09.05.2014 Views

Initial experiments with liquid target materials in PSI-2 and TEXTOR

Initial experiments with liquid target materials in PSI-2 and TEXTOR

Initial experiments with liquid target materials in PSI-2 and TEXTOR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Member of the Helmholtz Association<br />

<strong>Initial</strong> <strong>experiments</strong> <strong>with</strong> <strong>liquid</strong> <strong>target</strong><br />

<strong>materials</strong> <strong>in</strong> <strong>PSI</strong>-2 <strong>and</strong> <strong>TEXTOR</strong><br />

B. Unterberg, J.W. Coenen, A. Kreter, V. Philipps, M. Re<strong>in</strong>hart, G.<br />

Sergienko, A. Terra <strong>and</strong> T. Wegener<br />

Institut für Energie- und Klimaforschung – Plasmaphysik<br />

Forschungszentrum Jülich, Ass. EURATOM- Forschungszentrum Jülich,<br />

Trilateral Euregio Cluster, D- 52425 Jülich, Germany<br />

4th IEA International Workshop on Plasma Material Interaction Facilities for<br />

Fusion Research (PMIF 2013), Oak Ridge, TN, USA, September 9th – 13th 2013


Program on <strong>liquid</strong> <strong>target</strong>s <strong>in</strong> Jülich<br />

§ After assessment of<br />

alternative <strong>target</strong><br />

concepts, FZJ<br />

concentrates on<br />

alternatives to Li <strong>in</strong> CPS<br />

configuration, <strong>in</strong> the<br />

frame of the co-ord<strong>in</strong>ated<br />

EU fusion program<br />

(EFDA-PEX) <strong>and</strong> <strong>in</strong> TEC<br />

collaboration <strong>with</strong> FOM-<br />

DIFFER<br />

§ Development of samples<br />

for exposure <strong>in</strong> <strong>PSI</strong>-2 <strong>and</strong><br />

<strong>TEXTOR</strong><br />

Ø Report on <strong>in</strong>itial<br />

<strong>experiments</strong> <strong>with</strong> t<strong>in</strong><br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 2


Optimization of temperature w<strong>in</strong>dow<br />

motivates work on alternative <strong>materials</strong><br />

Temperature limit<br />

§ Lower limit<br />

§ Melt<strong>in</strong>g<br />

§ Wett<strong>in</strong>g<br />

§ Upper limit<br />

§ Evaporation flux: impact on<br />

plasma performance, redeposition,<br />

migration to<br />

remote areas<br />

§ Chemistry (e.g. LiH<br />

formation), corrosion / alloy<br />

formation (large w<strong>in</strong>dow for<br />

Li, show stopper for Ga)<br />

Evaporation rates<br />

[R. Majeski, "Liquid metal walls, lithium,<br />

<strong>and</strong> low recycl<strong>in</strong>g boundary conditions <strong>in</strong><br />

tokamaks" AlP Conf. Proc. vol. 1237, 122.]<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 3


Re-Deposition<br />

Factor 10 <strong>in</strong>crease <strong>in</strong> redepostion<br />

enhances T<br />

w<strong>in</strong>dow by


Material compatibility of t<strong>in</strong> <strong>with</strong> mesh metals<br />

SST/Ga SST/Sn Mo/Sn W/Sn<br />

SST show a strong ability to form<br />

alloys <strong>with</strong> all <strong>in</strong>vestigated <strong>liquid</strong> metal<br />

c<strong>and</strong>idates.<br />

Mo alloys <strong>with</strong> <strong>liquid</strong> Sn but <strong>in</strong> very<br />

small amounts. EDX analysis shows<br />

small <strong>in</strong>clusions (


Wett<strong>in</strong>g<br />

950 °C<br />

10 -6 mbar<br />

Wett<strong>in</strong>g - contact angle < 90°<br />

Adhesion > Cohesion<br />

Mo/Sn<br />

“Clean” metal surfaces are<br />

normaly wettable <strong>with</strong> <strong>liquid</strong><br />

metals<br />

BUT they nearly always have<br />

oxide layers which reduce the<br />

wettability of the surface!<br />

No Wett<strong>in</strong>g - contact angle >90°<br />

990 °C<br />

10 -6 mbar<br />

W/Sn<br />

1mbar H 2<br />

950°C<br />

W/Sn<br />

Adhesion < Cohesion<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 6


Overview of wett<strong>in</strong>g characteristics<br />

Contact angle<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 7


L<strong>in</strong>ear plasma device <strong>PSI</strong>-2<br />

Plasma<br />

source<br />

Coils<br />

TEAC<br />

Target<br />

manipulator<br />

Side-fed<br />

manipulator<br />

Periphery<br />

level<br />

3 m<br />

§ Plasma conditions (deuterium<br />

plasmas), <strong>with</strong> <strong>target</strong> bias<strong>in</strong>g<br />

q = 0.1 -2 MW m -2 , simulation of<br />

transients by laser irradiation<br />

(120 J / 4 ms)<br />

n e = 10 17 - 10 19 m -3<br />

T e up to 20 eV (T i ~ 0.5 T e )<br />

E ion = 10-300 eV (bias<strong>in</strong>g)<br />

Γ ion = 10 21 - 10 23 m -2 s -1<br />

F = 10 27 m -2 <strong>in</strong> 4 h<br />

Δ flow channel ~ 6 cm<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 8


Target holder <strong>in</strong> <strong>PSI</strong>-2<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 9


Setup<br />

Tungsten Mesh: d=0.1-0.2mm<br />

molybdenum disk & mount<strong>in</strong>g plate<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 10


Exposure<br />

Infra-red<br />

visible<br />

IR-Camera Pyrometer Pyrometer<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 11


