18.05.2014 Views

Vegetation Radiative Transfer Modelling (Nadine Gobron) - PEER

Vegetation Radiative Transfer Modelling (Nadine Gobron) - PEER

Vegetation Radiative Transfer Modelling (Nadine Gobron) - PEER

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Radiative</strong> <strong>Transfer</strong> Modeling<br />

…. over vegetated surfaces<br />

<strong>Nadine</strong> <strong>Gobron</strong><br />

Global Environmental Unit, TP 440<br />

Email: nadine.gobron@jrc.it<br />

1


Scientific Context<br />

• Earth observing satellites are a unique tool with which to<br />

objectively monitor terrestrial environments at the global scale.<br />

• Temporal changes in the biosphere can be monitored using advanced<br />

methods to interpret remote sensing data.<br />

• The aim of these methods is to provide measurable parameters representing<br />

the state of the terrestrial surfaces.<br />

• These remote sensing products constitute reliable indicators of the<br />

evolution of the living biosphere.<br />

• In practice, one does acquire the measurements from the satellite, and would<br />

like to know what is going on in the environment:<br />

This is the inverse problem: Knowing the value of the electromagnetic<br />

measurements gathered in space, how can we derive the properties of the<br />

environment that were responsible for the radiation to reach the sensor?<br />

2


Satellites have different “eyes”<br />

Swath 1150 km – Res. 300m to 1.2 km<br />

Swath 2800 km – Res. 1.5 km<br />

MERIS/ENVISAT<br />

Swath 2330 km – Res. 250m to 1.1 km<br />

MODIS/TERRA<br />

Swath 200 km – Res. 500m<br />

MOS/IRS P3<br />

79 km<br />

Credit: NASA/GSFC/LaRC/JPL MISR Team<br />

Swath 979 km – Res. 275 m to 1.0 km<br />

SeaWiFS/OrbView<br />

3


How is remote sensing exploited?<br />

• The signals detected by the sensors are immediately converted<br />

into digital numbers and transmitted to dedicated receiving<br />

stations, where these data are heavily processed.<br />

• The effective exploitation of remote sensing data to reliably<br />

generate useful, pertinent information hinges on the<br />

availability and performance of specific tools and techniques<br />

of data analysis and interpretation.<br />

• A variety of mathematical models can be used for this<br />

purpose; they are implemented as computer codes that read the<br />

data or intermediary products and ultimately lead to the<br />

generation of products and services usable in specific<br />

applications…. User is happy !<br />

4


Model of radiation transfer<br />

• Since space borne instruments can only measure the properties<br />

of electromagnetic waves emitted or scattered by the Earth,<br />

scientists need first to understand where these waves originate<br />

from, how they interact with the environment, and how they<br />

propagate towards the sensor.<br />

• To this effect, they develop models of radiation transfer,<br />

assuming that everything is known about the sources of<br />

radiation and the environment, and calculate the properties of<br />

the radiation field as the sensor should measure them. This is<br />

the so-called direct problem.<br />

5


<strong>Radiative</strong> <strong>Transfer</strong> Modeling<br />

• In solar domain, radiation transfer models are tools to<br />

represent the scattering and absorption of radiation by<br />

scattering elements/centers. They should satisfy energy<br />

conservation.<br />

• Spectral properties are depending<br />

on the geophysical medium:<br />

atmosphere, ocean, soil,<br />

or vegetation<br />

• Monograph dealing with<br />

RT problems in geophysics<br />

(Chandrasekhar (1960),<br />

Van de Hulst (1957),<br />

Lenoble (1993), Hapke (1993),<br />

Liou (1980) etc…) mainly concentrate on mathematical<br />

issues related to solving equations.<br />

• Rather than discussing the solving of approximate equations<br />

applicable to realistic geophysical situations, we will<br />

concentrate on exact and light mathematical treatment of a<br />

simplified physical system…<br />

6


Outline<br />

• <strong>Radiative</strong> <strong>Transfer</strong> Equations<br />

• <strong>Radiative</strong> <strong>Transfer</strong> Modeling for vegetation<br />

canopy.<br />

• Inversion problem for the retrieval of land<br />

products with actual remote sensing data.<br />

7


<strong>Radiative</strong> <strong>Transfer</strong> Equations (1)<br />

• Exact and light mathematical treatment of a simplified<br />

physical system<br />

• The system under consideration will have the following<br />

properties:<br />

– A continuous scattering-absorbing medium, infinite in lateral extent, bounded<br />

by two parallel planes, i.e. a plane-parallel medium.<br />

– Radiation can be scattered in only two directions, upward and downward.<br />

z=0<br />

z<br />

z+Δz<br />

z=z h<br />

Pinty, B. and M. M. Verstraete (1998) `Introduction to Radiation <strong>Transfer</strong> Modeling in Geophysical Media’, in From Urban<br />

Air Pollution to Extra-Solar Planets, ERCA Volume 3 Edited by C. Boutron, EDP Sciences, Les Ulis, France, 67-87.<br />

8


• The system under consideration will have the following<br />

properties:<br />

– Radiation or “ensemble of photons” is emitted by sources outside the<br />

medium only.<br />

– The amount of mean monochromatic radiant energy traveling upward<br />

and downward that crosses a unit area per unit time is an intensity<br />

noted I [Wm -2 sr -1 ].<br />

<strong>Radiative</strong> <strong>Transfer</strong> Equations (1)<br />

z=0<br />

I (z)<br />

I (z+Δz)<br />

I (z)<br />

I (z+Δz)<br />

z<br />

z+Δz<br />

z=z h<br />

Pinty, B. and M. M. Verstraete (1998) `Introduction to Radiation <strong>Transfer</strong> Modeling in Geophysical Media’, in From Urban<br />

