25.04.2014 Views

Atomic parity non conservation; the francium project - KVI

Atomic parity non conservation; the francium project - KVI

Atomic parity non conservation; the francium project - KVI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Atomic</strong> <strong>parity</strong> <strong>non</strong> <strong>conservation</strong>; <strong>the</strong><br />

<strong>francium</strong> <strong>project</strong><br />

SSP2012 June 2012<br />

Luis A. Orozco<br />

Joint Quantum Institute, Department of<br />

Physics<br />

University of Maryland and NIST, USA


Thanks to:<br />

Dima Budker (Berkeley)<br />

Anne Marie Bouchiat (ENS Paris)<br />

Roberto Calabrese (Ferrara)<br />

Sidney Cahn (Yale)<br />

David DeMille (Yale)<br />

Andrei Derevianko (Reno)<br />

Victor Flambaum (New South Wales)<br />

Gerald Gwinner (Manitoba)<br />

Klaus Jungmann (<strong>KVI</strong>)<br />

Mariana Safranova (Delaware)


Gwinner


Gwinner


Gwinner


Gwinner


Safranova


Safranova


Weak charge of 133 Cs<br />

Agreement with <strong>the</strong> Standard Model<br />

Experiment: Wood et al. (1997); Bennett and Wieman (1999) (Boulder group)<br />

Theory: S.G. Porsev, K. Beloy, A. Derevianko Phys. Rev. Lett. (2009)<br />

Derevianko<br />

9


Bigger picture (running)<br />

S. G. Porsev, K. Beloy and A. Derevianko, Phys. Rev. Lett. 102, 181601<br />

(2009)<br />

S. G. Porsev, K. Beloy and A. Derevianko, Phys. Rev. D 82, 036008 (2010)<br />

Derevianko


Safranova


The Yb PV Experiment<br />

Electric and magnetic fields define handedness<br />

Budker


Yb PV Amplitude Results (Berkeley)<br />

Budker<br />

ζ/β=39(4) stat. (5) syst. mV/cm ⇒ |ζ|=(8.7±1.4)×10 -10 ea 0<br />

Accuracy is affected by HV-amplifier noise, fluctuations of<br />

Accuracy<br />

stray fields,<br />

is affected<br />

and laser<br />

by HV-amplifier<br />

drifts → improved<br />

noise, fluctuations<br />

for <strong>the</strong> next<br />

of<br />

phase<br />

stray<br />

fields, and laser drifts → improved for <strong>the</strong> next phase


Parity Non<strong>conservation</strong> in Dy<br />

• Theory (1994):<br />

• H w = 70 ± 40 Hz<br />

• V. A. Dzuba et al. Phys. Rev. A 50, 3812 (1994)<br />

• Experiment (1997):<br />

• |H w | = | 2.3 ± 2.9 (statistical) ± 0.7<br />

(systematic) |<br />

• A. T. Nguyen et. al. Phys. Rev. A 56, 3453 (1997)<br />

• Improved <strong>the</strong>ory (2010):<br />

• H w ≈ 2 Hz<br />

• V. Dzuba and V. Flambaum (http://arxiv.org/abs/1001.1184)<br />

Budker<br />

14


Jungmann<br />

Single ion work in Ra + at <strong>KVI</strong>


Jungmann


Using molecules to get at NSD-PNC<br />

• Diatomic molecules systematically have close rotation+hyperfine<br />

levels of opposite <strong>parity</strong>--B-field tuning can give ΔE ~ 10 -11 eV!<br />

[Sushkov, Flambaum, Sov. Phys. JETP 48, 608 (1978), Flambaum, Khriplovich, Phys. Lett.<br />

A 110, 121 (1985) Kozlov, Labzowsky, & Mitruschenkov, JETP 73, 415 (1991)]]<br />

