29.04.2014 Views

Gao Zhiqiang is an associate professor at Department of Chemistry ...

Gao Zhiqiang is an associate professor at Department of Chemistry ...

Gao Zhiqiang is an associate professor at Department of Chemistry ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Gao</strong> <strong>Zhiqi<strong>an</strong>g</strong> <strong>is</strong> <strong>an</strong> <strong>associ<strong>at</strong>e</strong> <strong>pr<strong>of</strong>essor</strong> <strong>at</strong> <strong>Department</strong> <strong>of</strong><br />

Chem<strong>is</strong>try N<strong>at</strong>ional University <strong>of</strong> Singapore. He received h<strong>is</strong><br />

B.Sc. <strong>an</strong>d Ph.D. in Chem<strong>is</strong>try from Wuh<strong>an</strong> University, China.<br />

The following years he worked as a postdoctoral fellow <strong>at</strong> Åbo<br />

Akademi University <strong>an</strong>d The Weizm<strong>an</strong>n Institute <strong>of</strong> Science.<br />

After spending three years in the United St<strong>at</strong>es <strong>an</strong>d seven<br />

years <strong>at</strong> the Institute <strong>of</strong> Bioengineering <strong>an</strong>d N<strong>an</strong>otechnology,<br />

he joined NUS in April 2011.<br />

Contact Inform<strong>at</strong>ion<br />

<strong>Department</strong> <strong>of</strong> Chem<strong>is</strong>try,<br />

N<strong>at</strong>ional University <strong>of</strong> Singapore<br />

3 Science Drive 3, Singapore 117543<br />

Tel: (65)-6516-3887<br />

Email: chmgaoz@nus.edu.sg<br />

RESEARCH INTERESTS<br />

Research in our labor<strong>at</strong>ory currently includes Electrochem<strong>is</strong>try, Analytical Chem<strong>is</strong>try <strong>an</strong>d M<strong>at</strong>erials<br />

Science. We are particularly interested in the applic<strong>at</strong>ions <strong>of</strong> n<strong>an</strong>om<strong>at</strong>erials <strong>an</strong>d n<strong>an</strong>otechnology in<br />

electronic/electrochemical biosensors <strong>an</strong>d bioassays th<strong>at</strong> are prom<strong>is</strong>e as<br />

faster, less expensive, <strong>an</strong>d more practical altern<strong>at</strong>ives th<strong>an</strong> current tests<br />

used for detecting trace amounts <strong>of</strong> nucleic acids <strong>an</strong>d proteins for d<strong>is</strong>ease<br />

diagnos<strong>is</strong>, molecular biological research <strong>an</strong>d other applic<strong>at</strong>ions. For<br />

example, current methods for detecting genes usually involve the use <strong>of</strong><br />

polymerase chain reaction (PCR). Th<strong>is</strong> technique makes multiple copies<br />

<strong>of</strong> <strong>an</strong> <strong>an</strong>alyzed gene, in order to detect it more easily. Although effective<br />

<strong>an</strong>d highly sensitive, tests involving PCR tend to be conducted in<br />

centralized labor<strong>at</strong>ories, <strong>an</strong>d therefore imprec<strong>is</strong>e for m<strong>an</strong>y settings, such<br />

as point-<strong>of</strong>-care, where results are needed quickly. Our n<strong>an</strong>ogap sensor<br />

array (see Figure below) appears to be prom<strong>is</strong>ing to meet th<strong>is</strong> need. The<br />

sensing process uses a pair <strong>of</strong> micro-sized metal electrodes vertically<br />

stacked <strong>an</strong>d separ<strong>at</strong>ed by a 5-20 n<strong>an</strong>ometer insul<strong>at</strong>ing layer (n<strong>an</strong>ogap), in<br />

combin<strong>at</strong>ion with specially designed capture probes, to capture traces <strong>of</strong><br />

the <strong>an</strong>alyzed gene. The captured gene str<strong>an</strong>ds, after selective<br />

metalliz<strong>at</strong>ion, establ<strong>is</strong>h electron-conducting p<strong>at</strong>hs between the two metal<br />

electrodes across the n<strong>an</strong>ogap, tr<strong>an</strong>sl<strong>at</strong>ing the presence <strong>of</strong> the gene str<strong>an</strong>ds<br />

into <strong>an</strong> electrical signal so th<strong>at</strong> it c<strong>an</strong> be conveniently measured by <strong>an</strong><br />

ohmmeter. In labor<strong>at</strong>ory tests, the sensor array c<strong>an</strong> unambiguously detect<br />

the copy number <strong>of</strong> the <strong>an</strong>alyzed gene qu<strong>an</strong>tit<strong>at</strong>ively <strong>an</strong>d may obvi<strong>at</strong>e the<br />

need for PCR amplific<strong>at</strong>ion used in current DNA tests.