Air Pollution to Extra-Solar Planets, ERCA Volume 3 Edited by C. Boutron, EDP Sciences, Les Ulis, France, 67-87.<br />

9


Basic Processes (1)<br />

Scattering<br />

“A physical process by which an ensemble of particles<br />

immerged into an electromagnetic radiation field remove<br />

energy from the incident waves to re-irradiate this energy into<br />

other directions”<br />

Absorption<br />

“A physical process by which an ensemble of particles<br />

immerged into an electromagnetic radiation field remove<br />

energy from the incident waves to convert this energy in a<br />

different form”<br />

Extinction<br />

“A physical process by which an ensemble of particles<br />

immerged into an electromagnetic radiation field remove<br />

energy from the incident waves to attenuate the energy of this<br />

incident wave”<br />

10


Basic Processes (2)<br />

•The upward and downward intensities change along the vertical coordinate z<br />

in the medium according to the volumetric (individual cross-sections times the<br />

number per unit volume) coefficients of absorption, K (in m -1 ) and scattering S<br />

(in m -1 )<br />

•Thus 1/S (1/K) have dimensions of length and may be interpreted as the<br />

absorption (scattering) mean free paths, i.e. the average distance between<br />

absorption (scattering) events.<br />

z=0<br />

I (z)<br />

I (z+Δz)<br />

I (z)<br />

I (z+Δz)<br />

z<br />

z+Δz<br />

z=z h<br />

11


I (z)<br />

I (z+Δz)<br />

Conservation of radiant energy<br />

for I in a slab Δz<br />

I (z)<br />

I (z+Δz)<br />

z=0<br />

z<br />

z+Δz<br />

z=z h<br />

P is the probability<br />

that a photon<br />

directed upward is<br />

scattered downward<br />

I<br />

↓<br />

(z)<br />

+<br />

SΔzP<br />

↑↓<br />

I<br />

↑<br />

(z<br />

+<br />

Δz)<br />

=<br />

P is the probability<br />

that a photon<br />

directed downward<br />

is scattered upward<br />

↓<br />

↓↑<br />

KΔ zI (z) + SΔzP<br />

I (z) + I (z +<br />

↓<br />

↓<br />

Δz)<br />

coefficients of absorption, K (in m -1 ) and scattering S (in m -1 )<br />

12


Conservation of radiant energy for I in a slab Δz<br />

z=0<br />

I (z)<br />

I (z+Δz)<br />

I (z)<br />

I (z+Δz)<br />

z<br />

z+Δz<br />

z=z h<br />

I<br />

↑<br />

(z<br />

+<br />

Δz)<br />

+<br />

SΔzP<br />

↓↑<br />

I<br />

↓<br />

(z)<br />

=<br />

KΔzI<br />

↑<br />

(z<br />

↑↓<br />

+ Δz)<br />

+ SΔzP<br />

I (z + Δz)<br />

↑<br />

+<br />

I<br />

↑<br />

(z)<br />

coefficients of absorption, K (in m -1 ) and scattering S (in m -1 )<br />

13


Conservation of radiant energy in a slab Δz<br />

We obtain the two-stream equations<br />

∂I<br />

↓<br />

∂z<br />

(z)<br />

= −KI<br />

↓<br />

(z)<br />

−<br />

SP<br />

↓↑<br />

I<br />

↓<br />

(z)<br />

+<br />

SP<br />

↑↓<br />

I<br />

↑<br />

(z)<br />

∂I<br />

↑<br />

∂z<br />

(z)<br />

= + KI<br />

↑<br />

(z)<br />

+<br />

SP<br />

↑↓<br />

I<br />

↑<br />

(z)<br />

−<br />

SP<br />

↓↑<br />

I<br />

↓<br />

(z)<br />

coefficients of absorption, K (in m -1 ) and scattering S (in m -1 )<br />

Pinty, B. and M. M. Verstraete (1998) `Introduction to Radiation <strong>Transfer</strong> Modeling in Geophysical Media’, in From Urban<br />

Air Pollution to Extra-Solar Planets, ERCA Volume 3 Edited by C. Boutron, EDP Sciences, Les Ulis, France, 67-87.<br />

