01.05.2014 Views

The Instrument - the SOHO home page

The Instrument - the SOHO home page

The Instrument - the SOHO home page

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Contents<br />

Objectives<br />

• Morphology of <strong>the</strong> Emission Line Corona<br />

• Triggering and Initial Evolution of Dynamical Events<br />

What do we need?<br />

• Coronagraphy<br />

- lens vs mirror coronagraphs<br />

- internally vs externally occulted<br />

What is MICA?<br />

• MICA as an internally occulted mirror coronagraph<br />

- <strong>Instrument</strong> Layout<br />

- Technical specifications Filters background<br />

Camera background<br />

How does MICA work?<br />

• Observation technique<br />

• Auxiliary Devices<br />

Narrow band imagery


12:34 UT 12:52 UT 12:56 UT<br />

Apr 20, 1999 - Seq.<br />

13:01 UT 13:04 UT 13:10 UT<br />

13:13 UT 13:19 UT 13:22 UT


Set 30, 1998 - Seq<br />

13:16 UT 13:17 UT 13:20 UT 13:22 UT 13:23 UT<br />

13:25 UT 13:28 UT 13:29 UT 13:31 UT 13:32 UT<br />

13:33 UT 13:37 UT 13:40 UT 13:41 UT 13:44 UT


<strong>The</strong> K-corona K<br />

(kontinuerliches(<br />

Spektrum)<br />

• White light from <strong>the</strong> photosphere scattered on free electrons in <strong>the</strong> partly ionized corona<br />

• Absence of Fraunhofer absorption lines (high electron temperature: Doppler-smear-out)<br />

• Intensity proportional to electron density (summed up along line of sight)<br />

• Strongly polarized, parallel to solar limb<br />

<strong>The</strong> F-coronaF<br />

<strong>The</strong> solar corona: : Four different components<br />

• White light from <strong>the</strong> photosphere, scattered on dust particles<br />

• Continuum spectrum like in <strong>the</strong> photospeheric one, including Fraunhofer lines<br />

• Very low degree of polarization<br />

• Also known as Zodiacal light<br />

Components Solar Corona I<br />

<strong>The</strong> T-corona T<br />

(<strong>the</strong>rmal corona)<br />

• <strong>The</strong>rmal radiation of heated dust particles<br />

• Continuous infrared spectrum, according to temperature of dust particles<br />

• Barely visible<br />

……...


<strong>The</strong> E-corona E<br />

(emission line corona)<br />

• Line emission from various atoms and ions in <strong>the</strong> corona<br />

• Strongest line in visible spectral range: 530.3 nm of FeXIV ions (green line)<br />

• Many lines in UV and EUV spectral ranges, e.g., FeXII (19.5 nm), FeXV (28.4 nm)<br />

• Strong radial gradients<br />

• Many forbidden lines, <strong>the</strong>refore various polarization states<br />

<strong>The</strong> high ionization state of emitting species reveals<br />

<strong>the</strong> high temperature of <strong>the</strong> emission corona.<br />

Components Solar Corona II<br />

Knowledge of <strong>the</strong> observational characteristics of <strong>the</strong> different corona components<br />

Understanding of <strong>the</strong> physical mechanisms responsible of <strong>the</strong> emission<br />

Separation of <strong>the</strong> components<br />

Polarizers<br />

Isolation of <strong>the</strong> K-corona.<br />

Isolation emission lines<br />

Narrow band filters<br />

+<br />

Background subtraction techniques


Relative Intensity<br />

E: Emission Line Corona<br />

F: Fraunhofer Corona<br />

K: Continuum (“white light”) Corona.<br />

Relative intensity of <strong>the</strong> coronal light components and <strong>the</strong> sky as<br />

function of solar distance (in solar radii). <strong>The</strong> relative intensity is<br />

normalized to <strong>the</strong> intensity at <strong>the</strong> center of <strong>the</strong> solar disk.<br />

After van der Hulst, 1953.


Lyot refractive internally occulted coronagraph<br />

Lyot<br />

Coronagraph<br />

LF<br />

R<br />

Oc<br />

LS<br />

O2<br />

FP<br />

A1 O1<br />

FL<br />

A1: entrance aperture<br />

O1: objective lens<br />

Oc: internal occulter,<br />

FL: field lens<br />

LS: Lyotstop<br />

LF: Lyot spot<br />

O2: transfer lens<br />

FP: focal plane.<br />

<strong>The</strong> solid lines show <strong>the</strong> rays coming from a point in <strong>the</strong><br />

inner corona. <strong>The</strong> dashed line indicates <strong>the</strong> path of <strong>the</strong><br />

diffracted light at <strong>the</strong> edges of <strong>the</strong> entrance aperture.<br />

Internal reflections in <strong>the</strong> objective lens are denoted with<br />

<strong>the</strong> letter R.<br />

Lyot observed that each optical element or edge illuminated<br />

by solar radiation gave a contribution to <strong>the</strong> stray-light level<br />

of <strong>the</strong> coronagraph.


