiplicati<strong>on</strong>, if <strong>on</strong>e combines<br />

various results <strong>of</strong> Faltings, <strong>on</strong>e can argue that in fact, <strong>the</strong>re is <strong>on</strong>ly <strong>on</strong>e possibility (cf. [N6],<br />

5.4).<br />

6) If <strong>on</strong>e writes K ∞ for <strong>the</strong> field obtained by adjoining all roots <strong>of</strong> unity to <strong>the</strong> base field<br />

K, <strong>the</strong>n it is also c<strong>on</strong>jectured that <strong>the</strong> secti<strong>on</strong>s arising from K-rati<strong>on</strong>al points <strong>of</strong> X may be<br />

characterized as those such that <strong>the</strong> acti<strong>on</strong> <strong>of</strong> α(Gal(K ∞ )) <strong>on</strong> π 1 (X K<br />

) by c<strong>on</strong>jugati<strong>on</strong> does not<br />

admit any n<strong>on</strong>trivial fixed points.<br />

7) This suggests that <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> had in mind <strong>the</strong> “category-<strong>the</strong>oretic ideal” <strong>of</strong> thinking<br />

<strong>of</strong> X as a variable and rec<strong>on</strong>structing <strong>the</strong> set <strong>of</strong> X-rati<strong>on</strong>al points Y (X) = Hom(X, Y )<strong>of</strong>Y<br />

from <strong>the</strong> arithmetic fundamental group. <str<strong>on</strong>g>The</str<strong>on</strong>g> first pers<strong>on</strong> to (at least partially) realize this<br />

ideal was Mochizuki ([M3]) — cf. §5.<br />

8) <str<strong>on</strong>g>The</str<strong>on</strong>g> fact that distinct rati<strong>on</strong>al points induce n<strong>on</strong>c<strong>on</strong>jugate secti<strong>on</strong> homomorphisms was


THE GROTHENDIECK CONJECTURE 21<br />

shown by <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> ([G3]) as an applicati<strong>on</strong> <strong>of</strong> <strong>the</strong> Mordell-Weil <str<strong>on</strong>g>The</str<strong>on</strong>g>orem. As an applicati<strong>on</strong><br />

<strong>of</strong> this fact, <strong>on</strong>e can show <strong>the</strong> algebro-geometric analogue <strong>of</strong> <strong>the</strong> “Sunada <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g>”<br />

<strong>of</strong> complex hyperbolic geometry for certain hyperbolic algebraic varieties (cf. [N5], [N7] 2.2).<br />

Moreover, Mochizuki has derived a pro-p versi<strong>on</strong> <strong>of</strong> <strong>the</strong> fact that “distinct rati<strong>on</strong>al points define<br />

n<strong>on</strong>c<strong>on</strong>jugate secti<strong>on</strong> homomorphisms” from <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 5.1 (cf. [M3], <str<strong>on</strong>g>The</str<strong>on</strong>g>orem C).<br />

9) As far as this is c<strong>on</strong>cerned, <strong>on</strong>e has <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong>s <strong>of</strong> F.Pop ([P1,2]) and <strong>of</strong> Mochizuki<br />

(cf. §5). Moreover, Pop’s work — including his method — builds <strong>on</strong> <strong>the</strong> l<strong>on</strong>g traditi<strong>on</strong> <strong>of</strong><br />

research <strong>on</strong> <strong>the</strong> “rec<strong>on</strong>stituti<strong>on</strong> <strong>of</strong> a number field from its absolute Galois group,” starting with<br />

<strong>the</strong> original ideas <strong>of</strong> J. Neukirch ([Ne]) in <strong>the</strong> late 1960’s, c<strong>on</strong>tinuing with <strong>the</strong> work <strong>of</strong> M. Ikeda<br />

and K. Iwasawa, and finally, culminating in <strong>the</strong> late 1970’s with <strong>the</strong> work <strong>of</strong> K. Uchida.<br />

10) For a pr<strong>of</strong>inite group G, <strong>on</strong>e refers to as <strong>the</strong> maximal pro-l quotient <strong>of</strong> G <strong>the</strong> largest<br />

quotient topological group <strong>of</strong> G which may be written as a projective limit <strong>of</strong> finite l-groups<br />