14


Asymmetry factor for scattering processes<br />

•We have for isotropic medium:<br />

P<br />

↑↓ = P ↓↑<br />

•The asymmetry factor g is a single number, defined as the<br />

mean cosine of the scattering angle (-1 or +1 in our case):<br />

↓↓<br />

↓↑<br />

g<br />

= ( + 1)P + ( −1)<br />

P<br />

•Typically: g = +1 for strict downward scattering,<br />

g=-1 for strict upward scattering and,<br />

g=0 for isotropic scattering.<br />

•For the above set of equations, we have:<br />

P<br />

↑↓<br />

P<br />

↓↓ = P ↑↑<br />

↑↑ ↓↑ ↓↓<br />

+ P = P + P = 1<br />

P<br />

↑↓ = P<br />

↓↑ = (1 − g) / 2<br />

P ↑↑ = P<br />

↓↓ = (1 + g) / 2<br />

15


Single scattering albedo<br />

•Normalization of the radiation transport equations by the<br />

extinction factor E=S+K gives :<br />

↓<br />

1 ∂I<br />

(z) K ↓ S ↓↑ ↓ S ↑↓ ↑<br />

= − I (z) − P I (z) + P I (z)<br />

E ∂z<br />

E E E<br />

which can be rewritten as:<br />

1 ↓<br />

↓<br />

↑<br />

E<br />

↓<br />

∂I<br />

(z)<br />

∂z<br />

= −I<br />

(z) +<br />

(1 + g)<br />

ω<br />

2<br />

(z) +<br />

(1 − g)<br />

ω<br />

2<br />

↑<br />

1 ∂I<br />

(z) ↑ (1 + g) ↑ (1 − g) ↓<br />

= + I (z) − ω I (z) − ω I (z)<br />

E ∂z<br />

2<br />

2<br />

where is called the single scattering albedo<br />

S S<br />

ω = =<br />

S + K E<br />

expressing the probability for the photons to be scattered.<br />

Pinty, B. and M. M. Verstraete (1998) `Introduction to Radiation <strong>Transfer</strong> Modeling in Geophysical Media’, in From Urban<br />

Air Pollution to Extra-Solar Planets, ERCA Volume 3 Edited by C. Boutron, EDP Sciences, Les Ulis, France, 67-87.<br />

I<br />

I<br />

(z)<br />

16


Single scattering albedo<br />

↓<br />

∂I<br />

(z)<br />

E ∂z<br />

↑<br />

∂I<br />

(z)<br />

E ∂z<br />

1 ↓<br />

↓<br />

↑<br />

= −I<br />

= + I<br />

(1 + g)<br />

(z) + ω I<br />

2<br />

(1 + g)<br />

(z) − ω I<br />

2<br />

(1 − g)<br />

(z) + ω I<br />

2<br />

(1 − g)<br />

(z) − ω I<br />

2<br />

1 ↑<br />

↑<br />

↓<br />

(z)<br />

(z)<br />

ω =<br />

S<br />

S + K<br />

=<br />

S<br />

E<br />

• Single scattering albedo ω =0 for total absorption (no<br />

scattering)<br />

• Single scattering albedo ω =1 for total or conservative<br />

scattering (no absorption)<br />

Pinty, B. and M. M. Verstraete (1998) `Introduction to Radiation <strong>Transfer</strong> Modeling in Geophysical Media’, in From Urban<br />

Air Pollution to Extra-Solar Planets, ERCA Volume 3 Edited by C. Boutron, EDP Sciences, Les Ulis, France, 67-87.<br />

17


Optical thickness<br />

• The variable physical depth can be multiplied by the<br />

optical factor S+K=E to transform into an optical thickness<br />

↓<br />

∂I<br />

(z)<br />

∂τ<br />

τ<br />

= −I<br />

↓<br />

z<br />

∂z<br />

= ∫ (S + K) ∂z<br />

0<br />

(1 + g)<br />

(z) + ω<br />

2<br />

I<br />

↓<br />

(1 − g)<br />

(z) + ω<br />

2<br />

I<br />

↑<br />

(z)<br />

∂τ<br />

(1)<br />

↑<br />

∂I<br />

(z)<br />

∂τ<br />

= + I<br />

↑<br />

(z)<br />

−<br />

ω<br />

(1 + g)<br />

2<br />

I<br />

↑<br />

(z)<br />

−<br />

ω<br />

(1 − g)<br />

2<br />

I<br />

↓<br />

(z)<br />

(2)<br />

These last equations are typical two-stream equations<br />

for the system.<br />

Pinty, B. and M. M. Verstraete (1998) `Introduction to Radiation <strong>Transfer</strong> Modeling in Geophysical Media’, in From Urban<br />

Air Pollution to Extra-Solar Planets, ERCA Volume 3 Edited by C. Boutron, EDP Sciences, Les Ulis, France, 67-87.<br />

18


Two-stream equations<br />

• In a more compact form [with (1) - (2) and (1)+(2)]:<br />

↓ ↑<br />

∂( I − I )<br />

↓ ↑<br />

= −(1<br />

− ω)(I<br />

+ I )<br />

∂τ<br />

↓ ↑<br />

∂( I + I )<br />

↓ ↑<br />

= −(1<br />

− ωg)(I<br />

− I )<br />

∂τ<br />

Key variables to represent the radiative transfer processes are:<br />

• ω : the single scattering albedo<br />

• g : the asymmetry factor of the phase function<br />

• τ : the optical thickness of the medium<br />

Pinty, B. and M. M. Verstraete (1998) `Introduction to Radiation <strong>Transfer</strong> Modeling in Geophysical Media’, in From Urban<br />

Air Pollution to Extra-Solar Planets, ERCA Volume 3 Edited by C. Boutron, EDP Sciences, Les Ulis, France, 67-87.<br />

19


Extension to N Flux (1)<br />

• These equations can be extended to N flux to obtain N<br />

coupled differential equations including N+1 terms on<br />

the right side.<br />

•The first term represents the extinction and the N<br />

remaining terms represent all the possible ways in which<br />

radiation is scattering into one direction Ω from all other<br />

directions Ω’.<br />

•In the limit when N goes to infinity, sums become<br />

integrals and the set of equations collapses into a single<br />

integro-differential equation:<br />

∂I<br />

( z,<br />

Ω)<br />

− μ<br />

∂τ<br />

+ ~ σ ~<br />

e<br />

( z,<br />

Ω)<br />

I(<br />

z,<br />

Ω)<br />

= σ s<br />

( z,<br />

Ω'<br />

→ Ω)<br />

I(<br />

z,<br />

Ω')<br />

dΩ'<br />

Pinty, B. and M. M. Verstraete (1998) `Introduction to Radiation <strong>Transfer</strong> Modeling in Geophysical Media’, in From Urban<br />