Exposed samples<br />

Empty<br />

Before<br />

After<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 12


Material Cuts<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 13


Exposure characteristics<br />

Plasma characteristics<br />

§ Total exposure time (D2-<br />

plasma): 64 m<strong>in</strong>.<br />

§ Plasma parameters <strong>in</strong><br />

front of <strong>target</strong>: n e =<br />

8x10 17 m -3 /T e = 9 eV<br />

§ Plasma flux density:<br />

5x10 21 m -2 s -1<br />

Surface temperature<br />

§ Heat flux density: 60<br />

kWm -2 (no bias<strong>in</strong>g) Equilibrium reached after ~900s<br />

IR-cam: temperature variation across<br />

sample ≤ ±100° C<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 14


Sn mass loss <strong>in</strong> dur<strong>in</strong>g exposure<br />

§<br />

§<br />

§<br />

§<br />

Total loss: 240 mg (of 1139mg)<br />

Surface temperature needed<br />

for evaporation of 240 mg:<br />

1120°C (full area)<br />

“effective erosion yield”:<br />

Y=0.15 >> Y sputter<br />

Penetration depth of Sn atoms:<br />

λ= 1.7 cm, E k<strong>in</strong> =1.5 eV >> E k<strong>in</strong><br />

=0.15 eV (evaporated Sn)<br />

Ø Indicat<strong>in</strong>g sputtered particles<br />

§<br />

SnI <strong>in</strong>tensity ris<strong>in</strong>g dur<strong>in</strong>g<br />

<strong>in</strong>crease of <strong>target</strong> temperature,<br />

<strong>in</strong>dication of temperature<br />

enhanced erosion?<br />

Intensity distribution SnI (380 nm)<br />

<strong>target</strong><br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 15


<strong>TEXTOR</strong> experiment: Aims<br />

A:<br />

T<strong>in</strong> Evaporation<br />

Temperature Evolution<br />

T<strong>in</strong> Spectroscopy<br />

Liquid Metal Stability<br />

under quiescent Plasmas<br />

B:<br />

Stability of Liquid T<strong>in</strong> Layers<br />

under Disruptive Events<br />

DMV triggered disruptions<br />

And be prepared for suprises<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 16


Setup<br />

Tungsten Mesh filed <strong>with</strong> T<strong>in</strong><br />

TZM Holder<br />

filled<br />

empty<br />

Heatable Limiter-Setup<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 17


Conditions<br />

T<strong>in</strong> surface<br />

The Limiter is preheated to<br />

300˚C, to allow <strong>liquid</strong> T<strong>in</strong> to<br />

be present at all times<br />

Position at the Bottom of<br />

<strong>TEXTOR</strong><br />

TZM<br />

Graphite<br />

49cm, LCFS ~ 47cm<br />

1MW NBI heated (1-4.5s) BT=2.25 T, Ip=350 kA<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 18


Exposure<br />

Before<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 19


Wetted surface<br />

After<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 20


Wett<strong>in</strong>g Loss<br />

After<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 21


Camera View<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 22


3 frames<br />

#119916<br />

Strong droplet mission<br />

#119919<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 23


Fast Camera<br />

S<strong>in</strong>gle Frames<br />

3000fps<br />

#119916<br />

25 frames<br />

50 frames 500 frames<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 24


Droplets<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 25


Disruptions<br />

14 frames before 6 frames dur<strong>in</strong>g<br />

Droplets do not orig<strong>in</strong>ate from mesh dur<strong>in</strong>g disruption<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 26


Mass Loss <strong>in</strong> <strong>TEXTOR</strong><br />

Droplets sizes<br />

seem to be <strong>in</strong> the<br />

µm range <strong>in</strong> sized<br />

r=10µm--> 30ng<br />

Sn Mass<br />

available 2.12g<br />

Mass Loss:<br />

5.3159*10 -3 g<br />

~180000 Droplets<br />

Consistent <strong>with</strong> numbers<br />

extrapolated from fast CCD<br />

Mechanism not yet<br />

understood<br />

Differences <strong>PSI</strong>-2 – <strong>TEXTOR</strong> to be assessed:<br />

§ Plasma temperature / ion energies<br />

§ Carbon background <strong>in</strong> <strong>TEXTOR</strong> (coat<strong>in</strong>g of Sn surface)<br />

§ Magnetic field strength<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 27


Summary <strong>and</strong> outlook<br />

§ T<strong>in</strong> has been studied as <strong>liquid</strong> <strong>target</strong> material alternative to<br />

Lithium <strong>with</strong><strong>in</strong> the concept of a the capillary porous system.<br />

§ Tungsten has been found as optimum mesh material, wett<strong>in</strong>g<br />

improved under hydrogen atmosphere.<br />

§ Exposure <strong>in</strong> <strong>PSI</strong>-2: mass loss could not be expla<strong>in</strong>ed by<br />

physical sputter<strong>in</strong>g / evaporation – temperature enhanced<br />

sputter<strong>in</strong>g?<br />

§ Exposure <strong>in</strong> <strong>TEXTOR</strong>: mass loss dom<strong>in</strong>ated by strong droplet<br />

emission, mechanism unclear to date<br />

§ Next exposure <strong>in</strong> <strong>PSI</strong>-2: <strong>target</strong> bias<strong>in</strong>g to <strong>in</strong>crease ion energy<br />

to come close to <strong>TEXTOR</strong> conditions <strong>and</strong> to assess<br />

temperature enhanced erosion<br />

§ Next exposure <strong>in</strong> <strong>TEXTOR</strong>: position<strong>in</strong>g of <strong>target</strong>s <strong>in</strong> erosion<br />

dom<strong>in</strong>ated zone to prevent carbon deposition<br />

September 9th, 2013<br />

B. Unterberg | Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich Nr. 28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!