Cahn, DeMille


|B><br />

|A><br />

Strategy to detect PNC in near-degenerate levels<br />

H =<br />

A<br />

A<br />

(<br />

0 iH W<br />

+ dE<br />

)<br />

B !iH W<br />

+ dE "<br />

B<br />

A !(T ) 2 "<br />

= 4sin 2 !T<br />

$<br />

# 2<br />

%(<br />

' (1or2) H W<br />

*<br />

&)*<br />

!<br />

Weak Term<br />

Odd in E<br />

D. DeMille, S.B. Cahn, D. Murphree, D.A. Rahmlow, and M.G. Kozlov<br />

Using molecules to measure nuclear spin-dependent <strong>parity</strong> violation<br />

Phys. Rev. Lett. 100, 023003 (2008)<br />

Cahn<br />

dE 0<br />

+ " dE 0<br />

$<br />

" # "<br />

Stark Term<br />

Even in E<br />

%<br />

'<br />

&<br />

2<br />

+<br />

-<br />

,-


FrPNC Collaboration<br />

Approved experiments at TRIUMF S1010, S1065, S1218<br />

Seth Aubin; College of William and Mary, USA.<br />

John A. Behr, K. Peter Jackson, Matt R. Pearson, Michael Tandecki;<br />

TRIUMF, Canada.<br />

Victor V. Flambaum; University of New South Wales, Australia.<br />

Eduardo Gómez, Maricarmen Ruiz; Universidad Autónoma de San<br />

Luis Potosí, México.<br />

Gerald Gwinner SPOEKESPERSON Robert Collister, Andrew<br />

Senchuk; University of Manitoba, Canada.<br />

Dan Melconian; Texas A&M, USA.<br />

Luis A. Orozco, Jiehang Zhang, Young Shing, Gary Cheng; University<br />

of Maryland, USA.<br />

Gene D. Sprouse; SUNY Stony Brook, USA.<br />

Yanting Zhao; Shanxi University, Taijuan, China.<br />

Work supported by NSERC from Canada, DOE, and NSF from <strong>the</strong> USA.


TRIUMF:<br />

John Behr<br />

University of Manitoba<br />

Mat<strong>the</strong>w Pearson<br />

Michael Tandecki<br />

Gerald Gwinner<br />

Robert Collister


University of Maryland<br />

William and Mary<br />

University of Maryland<br />

Gary Cheng, Jiehang Zhang, and Young Shing<br />

San Luis Potosi<br />

Seth Aubin<br />

Texas A&M<br />

Maricarmen Ruiz, Eduardo Gomez<br />

Dan Melconian


A Brief History of Francium at Stony<br />

Brook<br />

1991-94: Construction of 1 st production and<br />

trapping apparatus.<br />

1995: Produced and Trapped Francium in a<br />

MOT.<br />

1996-2000: Laser spectroscopy of Francium<br />

(8S 1/2 , 7P 1/2 ,7D 5/2 ,7D 3/2 , hyperfine anomaly).<br />

2,000 atoms<br />

Fr MOT<br />

2000-2002: High efficiency trap.<br />

2003: Spectroscopy of 9S 1/2 ,8P 1/2 ,8P 3/2 levels,<br />

2004: Lifetime of 8S level.<br />

2007: Magnetic moment 210 Fr based on 9S 1/2 .<br />

250,000 atoms<br />

Fr MOT


The Anapole Moment History<br />

1958 Zel’dovich, Vaks<br />

1980 Khriplovich, Flambaum<br />

1984 Khriplovich, Flambaum, Shuskov<br />

1995 Fortson (Seattle) bound from an<br />

experiment Thallium<br />

1997 Wieman (Boulder) 15% measurement<br />

from an experiment Cesium


Constraints of <strong>the</strong> isovector and isoscalar meson couplings (10 7 ). The<br />

error bands are one standard deviation. The illustrated region contains<br />

all of <strong>the</strong> DDH “reasonable ranges” for <strong>the</strong> indicated parameters (Behr,<br />

based on Haxton and Wieman).