Air Pollution to Extra-Solar Planets, ERCA Volume 3 Edited by C. Boutron, EDP Sciences, Les Ulis, France, 67-87.<br />

∫<br />

4Π<br />

20


Extension to N Flux (2)<br />

In the limit when N goes to infinity, sums become integrals and<br />

the set of equations collapses into a single integro-differential<br />

equation:<br />

∂I<br />

( z,<br />

Ω)<br />

− μ<br />

∂τ<br />

+ ~ σ ~<br />

e<br />

( z,<br />

Ω)<br />

I(<br />

z,<br />

Ω)<br />

= σ s<br />

( z,<br />

Ω'<br />

→ Ω)<br />

I(<br />

z,<br />

Ω')<br />

dΩ'<br />

I (z, Ω ) represents the intensity (W m -2 sr -1 ) at point z in the<br />

exiting direction Ω,<br />

σ e (m -1 ) and σ s (m -1 sr -1 ) are the extinction and differential<br />

scattering coefficients, respectively, taken at the same point z<br />

along the direction Ω.<br />

∫<br />

4Π<br />

Pinty, B. and M. M. Verstraete (1998) `Introduction to Radiation <strong>Transfer</strong> Modeling in Geophysical Media’, in From Urban<br />

Air Pollution to Extra-Solar Planets, ERCA Volume 3 Edited by C. Boutron, EDP Sciences, Les Ulis, France, 67-87.<br />

21


Vertical radiative coupling between<br />

geophysical media<br />

Atmosphere<br />

<strong>Vegetation</strong><br />

Soil<br />

Upper limit (1)<br />

RTE<br />

Lower Limit (1)<br />

Upper limit (2)<br />

RTE<br />

Lower Limit (2)<br />

Upper limit (3)<br />

RTE<br />

Lower Limit (3)<br />

Z A<br />

Z V<br />

Z S<br />

In each medium, the transfer of radiation may be represented<br />

by the following approximate equation:<br />

∂<br />

[ −μ<br />

+ ~ σ ~<br />

e<br />

( z,<br />

Ω,<br />

ΩO)]<br />

I(<br />

z,<br />

Ω)<br />

= ∫σ<br />

s<br />

( z,<br />

Ω'<br />

→ Ω)<br />

I(<br />

z,<br />

Ω')<br />

dΩ'<br />

∂τ<br />

Extinction coefficient<br />

Differential<br />

4Π<br />

scattering coefficient<br />

Pinty, B. and M. M. Verstraete (1998) `Introduction to Radiation <strong>Transfer</strong> Modeling in Geophysical Media’, in From Urban<br />

Air Pollution to Extra-Solar Planets, ERCA Volume 3 Edited by C. Boutron, EDP Sciences, Les Ulis, France, 67-87.<br />

22


Atmosphere<br />

<strong>Vegetation</strong><br />

Soil<br />

Vertical radiative coupling between<br />

geophysical media<br />

•Non oriented small scatterers<br />

•Infinite number of scatterers<br />

•Low density turbid medium<br />

•Oriented finite-size scatterers<br />

•Finite number of scatterers<br />

•Dense discrete medium<br />

•Oriented small-size scatterers<br />

•Infinite number of clustered scatterers<br />

•Compact semi-infinite medium<br />

Pinty, B. and M. M. Verstraete (1998) `Introduction to Radiation <strong>Transfer</strong> Modeling in Geophysical Media’, in From Urban<br />

Air Pollution to Extra-Solar Planets, ERCA Volume 3 Edited by C. Boutron, EDP Sciences, Les Ulis, France, 67-87.<br />

23


Vertical radiative coupling between<br />

geophysical media<br />

The description of the interaction of a radiation field with a<br />

layered geophysical medium implies the solution of<br />

radiation transfer equations and the specification of<br />

appropriate boundary conditions<br />

I<br />

↓<br />

Atmosphere<br />

Soil<br />

( z ta<br />

, Ω)<br />

= I0δ<br />

( Ω − Ω<br />

o<br />

)<br />

I ↑ ( z , Ω)<br />

=<br />

∞<br />

0<br />

I<br />

↑<br />

( , Ω)<br />

↑<br />

1<br />

' ↓<br />

' '<br />

I ( z<br />

ba<br />

, Ω ) = ( , Ω , Ω ) (<br />

,<br />

Ω ) | | Ω<br />

Π<br />

∫ γ<br />

v<br />

z<br />

ba<br />

I z<br />

ba<br />

μ d<br />

2 Π<br />

↓<br />

↓<br />

− τ<br />

a ↓<br />

I ( z<br />

tv<br />

, Ω ) = I ( z<br />

ta ,<br />

Ω ) exp[ ] + I<br />

d<br />

( z<br />

ba<br />

, Ω )<br />

| μ<br />

0<br />

|<br />

<strong>Vegetation</strong><br />

↑<br />

1<br />

' ↓<br />

' ' '<br />

I ( z<br />

bv<br />

, Ω ) = ( , Ω , Ω ) (<br />

,<br />

Ω ) | | Ω<br />

Π<br />

∫ γ<br />

s<br />

z<br />

bv<br />

I z<br />

bv<br />

μ d<br />

2 Π<br />

Pinty, B. and M. M. Verstraete (1998) `Introduction to Radiation <strong>Transfer</strong> Modeling in Geophysical Media’, in From Urban<br />