Refractive externally occulted coronagraph<br />

(Sky tester)<br />

Externally<br />

Occulted<br />

Coronagraph<br />

• Diffracted sunlight from <strong>the</strong> edge of <strong>the</strong> external occulting disk<br />

• Residual scattered light in <strong>the</strong> objective lens itself.<br />

EO<br />

A0<br />

O1<br />

Oc<br />

TL D<br />

LS<br />

E0: external occulter<br />

A0: entrance aperture<br />

O1: objective lens<br />

Oc: internal occulter<br />

LS: Lyot stop<br />

TL: telelens<br />

D: detector (focal plane)


Refractive optics<br />

• Residual scattered light in <strong>the</strong> objective<br />

lens itself.<br />

• Monochromatic and chromatic aberration<br />

at <strong>the</strong> position of <strong>the</strong> internal occulter.<br />

Optimum size and position along <strong>the</strong> optical<br />

axis of <strong>the</strong> image of <strong>the</strong> external occulting<br />

disk is wavelength dependent.<br />

• Aperture limitation due to <strong>the</strong> problem of<br />

producing large diameter slabs of glass of<br />

requisite quality for <strong>the</strong> primary objective.<br />

Examples externally occulted<br />

refractive coronagraphs<br />

•LASCO-C2 and C3 onboard <strong>SOHO</strong><br />

Brueckner et al., 1995<br />

Constraints<br />

External occulter<br />

Constraints<br />

• Vignetting: Spatial resolution strongly<br />

degraded at <strong>the</strong> inner edge<br />

of <strong>the</strong> field of view.<br />

Degradation roughly<br />

proportional to <strong>the</strong> vignetting<br />

effect in <strong>the</strong> radial direction.<br />

• Spatial resolution:<br />

Example 1<br />

Diffraction limit<br />

Example 2<br />

Inner fov: set by <strong>the</strong> distance and size of<br />

<strong>the</strong> external occulter.<br />

Outer fov: set by <strong>the</strong> effective aperture of<br />

<strong>the</strong> objective lens: sinθ = 1.22λ / D<br />

or size of detecting elements.<br />

Dimensional constraints impede to build<br />

sufficiently long externally occulted<br />

coronagraphs to observe <strong>the</strong> innermost<br />

corona with high spatial resolution.


Refractive optics<br />

Reflective optics<br />

Solutions<br />

External occulter<br />

Solutions<br />

Internal occulter<br />

• <strong>Instrument</strong>al stray-light can be considerably<br />

reduced by <strong>the</strong> use of reflective optics<br />

(Newkirk & Bohlin, 1963).<br />

Unlike lenses, mirrors have no problems with<br />

bulk scatter or multiple internal reflections.<br />

• No chromatic aberration at <strong>the</strong> occulter.<br />

• Large apertures are feasible.<br />

Examples externally occulted<br />

mirror coronagraphs<br />

• Bonnet, 1966<br />

• Kohl et al., 1978<br />

• Smartt, 1979<br />

• No vignetting<br />

Full resolution over <strong>the</strong> entire field.<br />

Field of view: closer to <strong>the</strong> limb<br />

• Diffraction limit<br />

Effective aperture of <strong>the</strong> objective.<br />

Size of detecting element (pixel size).<br />

Internally occulted<br />

mirror coronagraphs<br />

• PICO (Pic Du Midi Coronagraph),<br />

Epple & Schwenn, 1994<br />

• LASCO-C1<br />

Brueckner et al., 1995<br />

• MICA (Mirror Coronagraph for Argentina)<br />

Stenborg et al., 1999


MICA as an internally occulted mirror coronagraph<br />

MICA<br />

Red: photospheric sun light (solar disk)<br />

Blue: diffracted sun light at <strong>the</strong> edges of A0<br />

Green: scattered sun light + coronal light<br />

instrumental<br />

in <strong>the</strong> sky<br />

K-corona<br />

E-corona


MICA Technical Data<br />

MICA technical data<br />

Elem. Type Aperture<br />

(in mm)<br />

Curvature<br />

(in mm)<br />

Remarks<br />

A0 Circ. 59 - Entrance<br />

Aperture<br />

M1 Off-axis 90 FL = 750 Primary Mirror<br />

Parabola<br />

M2 Convex ID=7 R = 2422 Occultor<br />

Sphere OD=20<br />

M3 Off-axis 90 FL = 750<br />

Parabola<br />

S Shutter 40 - Mechanical<br />

A1 Annular ID=38.4 - Lyot Stop<br />

Aperture<br />

TL Telelens -<br />

CCD Camera 16 µ/pxl - 1280x1024 pxl<br />

(~3.8 arcsec/pxl)