Constraints of couplings (10 7 ) from future measurements of two <strong>francium</strong><br />

isotopes (even and odd isotopes) based on <strong>the</strong> calculations of Flambaum<br />

and Murray.


<strong>the</strong> FrPNC?<br />

• Tested system with Rb at UMD and shipped to TRIUMF.<br />

Now:<br />

• Construct laboratory at ISAC in TRIUMF and trap Fr<br />

Next<br />

• Measurement of <strong>the</strong> anapole moment of a chain of Fr<br />

isotopes through <strong>the</strong> E1 forbidden hyperfine transition.<br />

Shot noise limited signal-to-noise better than 1 (Hz) -1/2 .<br />

Extract weak coupling constants in <strong>the</strong> nucleus.<br />

• The apparatus also works for Optical PNC to measure<br />

<strong>the</strong> spin independent part (Weak charge).


Anapole Measurement<br />

1.- Define handedness of <strong>the</strong><br />

apparatus by <strong>the</strong> coordinate<br />

system<br />

(iE RF<br />

× B M 1<br />

⋅ B DC<br />

)<br />

€<br />

€<br />

2.- Create superposition to<br />

interfere and enhance PNC signal:<br />

A total<br />

= A PC PNC<br />

M 1<br />

± A E1<br />

3.- Measure rate of transition through<br />

resonance fluorescence.<br />

Rate ∝ A total<br />

2<br />

4.- Change handedness of apparatus<br />

Expected signal with 450 V/m<br />

€<br />

+<br />

Signal ∝ A total<br />

2<br />

−<br />

− Atotal<br />

2<br />

A E1<br />

<br />

= 0.01 rad /s<br />

5.- Repeat.<br />


Manufactured Microwave Mirror<br />

Perforated Hole array mirror fabricated in UMD FabLab.


Blue detuned trap<br />

Fluorescence from trapped atoms


Principle of <strong>the</strong> measurement<br />

⎛⎛<br />

Ξ ±<br />

= N sin 2<br />

⎜⎜<br />

⎝⎝<br />

(A M 1<br />

± A E1<br />

)t c<br />

2<br />

⎛⎛<br />

S = Ξ +<br />

− Ξ −<br />

≅ N sin A t ⎞⎞ ⎛⎛<br />

M 1 c<br />

⎜⎜ ⎟⎟ A t ⎞⎞<br />

E1 c<br />

⎜⎜ ⎟⎟<br />

⎝⎝ 2 ⎠⎠ ⎝⎝ 2 ⎠⎠<br />

⎞⎞<br />

⎟⎟<br />

⎠⎠<br />

€<br />

Control phase of different interactions<br />

Ground state hyperfine splitting<br />

Fr ~46 GHz, Z=87<br />

Rb ~6.834 GHz, Z=37


Oscillations and sensitivity test<br />

M1 Rabi oscillations (50 Hz) with 10 5<br />

Rb atoms in blue detuned (20 nm)<br />

dipole trap. Decoherence time 180 ms.<br />

While sitting at 37.5 ms, add a<br />

second microwave source with<br />

10 4 attenuation, change of <strong>the</strong><br />

phase and see <strong>the</strong> signal<br />

increase and decrease.


Signal<br />

Noise = 2Ω E1Δt N = 2<br />

Number of atoms = N ~ 10 6<br />

Ω E1 ~ 10 mrad<br />

Interaction time = Δτ ~ 0.1s


December 2010 results actinite target<br />

ISAC facility @ TRIUMF500 MeV protons (2 µA) on UC (30 g/cm2).


University of Maryland<br />

September 6, 2011


University of Maryland<br />

September 8, 2011


ISAC I hall at TRIUMF, new home of FrPNC


Collinear spectroscopy looking for 206 Fr in September 2011<br />

Preliminary results: observed <strong>the</strong> ground state 206 isotope and found its isomer


Rb Trap at Fr Trapping Facility


THANKS!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!