Air Pollution to Extra-Solar Planets, ERCA Volume 3 Edited by C. Boutron, EDP Sciences, Les Ulis, France, 67-87.<br />

z a<br />

'<br />

Z a<br />

Z V<br />

Z S<br />

24


Outline<br />

• <strong>Radiative</strong> <strong>Transfer</strong> Equations<br />

• <strong>Radiative</strong> <strong>Transfer</strong> Modeling for vegetation<br />

canopy.<br />

• Inversion problem for the retrieval of land<br />

products with actual remote sensing data.<br />

25


Representation of vegetation canopy<br />

‘Oriented’ scatterers elements in a finite volume<br />

turbid medium<br />

» Leaves are point-like scatterers<br />

discrete medium<br />

» Leaves are finited-size scatterers<br />

26


Discrete canopy: 1D representation<br />

Df<br />

H<br />

Geometrical Parameters in 1D representation:<br />

Height of canopy, Size of a single leaf & Leaves<br />

orientation (leaf angle distribution)<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical Research,<br />

102, 9431-9446.<br />

27


<strong>Vegetation</strong> ‘Optical Depth’<br />

• Leaf Area Index (LAI) is a quantitative<br />

measure of the amount of live green leaf<br />

material present in the canopy per unit ground<br />

surface.<br />

• It is defined as the total one-sided area of all<br />

leaves in the canopy within a defined region.<br />

N N<br />

LAI = ∑ λ ∑ i = niai<br />

i=<br />

1 i=<br />

1<br />

N = # of layers<br />

a i = leaf surface<br />

n i = # leaves /m2<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical Research,<br />

102, 9431-9446.<br />

28


<strong>Vegetation</strong> ‘Optical Depth’<br />

• Leaf Area Index (LAI) is a quantitative<br />

measure of the amount of live green leaf<br />

material present in the canopy per unit ground<br />

surface.<br />

• It is defined as the total one-sided area of all<br />

leaves in the canopy within a defined region.<br />

H : Height of canopy [m]<br />

LAI = H.Δ<br />

Δ : Leaf Area Density [m 2 /m 3 ]<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical Research,<br />

102, 9431-9446.<br />

29


Geometrical System<br />

Ωo<br />

θ<br />

Ω<br />

φ<br />

North<br />

φ ο<br />

H<br />

θ ο<br />

z<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical Research,<br />

102, 9431-9446.<br />

30


~ Extinction coefficient σ ( z,<br />

Ω,<br />

ΩO)<br />

e<br />

∂<br />

[ −μ<br />

+ ~ σ ~<br />

e<br />

( z,<br />

Ω,<br />

ΩO)]<br />

I(<br />

z,<br />

Ω)<br />

= ∫σ<br />

s<br />

( z,<br />

Ω'<br />

→ Ω)<br />

I(<br />

z,<br />

Ω')<br />

dΩ'<br />

∂τ<br />

We assume that the canopy consists of plane leaves with a leaf area<br />

density λ(z) defined to be the total one-sided leaf area per unit volume<br />

at depth z.<br />

The probability that a leaf has a normal Ω<br />

directed away from the top surface, in a unit<br />

solid angle about<br />

Ω l<br />

is given by the leaf-normal distribution function<br />

which is normalized as<br />

1<br />

2π<br />

∫<br />

2π<br />

dφ<br />

l<br />

1<br />

∫<br />

0<br />

dμ<br />

l<br />

g<br />

l<br />

4Π<br />

l<br />

( z,<br />

Ω<br />

⎜<br />

⎛<br />

⎝<br />

l<br />

θ<br />

)<br />

l<br />

g<br />

, ϕ<br />

l<br />

=<br />

l<br />

⎟<br />

⎞<br />

⎠<br />

( z,<br />

Ωl)<br />

1<br />

Ω L<br />

plate model 31


Extinction coefficient<br />

We now consider photons at a depth z traveling in direction Ω.<br />

The extinction coefficient is then the probability, per unit path length,<br />

that the photon hits a leaf, i.e., the probability that a photon while<br />

traveling a distance ds along Ω is intercepted by a leaf divided by the<br />

distance ds.<br />

e<br />

( z, ) G( z,<br />

) ( z)<br />

σ Ω = Ω λ<br />

Where the geometry factor G is the fraction of the total leaf area (per<br />

unit volume of the canopy) that is perpendicular to Ω<br />

1<br />

G ( z,<br />

) = ( Ω ) | Ω • Ω |<br />

l l<br />

2π<br />

2π<br />

Ω ∫ g<br />

d<br />

l<br />

Ω<br />

l<br />

Ross J. (1981) ‘The Radiation Regime and Architecture of Plant Stands’, The Hague-Boston-London: Dr. W.Junk<br />

Publishers, 391 pp.<br />

32


Leaf Orientations<br />

<strong>Vegetation</strong> foliage features characteristic leaf-normal distributions,<br />

g(Ω L ) with preferred:<br />

• azimuthal orientations, g(φ L )<br />

• zenithal orientations, g(θ L ):<br />

‣ erectophile (grass) (90 o )<br />

‣ planophile (water cress) (0 o )<br />

‣ plagiophile (45 o )<br />

‣ extremophile (0 o and 90 o )<br />

‣ uniform/spherical (all)<br />

• time varying orientations:<br />

‣ heliotropism (sunflower)<br />

‣ para-heliotropism<br />

Ross J. (1981) ‘The Radiation Regime and Architecture of Plant Stands’, The Hague-Boston-London: Dr. W.Junk<br />