PARTENTS<br />

1. US P<strong>at</strong>ent 7,902,362 Threading Intercal<strong>at</strong>ors.<br />

2. US P<strong>at</strong>ent 7,655,404 Method <strong>an</strong>d Device for Detection <strong>of</strong> Nucleic Acids <strong>an</strong>d/or Polypeptides.<br />

3. US P<strong>at</strong>ent 7,576,205 Detectable Threading Intercal<strong>at</strong>or.<br />

4. US P<strong>at</strong>ent 7,563,588 Electrically Non-conductive, N<strong>an</strong>oparticul<strong>at</strong>e Membr<strong>an</strong>e.<br />

5. US P<strong>at</strong>ent 7,511,142 Medi<strong>at</strong>or-Modified Biomolecules for Use in Electrochemical Determin<strong>at</strong>ion <strong>of</strong> Analyte.<br />

6. US P<strong>at</strong>ent 7,462,720 Determin<strong>at</strong>ion <strong>of</strong> Nucleic Acid Using Electroc<strong>at</strong>alytic Intercal<strong>at</strong>ors.<br />

7. US P<strong>at</strong>ent 7,479,557 DNA Threading Intercal<strong>at</strong>ors.<br />

8. US P<strong>at</strong>ent 7,030,257 Synthes<strong>is</strong> <strong>of</strong> Metall<strong>an</strong>e Deriv<strong>at</strong>ives.<br />

9. US P<strong>at</strong>ent 7,052,591 Electrodeposition <strong>of</strong> Redox Polymer <strong>an</strong>d Co-electrodeposition <strong>of</strong> Redox Polymer/<br />

Biomolecule Composite Membr<strong>an</strong>es.<br />

REPRESENTATIVE PUBLICATIONS (*CORRESPONDING AUTHOR)<br />

1. S. Roy, J.H. Soh <strong>an</strong>d Z.Q. <strong>Gao</strong>*, A Micr<strong>of</strong>luidic-Ass<strong>is</strong>ted Microarray for Ultrasensitive Detection <strong>of</strong><br />

MicroRNA under <strong>an</strong> Optical Microscope, Lab on a Chip, 11 (2011) 1886–2894.<br />

2. Y.B. Zu, A.L. Ting <strong>an</strong>d Z.Q. <strong>Gao</strong>*, V<strong>is</strong>ualizing Low-Level Point Mut<strong>at</strong>ions: Enzyme-like Selectivity<br />

Offered by N<strong>an</strong>oparticle Probes, Small, 7 (2011) 306–310.<br />

3. Y.F. Peng, G.S. Yi <strong>an</strong>d Z.Q. <strong>Gao</strong>*, A MicroRNA Biosensor Based on Ruthenium Oxide N<strong>an</strong>oparticle-<br />

Initi<strong>at</strong>ed Polymeriz<strong>at</strong>ion <strong>of</strong> Aniline, Chemical Communic<strong>at</strong>ions, 46 (2010) 9131–9133.<br />

4. S. Roy, X.J. Chen, M.H. Li, Y.F. Peng, F. Anariba <strong>an</strong>d Z.Q. <strong>Gao</strong>*, Mass-Produced N<strong>an</strong>ogap Sensor<br />

Arrays for Ultrasensitive Detection <strong>of</strong> DNA, Journal <strong>of</strong> the Americ<strong>an</strong> Chemical Society, 131 (2009)<br />

12211–12217.<br />

5. Y. F<strong>an</strong>, X. Chen, C. Tung, J. Kong <strong>an</strong>d Z.Q. <strong>Gao</strong>*, Detection <strong>of</strong> MicroRNAs Using Target-Guided<br />

Form<strong>at</strong>ion <strong>of</strong> Conducting Polymer N<strong>an</strong>owires in N<strong>an</strong>ogaps, Journal <strong>of</strong> the Americ<strong>an</strong> Chemical Society,<br />