(i.e., finite groups whose order is a power <strong>of</strong> <strong>the</strong> prime number l).<br />

11) As is implicit in <strong>the</strong> preface <strong>of</strong> [I1], Ihara began, from his own original point <strong>of</strong> view, <strong>the</strong><br />

c<strong>on</strong>structi<strong>on</strong> <strong>of</strong> a n<strong>on</strong>abelian class field <strong>the</strong>ory for modular functi<strong>on</strong> fields over finite fields in<br />

<strong>the</strong> 1960’s, and, by <strong>the</strong> beginning <strong>of</strong> <strong>the</strong> 1970’s, had shown such things as <strong>the</strong> fact that am<strong>on</strong>g<br />

<strong>the</strong> tame coverings <strong>of</strong> P 1 λ −{0, 1, ∞} over F p2, those which are c<strong>on</strong>trolled by <strong>the</strong> (c<strong>on</strong>gruence)<br />

subgroups <strong>of</strong> SL 2 (Z[ 1 p<br />

]) may be characterized by <strong>the</strong> arithmetic c<strong>on</strong>diti<strong>on</strong> <strong>of</strong> “complete decompositi<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> set <strong>of</strong> supersingular λ-primes.” This sort <strong>of</strong> research c<strong>on</strong>cerning <strong>the</strong> deep<br />

arithmeticity c<strong>on</strong>tained in <strong>the</strong> fundamental group <strong>of</strong> <strong>the</strong> projective line minus three points<br />

was spawn from Ihara’s original (n<strong>on</strong>abelian) class field <strong>the</strong>ory point <strong>of</strong> view, hence is <strong>of</strong> a<br />

completely different origin from <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>’s motivati<strong>on</strong> (discussed in §1.1) for c<strong>on</strong>structing<br />

an “algebro-geometric Galois <strong>the</strong>ory.” Moreover, <strong>the</strong> paper <strong>of</strong> Deligne c<strong>on</strong>tained in [2] deals<br />

with <strong>the</strong> issue <strong>of</strong> making <strong>the</strong> fundamental group <strong>of</strong> <strong>the</strong> projective line minus three points into a<br />

unipotent algebraic group in <strong>the</strong> c<strong>on</strong>text <strong>of</strong> <strong>the</strong> philosophy <strong>of</strong> motives; this approach may also<br />

be said to be <strong>of</strong> a distinct origin from those <strong>of</strong> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> and Ihara.<br />

12) For <strong>the</strong> progress that occurred during this period, we refer mainly to [I2], as well as <strong>the</strong><br />

papers c<strong>on</strong>tained in [1].<br />

13) Here, we shall refer to <strong>the</strong> natural <strong>on</strong>e-dimensi<strong>on</strong>al l-adic representati<strong>on</strong> Z l (1) arising<br />

from <strong>the</strong> acti<strong>on</strong> <strong>of</strong> <strong>the</strong> Galois group <strong>on</strong> <strong>the</strong> roots <strong>of</strong> unity simply as <strong>the</strong> “cyclotomic acti<strong>on</strong><br />

(representati<strong>on</strong>),” and we shall call <strong>the</strong> tensor product representati<strong>on</strong> <strong>of</strong> this representati<strong>on</strong> with<br />

<strong>the</strong> permutati<strong>on</strong> representati<strong>on</strong> <strong>on</strong> <strong>the</strong> set <strong>of</strong> cuspidal points as <strong>the</strong> “cyclotomic permutati<strong>on</strong><br />

representati<strong>on</strong>.”<br />

14) This is <strong>the</strong> c<strong>on</strong>jecture to <strong>the</strong> effect that a curve <strong>of</strong> genus at least 2 over a number field<br />

has <strong>on</strong>ly finitely many rati<strong>on</strong>al points. It was proven by Faltings in <strong>the</strong> same paper as <strong>the</strong> <strong>on</strong>e<br />

in which <strong>the</strong> Tate <str<strong>on</strong>g>C<strong>on</strong>jecture</str<strong>on</strong>g> was proven ([F1]).<br />