Publishers, 391 pp.<br />

33


Scattering properties of leaves<br />

• Once the radiation is intercepted by the vegetation elements, it<br />

is scattered in directions determined by the leaf orientations and<br />

the leaf phase function<br />

Ω<br />

• Leaf reflection and transmission<br />

depend primarily on wavelength,<br />

plant species, growth condition,<br />

age and position in canopy.<br />

• Directionality of leaf scattering<br />

depends on the leaf surface<br />

roughness, and the percentage<br />

of diffusely scattered photons<br />

from leaf interior.<br />

Ω<br />

Ω L<br />

plate model<br />

‣ Plate models often assume Bi-Lambertian scattering properties:<br />

- radiation is scattered according to cosine law: | Ω L · Ω |<br />

- magnitude depends on leaf reflection and transmission values<br />

34


Leaf scattering properties<br />

• Leaf scattering function for classical plate scattering<br />

model<br />

f ( Ω<br />

'<br />

→<br />

Ω,<br />

Ω<br />

l<br />

)<br />

=<br />

r<br />

l<br />

|<br />

Ω • Ω |<br />

l<br />

/<br />

π<br />

if ( Ω • Ω )( Ω<br />

l<br />

'<br />

• Ω )<br />

l<br />

<<br />

0<br />

f ( Ω<br />

'<br />

→<br />

Ω,<br />

Ω<br />

l<br />

)<br />

=<br />

t<br />

l<br />

|<br />

Ω • Ω |<br />

l<br />

/<br />

π<br />

if ( Ω • Ω )( Ω<br />

l<br />

'<br />

• Ω )<br />

l<br />

><br />

0<br />

Where r l and t l are the fraction of intercepted energy<br />

which are reflected (transmitted) following a simple<br />

cosine distribution law around the normal to the<br />

leaves.<br />

35


Reflectance measurements of leaves<br />

Summer - Autumn - Winter<br />

60<br />

40<br />

20<br />

Chlorophyls<br />

Anthocyans<br />

Tannins<br />

0<br />

200 600 1000 1400 1800 2200 2600<br />

nm<br />

brown leaf red leaf green leaf<br />

Source: B. Hosgood<br />

36


Canopy scattering phase function<br />

• Leaf properties are assumed to be the same throughout<br />

the canopy, we have<br />

1<br />

π<br />

1<br />

π<br />

Γ(z<br />

k<br />

Γ(<br />

Ω<br />

, Ω<br />

'<br />

'<br />

→<br />

→<br />

Ω)<br />

Ω)<br />

≡<br />

≡<br />

1<br />

2π<br />

1 '<br />

Γ(<br />

Ω → Ω)<br />

π<br />

∫<br />

2π<br />

g( Ω<br />

l<br />

) | Ω<br />

'<br />

• Ω | f ( Ω<br />

'<br />

→<br />

Ω,<br />

Ω<br />

l<br />

)dΩ<br />

l<br />

g (Ω L ) is the probability function for the leaf normal distribution Ω L<br />

f is the leaf phase function (when integrated over all exit photons<br />

directions, yields single scattering albedo ω).<br />

Shultis, J. K. and Myneni, R. B. (1988) ‘<strong>Radiative</strong> transfer in vegetation canopies with an isotropic scattering’, Journal of<br />

quantitative spectroscopy and radiative transfer 39: 115-- 129.<br />

37<br />

Knyazihin et. al. (1992) ‘Interaction of Photons in a Canopy of Finite Dimensional Leaves’, Remote Sens. Envir., 39:61-74.


Specific Effects<br />

•The presence of finite size scatterers implies that the radiation<br />

interception process by the leaves will not follow a continuous<br />

scheme, and in particular that radiation will be allowed to<br />

travel unimpeded within the free space between the scatterers.<br />

•Since extinction occurs only at discrete locations, some of the<br />

radiation emerging from an arbitrary source, located inside or<br />

outside the canopy, any occasionally travel without any<br />

interaction in this canopy, depending on the shape and size of<br />

free space between these leaves.<br />

Verstraete, M. M et. al. (1990) 'A physical model of the bidirectional reflectance of vegetation canopies; Part 1: Theory', Journal of<br />

Geophysical Research, 95, 11,755-11,765.<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical Research, 102, 38<br />

9431-9446.


•When the radiation is scattered<br />

back in the direction from which it<br />

originates, the probability of further<br />

interaction with the canopy is lower<br />

than in other scattering directions.<br />

•In case of RS measurements<br />

outside the canopy, this give rise to<br />

a relative increase in the value in<br />

the backscattering direction which<br />

is knows as the hot-spot<br />

phenomenon.<br />

Hot-spot Effects<br />

Verstraete, M. M et. al. (1990) 'A physical model of the bidirectional reflectance of vegetation canopies; Part 1: Theory', Journal of<br />

Geophysical Research, 95, 11,755-11,765.<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical Research, 102, 39<br />

9431-9446.