λ<br />

(nm)<br />

FWHM<br />

(nm)<br />

Max.Trans.<br />

Flatness<br />

<strong>The</strong> filters in MICA<br />

Fe XIV<br />

(line)<br />

Fe XIV<br />

(cont)<br />

Fe X<br />

(line)<br />

530.3 0.15 + 52 % λ/4/45 mm<br />

526.0 1 56 % λ/4/25 mm<br />

637.4 0.15 57 % λ/4/45 mm<br />

<strong>The</strong> filters in MICA<br />

Fe X<br />

(cont)<br />

634.0 1 36 % λ/4/25 mm<br />

1.05 MK 1.80 MK<br />

• Model of <strong>the</strong> continuum at <strong>the</strong><br />

wavelength of <strong>the</strong> on-line filter.<br />

- Far from line center, to avoid<br />

contamination by emission in <strong>the</strong><br />

line itself.<br />

- Relatively broad passband to be<br />

sure that no major emission lines<br />

contribute to <strong>the</strong> measured<br />

continuum flux.<br />

Relative Abundance [%]<br />

100<br />

10<br />

1<br />

Temperature [10 6 °K]<br />

0.63 1.00 1.58 2.51<br />

Fe X<br />

Fe XIV<br />

5.8 6.0 6.2 6.4<br />

log(T)<br />

Log(T)


Principle of an interference filter<br />

Multiple reflections<br />

between two paralell<br />

surfaces<br />

Filter <strong>The</strong>ory<br />

Practical interference filter used at<br />

normal incidence<br />

Transparent dielectric<br />

θ<br />

• Maxima at (normal incidence θ = 0)<br />

λ ( = )<br />

Transmission<br />

Wavelength<br />

Tmax<br />

=<br />

⎛ λ − λ<br />

1+ ⎜ ⎝ ∆/2<br />

2<br />

2<br />

sin ( θ ) θ →0<br />

θ<br />

• Tilting by θ ==> λm<br />

θ<br />

= λm<br />

1−<br />

⎯⎯ →λ<br />

2<br />

mθ<br />

− λ0<br />

≈<br />

2<br />

n<br />

2n<br />

T<br />

0<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

Glass plates<br />

Metallic films<br />

Reflectivity of <strong>the</strong> metal<br />

films determine width of<br />

<strong>the</strong> maxima


Filter Transmission Classical<br />

Solar spectrum<br />

Shifting of <strong>the</strong> green line filter<br />

passband with temperature and<br />

solar distance<br />

Filter in <strong>the</strong> parallel beam<br />

FWHM = 0.15 nm<br />

green line profile<br />

Solid line (black): filter transmission at <strong>the</strong> temp.<br />

where <strong>the</strong> green line emission close to <strong>the</strong> limb is<br />

observed to be maximum, i.e, T 0 .<br />

Dashed line (brown): filter passband at <strong>the</strong> edge<br />

of <strong>the</strong> field of view, at <strong>the</strong> same temperature T 0 .<br />

Dashed-dotted-dotted line: filter passband close<br />

to <strong>the</strong> limb at T 0 +3° (red) and T 0 -3° (blue).<br />

Temperature coefficient: K T = 0.0168 nm/°C.


Filter Transmission Homocentric<br />

Shifting of <strong>the</strong> green line filter<br />

passband with solar distance<br />

Filter in homocentric beam<br />

FWHM = 0.15 nm<br />

For comparison, <strong>the</strong> dashed line<br />

(black) shows <strong>the</strong> passband of a filter<br />

located in <strong>the</strong> parallel beam.<br />

Dotted line (black): filter transmission at normal<br />

incidence.<br />

Solid line (red): filter transmission across <strong>the</strong> field<br />

of view.


S<br />

E<br />

W<br />

N<br />

On-line<br />

Off-line<br />

N<br />

Orientierung<br />

W<br />

N<br />

E<br />

S<br />

E<br />

W<br />

Equator<br />

S


MICA Block Diagram


<strong>The</strong> diffraction limit is <strong>the</strong> minimum angular separation that two<br />

different sources must have in order to be resolved by <strong>the</strong><br />

telescope.<br />

Diffraction Limit Definition


Chromatic aberration occurs due to <strong>the</strong> variation of refractive<br />

index with wavelength for a lens material. This wavelength<br />

dependence results in slightly different focal lengths for different<br />

wavelengths of light. <strong>The</strong>refore, <strong>the</strong> lens produces a coloured<br />

blurring ra<strong>the</strong>r than a true color, sharply focussed image.<br />

Chromatic Aberration Definition


Vignetting effect<br />

C2 Spatial Resolution<br />

Brueckner et al., 1995. (Sol. Phys., 162, 357)


Vignetting effect<br />

C3 Spatial Resolution<br />

Brueckner et al., 1995. (Sol. Phys., 162, 357)


Construction of a typical filter<br />

Construction of a typical filter<br />

• Glass plates: no role. Mechanical support for <strong>the</strong> filter.<br />

• Surface of one plate coated with:<br />

- a thin evaporated film of high reflectivity,<br />

- a thin layer of a transparent dielectric, and<br />

- ano<strong>the</strong>r metal film.<br />

•<strong>The</strong> o<strong>the</strong>r plate is added for protection.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!