15) In fact, ano<strong>the</strong>r affirmative answer to this questi<strong>on</strong>, albeit <strong>of</strong> a somewhat different nature,<br />

has also been obtained (cf. [M5-8] for more details).<br />

16) In fact, <strong>the</strong> existence <strong>of</strong> <strong>the</strong> mysterious functor was also predicted by n<strong>on</strong>e o<strong>the</strong>r than<br />

<str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> himself. On <strong>the</strong> o<strong>the</strong>r hand, as far as <strong>the</strong> relati<strong>on</strong>ship between <strong>the</strong>se two c<strong>on</strong>jectures<br />

is c<strong>on</strong>cerned, <strong>the</strong>re is no record that <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> recognized — <strong>the</strong> general similarity<br />

in form <strong>of</strong> <strong>the</strong> two c<strong>on</strong>jectures notwithstanding — that this relati<strong>on</strong>ship was so close as to


22 HIROAKI NAKAMURA, AKIO TAMAGAWA, SHINICHI MOCHIZUKI<br />

give rise to a pro<strong>of</strong> <strong>of</strong> <strong>the</strong> sort that will be discussed in §5.2. C<strong>on</strong>cerning <strong>the</strong> circumstances<br />

surrounding this state <strong>of</strong> affairs, we refer to <strong>the</strong> discussi<strong>on</strong> <strong>of</strong> §4.1.<br />

17) In fact, if <strong>on</strong>e takes this as <strong>the</strong> definiti<strong>on</strong> <strong>of</strong> L, <strong>the</strong> following argument becomes slightly<br />

inaccurate, but in <strong>the</strong> interest <strong>of</strong> minimizing <strong>the</strong> introducti<strong>on</strong> <strong>of</strong> inessential technical details,<br />

we hope that <strong>the</strong> reader will forgive this minor transgressi<strong>on</strong>.<br />

18) <str<strong>on</strong>g>The</str<strong>on</strong>g> phrase “arises from a geometric rati<strong>on</strong>al point Spec(L) → X” means that it arises<br />

as <strong>the</strong> morphism Gal(L) =π 1 (Spec(L)) → π 1 (X) → π (p)<br />

1<br />

π 1 to some morphism Spec(L) → X.<br />

19) For more details, we refer to §3.1, (i).<br />

20) For more details, we refer to [M3].<br />

References<br />

(X) obtained by applying <strong>the</strong> functor<br />

[AI] G.Anders<strong>on</strong>, Y.Ihara, Pro-l branched coverings <strong>of</strong> P 1 and higher circular l-units, Part 1, Ann. <strong>of</strong><br />

Math. 128 (1988), 271–293; Part 2, Intern. J. Math. 1 (1990), 119–148.<br />

[B] G.V.Belyi, On Galois extensi<strong>on</strong>s <strong>of</strong> a maximal cyclotomic field, Izv. Akad. Nauk. SSSR 8 (1979),<br />

267–276 (Russian); English transl. in Math. USSR Izv. 14 (1980), no. 2, 247–256.<br />

[BK] S.Bloch, K.Kato, L-functi<strong>on</strong>s and Tamagawa numbers <strong>of</strong> motives, <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> Festschrift,<br />

Volume I, Birkhäuser, 1990, pp. 333–400.<br />

[F1] G.Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983),<br />

349–366.<br />

[F2] , p-adic Hodge <strong>the</strong>ory, J. <strong>of</strong> <strong>the</strong> Amer. Math. Soc. 1 (1988), 255–299.<br />

[SGA1] A.<str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>, M.Raynaud, Revêtement Etales et Groupe F<strong>on</strong>damental (SGA1), Lecture Note in<br />

Math., vol. 224, Springer, Berlin Heidelberg New York, 1971.<br />

[G1] A.<str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>, La l<strong>on</strong>gue marche à travers de la théorie de Galois, 1981, in preparati<strong>on</strong> by<br />

J.Malgoire (first few chapters available since 1996).<br />

[G2] , Esquisse d’un Programme, 1984, in [6] vol.1, 7–48.<br />

[G3] , Letter to G.Faltings, June 1983, in [6] vol.1, 49–58.<br />

[H] D.Harbater, <strong>Fundamental</strong> groups <strong>of</strong> curves in characteristic p, Proc.ICM,Zürich (1994), 654–666.<br />