Hot-spot Effects<br />

Extinction coefficient is modified adding hot-spot<br />

scale factor:<br />

σ e (z, Ω, Ω 0 ) = Λ(z) · G(Ω)· O(z, Ω, Ω 0 )<br />

Ω 0<br />

Ω = Ω 0<br />

Ω<br />

Turbid canopy representation: 1-D<br />

-90 -45 0 45 90<br />

observation zenith angle [degree]<br />

illuminated leaf<br />

Verstraete, M. M et. al. (1990) 'A physical model of the bidirectional reflectance of vegetation canopies; Part 1: Theory', Journal of<br />

Geophysical Research, 95, 11,755-11,765.<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical Research, 102, 40<br />

9431-9446.<br />

Bi-directional Reflectance Factor (λ= Red)<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

1-D’<br />

1-D


Separation of Scattering Order<br />

ρ ( z0,<br />

Ω,<br />

Ω0)<br />

= ρ 0 (z0,<br />

Ω,<br />

Ω0)<br />

+ ρ 1 (z0,<br />

Ω,<br />

Ω0)<br />

+ ρ M (z0,<br />

Ω,<br />

Ω0)<br />

• Uncollided intensity<br />

• Single Collided intensity<br />

• Multiple scattering intensity<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical<br />

Research, 102, 9431-9446.<br />

41


Uncollided intensity (1)<br />

Downward uncollided intensity at level z k<br />

Where<br />

I<br />

0<br />

↓<br />

(z<br />

k<br />

, Ω<br />

0<br />

) =<br />

I<br />

s<br />

⎡<br />

⎢1<br />

− λ<br />

⎣<br />

0<br />

Is<br />

= I (z0,<br />

Ω0)<br />

δ(<br />

Ω − Ω0)<br />

G( Ω0)<br />

⎤<br />

⎥<br />

| μ | ⎦<br />

0<br />

k<br />

is the incoming<br />

collimated beam at the top of canopy<br />

Probability that a light ray within this beam is transmitted<br />

downward in the same direction through the first k layers<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical<br />