129 (2007) 5437–5443.<br />

6. Z.Q. <strong>Gao</strong>*, A. Agarwal, A.D. Trigg, N. Singh, C. F<strong>an</strong>g, C.H. Tung, Y. F<strong>an</strong>, K.D. Buddharaju <strong>an</strong>d J.M.<br />

Kong, Silicon N<strong>an</strong>owire Arrays for Ultrasensitive Label-Free Detection <strong>of</strong> DNA, Analytical Chem<strong>is</strong>try,<br />

79 (2007) 3291–3297.<br />

7. Z.Q. <strong>Gao</strong>*, S. Rafea <strong>an</strong>d L. Lim, Detection <strong>of</strong> Nucleic Acids Using Enzyme-C<strong>at</strong>alyzed Templ<strong>at</strong>e-Guided<br />

Deposition <strong>of</strong> Poly<strong>an</strong>iline, Adv<strong>an</strong>ced M<strong>at</strong>erials, 19 (2007) 602–606.<br />

8. Y. F<strong>an</strong>, X.T. Chen, J.M. Kong, C. Tong <strong>an</strong>d Z.Q. <strong>Gao</strong>*, Direct Detection <strong>of</strong> DNA By Tagging Phosph<strong>at</strong>es<br />

on Their Backbones with N<strong>an</strong>oparticles, Angew<strong>an</strong>dte Chemie, Intern<strong>at</strong>ional Edition, 46 (2007) 2051–<br />

2054.<br />

9. Z.Q. <strong>Gao</strong>* <strong>an</strong>d Z.C. Y<strong>an</strong>g, Ultrasensitive Detection <strong>of</strong> MicroRNA Using Electroc<strong>at</strong>alytic n<strong>an</strong>oparticle<br />

Tags, Analytical Chem<strong>is</strong>try, 78 (2006) 1470–1477.<br />

10. Z.Q. <strong>Gao</strong>* <strong>an</strong>d N.C. T<strong>an</strong>sil, An Ultrasensitive Photoelectrochemical Nucleic Acid Biosensor, Nucleic<br />

Acids Research, 33 (2005) e123.<br />

11. N.C. T<strong>an</strong>sil, F. Xie <strong>an</strong>d Z.Q. <strong>Gao</strong>*, Direct Detection <strong>of</strong> DNA with <strong>an</strong> Electroc<strong>at</strong>alytic Threading<br />

Intercal<strong>at</strong>or, Analytical Chem<strong>is</strong>try, 77 (2005) 126–134.<br />

12. N.C. T<strong>an</strong>sil, H. Xie F. Xie <strong>an</strong>d Z.Q. <strong>Gao</strong>*, An ultrasensitive nucleic acid biosensor based on the c<strong>at</strong>alytic<br />

oxid<strong>at</strong>ion <strong>of</strong> gu<strong>an</strong>ine by a novel redox threading intercal<strong>at</strong>or, Chemical Communic<strong>at</strong>ions, (2005) 1064–<br />

1066.<br />

13. H. Xie, C. Zh<strong>an</strong>g <strong>an</strong>d Z.Q. <strong>Gao</strong>*, Amperometric Detection <strong>of</strong> DNA <strong>at</strong> Femtomolar Levels with a Nucleic<br />

Acid/Activ<strong>at</strong>or Bilayer on Gold Electrode, Analytical Chem<strong>is</strong>try, 76 (2004) 1611–1617.<br />

14. H. Xie, Y.H. Yu, P.L. Mao <strong>an</strong>d Z.Q. <strong>Gao</strong>*, Highly Sensitive Amperometric Detection <strong>of</strong> Genomic DNA<br />

in Animal T<strong>is</strong>sues, Nucleic Acids Research, 32 (2004) e15.<br />

15. Z.Q. <strong>Gao</strong>, G. Binyamin, H. Kim, S.C. Barton, Y. Zh<strong>an</strong>g, A. Heller*, Electrodeposition <strong>of</strong> Redox Polymers<br />

<strong>an</strong>d Co-Electrodeposition <strong>of</strong> Enzymes by Coordin<strong>at</strong>ive Crosslinking, Angew<strong>an</strong>dte Chemie, Intern<strong>at</strong>ional<br />

Edition, 41 (2002) 810–813.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!