[I1] Y.Ihara, Pr<strong>of</strong>inite braid groups, Galois representati<strong>on</strong>s, and complex multiplicati<strong>on</strong>s, Ann. <strong>of</strong> Math.<br />

123 (1986), 43–106.<br />

[I2] , Braids, Galois groups and some arithmetic functi<strong>on</strong>s, Proc. ICM, Kyoto (1990), 99–120.<br />

[IN] Y.Ihara, H.Nakamura, Some illustrative examples for anabelian geometry in high dimensi<strong>on</strong>s, in[6]<br />

vol.1, 127–138.<br />

[MT] M.Matsumoto, A.Tamagawa, Mapping-class-group acti<strong>on</strong> versus Galois acti<strong>on</strong> <strong>on</strong> pr<strong>of</strong>inite fundamental<br />

groups, Preprint 1997.<br />

[M1] S.Mochizuki, <str<strong>on</strong>g>The</str<strong>on</strong>g> pr<strong>of</strong>inite <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> c<strong>on</strong>jecture for hyperbolic curves over number fields, J. Math.<br />

Sci., Univ. Tokyo 3 (1996), 571–627.<br />

[M2]<br />

, <str<strong>on</strong>g>The</str<strong>on</strong>g> local pro-p <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> c<strong>on</strong>jecture for hyperbolic curves, RIMS Preprint 1045, Kyoto<br />

Univ. (1995).<br />

[M3] , <str<strong>on</strong>g>The</str<strong>on</strong>g> local pro-p anabelian geometry <strong>of</strong> curves, RIMS Preprint 1097, Kyoto Univ. (1996).<br />

[M4] , A <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> c<strong>on</strong>jecture-type result for certain hyperbolic surfaces, RIMS Preprint 1104,<br />

Kyoto Univ. (1996).<br />

[M5] , A <strong>the</strong>ory <strong>of</strong> ordinary p-adic curves, Publ. <strong>of</strong> RIMS 32 (1996), 957–1151.<br />

[M6]<br />

, <str<strong>on</strong>g>The</str<strong>on</strong>g> generalized ordinary moduli <strong>of</strong> p-adic hyperbolic curves, RIMS Preprint 1051, Kyoto<br />

Univ. (1995).<br />

[M7]<br />

, Combinatorializati<strong>on</strong> <strong>of</strong> p-adic Teichmüller <strong>the</strong>ory, RIMS Preprint 1076, Kyoto Univ.<br />

(1996).<br />

[M8] , Corresp<strong>on</strong>dences <strong>on</strong> hyperbolic curves, J. Pure Appl. Algebra 131 (1998), 227–244.


THE GROTHENDIECK CONJECTURE 23<br />

[N1] H.Nakamura, Rigidity <strong>of</strong> <strong>the</strong> arithmetic fundamental group <strong>of</strong> a punctured projective line, J.reine<br />

angew. Math. 405 (1990), 117–130.<br />

[N2]<br />

, Galois rigidity <strong>of</strong> <strong>the</strong> étale fundamental groups <strong>of</strong> punctured projective lines, J. reine angew.<br />

Math. 411 (1990), 205–216.<br />

[N3]<br />

, On galois automorphisms <strong>of</strong> <strong>the</strong> fundamental group <strong>of</strong> <strong>the</strong> projective line minus three points,<br />

Math. Z. 206 (1991), 617–622.<br />

[N4]<br />

, Galois rigidity <strong>of</strong> pure sphere braid groups and pr<strong>of</strong>inite calculus, J. Math. Sci., Univ. Tokyo<br />

1 (1994), 71–136.<br />

[N5] , Galois rigidity <strong>of</strong> algebraic mappings into some hyperbolic varieties, Intern. J. Math. 4<br />

(1993), 421–438.<br />

[N6]<br />

, On exterior Galois representati<strong>on</strong>s associated with open elliptic curves, J. Math. Sci., Univ.<br />

Tokyo 2 (1995), 197–231.<br />

[N7]<br />

, Fukuyugengun no Garoa Gosei, Sugaku 47 (1995), 1–17; English translati<strong>on</strong> to appear in<br />

Sugaku Expositi<strong>on</strong> (AMS).<br />

[NTa] H.Nakamura, N.Takao, Galois rigidity <strong>of</strong> pro-l pure braid groups <strong>of</strong> algebraic curves, Trans. Amer.<br />

Math. Soc. (to appear).<br />

[NTs] H.Nakamura, H.Tsunogai, Some finiteness <strong>the</strong>orems <strong>on</strong> Galois centralizers in pro-l mapping class<br />

groups, J. reine angew. Math. 441 (1993), 115–144.<br />

[Ne] J.Neukirch, Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper, Invent.<br />

math. 6 (1969), 296–314.<br />

[O1] T.Oda, A note <strong>on</strong> ramificati<strong>on</strong> <strong>of</strong> <strong>the</strong> Galois representati<strong>on</strong> <strong>on</strong> <strong>the</strong> fundamental group <strong>of</strong> an algebraic<br />

curve, J. Number <str<strong>on</strong>g>The</str<strong>on</strong>g>ory 34 (1990), 225–228.<br />

[O2]<br />

, A note <strong>on</strong> ramificati<strong>on</strong> <strong>of</strong> <strong>the</strong> Galois representati<strong>on</strong> <strong>on</strong> <strong>the</strong> fundamental group <strong>of</strong> an algebraic<br />

curve, II, J. Number <str<strong>on</strong>g>The</str<strong>on</strong>g>ory 53 (1995), 342–355.<br />

[P1] F.Pop, On <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>’s c<strong>on</strong>jecture <strong>of</strong> birati<strong>on</strong>al anabelian geometry, Ann. <strong>of</strong> Math. 138 (1994),<br />

145–182.<br />

[P2] , On <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>’s c<strong>on</strong>jecture <strong>of</strong> birati<strong>on</strong>al anabelian geometry II, Preprint (June 1995).<br />

[T1] A.Tamagawa, <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> c<strong>on</strong>jecture for affine curves, Compositio Math. 109 (1997), no. 2,<br />

135–194.<br />

[T2] , On <strong>the</strong> fundamental groups <strong>of</strong> curves over algebraically closed fields <strong>of</strong> characteristic > 0,<br />

Preprint 1997.<br />

[U] K.Uchida, Isomorphisms <strong>of</strong> Galois groups <strong>of</strong> algebraic functi<strong>on</strong> fields, Ann. <strong>of</strong> Math. 106 (1977),<br />

589–598.<br />

[1] Y.Ihara (ed.), Galois Representati<strong>on</strong>s and Arithmetic Algebraic Geometry, Advanced Studies in Pure<br />

Math., vol. 12, Kinokuniya Co. Ltd., North-Holland, 1987.<br />

[2] Y.Ihara, K.Ribet, J.-P.Serre (eds.), Galois <strong>Groups</strong> over Q, Math. Sci. Res. Inst. Publicati<strong>on</strong>s, vol. 16,<br />

Springer, 1989.<br />

[3] J.-P.Serre, Topics in Galois <str<strong>on</strong>g>The</str<strong>on</strong>g>ory, J<strong>on</strong>es and Bartlett Publ., 1992.<br />

[4] L.Schneps (ed.), <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g>ory <strong>of</strong> Dessins d’Enfants, L<strong>on</strong>d<strong>on</strong> Math. Soc. Lect. Note Ser.,<br />

vol. 200, Cambridge Univ. Press, 1994.<br />

[5] M.Fried et al. (eds.), Recent Developments in <strong>the</strong> Inverse Galois Problem, C<strong>on</strong>temp. Math., vol. 186,<br />

AMS, 1995.<br />

[6] L.Schneps, P.Lochak (eds.), Geometric Galois Acti<strong>on</strong>s; 1.Around <str<strong>on</strong>g>Gro<strong>the</strong>ndieck</str<strong>on</strong>g>’s Esquisse d’un Programme,<br />

2.<str<strong>on</strong>g>The</str<strong>on</strong>g> Inverse Galois Problem, Moduli Spaces and Mapping Class <strong>Groups</strong>, L<strong>on</strong>d<strong>on</strong> Math.<br />

Soc. Lect. Note Ser., vol. 242-243, Cambridge Univ. Press, 1997.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!