Research, 102, 9431-9446.<br />

42


I<br />

0<br />

↑<br />

(H, Ω,<br />

Ω<br />

0<br />

)<br />

=<br />

1<br />

π<br />

γ<br />

s<br />

Uncollided intensity (2)<br />

The radiation scattered by the soil, which provides the lower<br />

radiative boundary condition of the canopy system, for<br />

uncollided radiation is given by:<br />

γ<br />

( H, Ω,<br />

Ω0)<br />

(H, Ω,<br />

Ω<br />

0<br />

)<br />

|<br />

μ<br />

0<br />

|<br />

I<br />

s<br />

⎡<br />

⎢1<br />

− λ<br />

⎣<br />

G( Ω0)<br />

⎤<br />

⎥<br />

| μ | ⎦<br />

Where s<br />

denotes the bidirectional reflectance<br />

factor of the soil at the bottom of canopy.<br />

0<br />

K<br />

I<br />

K<br />

k<br />

∏ + 1<br />

1<br />

⎡ G( Ω ⎤ ⎡<br />

↑ =<br />

⎢ −<br />

0)<br />

⎢ −<br />

' G( Ω<br />

0 (zk,<br />

Ω,<br />

Ω<br />

)<br />

0)<br />

γs(H,<br />

Ω,<br />

Ω0)<br />

| μ0<br />

| Is<br />

1 λ<br />

1 λK<br />

π<br />

| μ0<br />

| j=<br />

K μ<br />

⎣<br />

⎥<br />

⎦<br />

⎣<br />

⎤<br />

⎥<br />

⎦<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical<br />

Research, 102, 9431-9446.<br />

43


Uncollided BRF<br />

Applying last equation at the top of canopy and normalized by<br />

the intensity of the source of incoming direct solar radiation as<br />

well as by the reflectance of a Lambertian surface illuminated<br />

and observed under identical conditions (|μ 0 |/π) yields the<br />

contribution to the bidirectional reflectance factor due to this<br />

uncollided radiation, namely:<br />

⎡ G( Ω0)<br />

⎤ ⎡ ' G( Ω)<br />

⎤<br />

ρ 0 (z0,<br />

Ω,<br />

Ω0)<br />

= γs(H,<br />

Ω,<br />

Ω0)<br />

⎢1<br />

− λ ⎥ 1<br />

K<br />

|<br />

0<br />

|<br />

⎢ − λ ⎥<br />

⎣ μ ⎦ ⎣ μ ⎦<br />

K<br />

K<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical<br />

Research, 102, 9431-9446.<br />

44


Uncollided BRF in Principal Plan<br />

Solar Zenith Angle: 20 [deg]<br />

Solar Azimuth Angle: 0 [deg]<br />

Radius:<br />

0.05 [m]<br />

Leaf Area Index: 3.0 [ m2/m2]<br />

Height of the canopy: 2.0 [ m]<br />

Normal Distribution: Erectophile<br />

Leaf scattering law: Bi-Lambertian<br />

Leaf reflectance: 0.0546<br />

Leaf transmittance: 0.0149<br />

Soil scattering law: Lambertian<br />

Soil reflectance: 0.127<br />

http://rami-benchmark.jrc.it<br />

45


Uncollided BRF in Principal Plan<br />

Solar Zenith Angle: 20 [deg]<br />

Solar Azimuth Angle: 0 [deg]<br />

Radius:<br />

0.05 [m]<br />

Leaf Area Index: 3.0 [ m2/m2]<br />

Height of the canopy: 2.0 [ m]<br />

Normal Distribution: Erectophile<br />

Leaf scattering law: Bi-Lambertian<br />

Leaf reflectance 0.4957<br />

Leaf transmittance 0.4409<br />

Soil scattering law Lambertian<br />

Soil reflectance 0.159<br />

http://rami-benchmark.jrc.it<br />

46


Uncollided BRF in Cross Plan<br />

Solar Zenith Angle: 20 [deg]<br />

Solar Azimuth Angle: 0 [deg]<br />

Radius:<br />

0.05 [m]<br />

Leaf Area Index: 3.0 [ m2/m2]<br />

Height of the canopy: 2.0 [ m]<br />

Normal Distribution: Erectophile<br />

Leaf scattering law: Bi-Lambertian<br />

Leaf reflectance: 0.0546<br />

Leaf transmittance: 0.0149<br />

Soil scattering law: Lambertian<br />

Soil reflectance: 0.127<br />

http://rami-benchmark.jrc.it<br />

47


First collided Intensity (1)<br />

The first collided intensity in downward direction Ω<br />

corresponds to the radiation scattered only once by leaves,<br />

but which has not interacted with the soil.<br />

•Downward source coming from the direct intensity,<br />

attenuated through the first k layers, and scattered by the<br />

leaves according to their optical properties in layer k:<br />

Q<br />

0<br />

↓<br />

(z<br />

k<br />

, Ω,<br />

Ω<br />

•Downward intensity<br />

I<br />

1<br />

↓<br />

(z<br />

k<br />

, Ω,<br />

Ω<br />

0<br />

)<br />

0<br />

)<br />

=<br />

1<br />

1<br />

Γ(<br />

Ω<br />

π<br />

0<br />

→ Ω)I<br />

s<br />

⎡<br />

⎢1<br />

−<br />

⎣<br />

G( Ω0)<br />

⎤<br />

λ ⎥<br />

| μ | ⎦<br />

⎡ −<br />

⎣<br />

k<br />

= ∑<br />

0<br />

Q (zi,<br />

Ω,<br />

Ω0)<br />

λ 1<br />

↓<br />

μ<br />

⎢<br />

i=<br />

1<br />

λ<br />

| μ<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical<br />

Research, 102, 9431-9446.<br />

0<br />

k<br />

G( Ω)<br />

⎤<br />

|<br />

⎥ ⎦<br />

48<br />

k−i


First collided Intensity (2)<br />

The first collided intensity in downward direction Ω<br />

corresponds to the radiation scattered only once by leaves,<br />

but which has not interacted with the soil.<br />

•Downward intensity<br />

I<br />

1<br />

↓<br />

(z<br />

k<br />

, Ω,<br />

Ω<br />

0<br />

)<br />

•Upward intensity<br />

1<br />

⎡ −<br />

⎣<br />

G( Ω)<br />

⎤<br />

|<br />

⎥ ⎦<br />

k<br />

= ∑<br />

0<br />

Q (zi,<br />

Ω,<br />

Ω0)<br />

λ 1<br />

↓<br />

μ<br />

⎢<br />

i=<br />

1<br />

λ<br />

| μ<br />

k−i<br />

I<br />

1<br />

↑<br />

(z<br />

k<br />

, Ω,<br />

Ω<br />

0<br />

)<br />

k+<br />

1<br />

k+<br />

1<br />

1 = ∑{<br />

0<br />

Q (z × ∏<br />

↓ i,<br />

Ω,<br />

Ω0)<br />

λ<br />

μ<br />

i=<br />

K<br />

j=<br />

i<br />

⎡<br />

⎢1<br />

−<br />

⎣<br />

λ<br />

'<br />

i<br />

G( Ω)<br />

⎤⎫<br />

⎥⎬<br />

| μ | ⎦⎭<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical<br />

Research, 102, 9431-9446.<br />

49


Single collided BRF<br />

The contribution to the bidirectional reflectance factor due to<br />

the first collided intensity is obtained after normalizing the<br />

upward intensity I 1<br />

( z<br />

by the incoming<br />

0,<br />

Ω,<br />

Ω )<br />

↑ 0<br />

directional source of radiation at the top of canopy:<br />

ρ ( z<br />

1<br />

0<br />

, Ω,<br />

Ω<br />

0<br />

)<br />

=<br />

Γ<br />

( Ω → Ω )<br />

μ | μ |<br />

0<br />

0<br />

i<br />

1<br />

⎡ G(<br />

Ω ⎤<br />

0)<br />

⎡ ' G(<br />

Ω<br />

∑λ⎢1<br />

− λ ⎥ ⎢1<br />

− λK<br />

i= K | μ0<br />

|<br />

μ<br />

⎣<br />

⎦<br />

⎣<br />

) ⎤<br />

⎥ ⎦<br />

i<br />

<strong>Gobron</strong>, N et. al. (1997) ‘A semi-discrete model for the scattering of light by vegetation’, Journal of Geophysical<br />

Research, 102, 9431-9446.<br />

50


Single Collided BRF in Principal Plan<br />

Solar Zenith Angle: 20 [deg]<br />

Solar Azimuth Angle: 0 [deg]<br />

Radius:<br />

0.05 [m]<br />

Leaf Area Index: 3.0 [ m2/m2]<br />

Height of the canopy: 2.0 [ m]<br />

Normal Distribution: Erectophile<br />

Leaf scattering law: Bi-Lambertian<br />

Leaf reflectance: 0.0546<br />

Leaf transmittance: 0.0149<br />

Soil scattering law: Lambertian<br />

Soil reflectance: 0.127<br />

http://rami-benchmark.jrc.it<br />

51


Single Collided BRF in Cross Plan<br />

Solar Zenith Angle: 20 [deg]<br />

Solar Azimuth Angle: 0 [deg]<br />

Radius:<br />

0.05 [m]<br />

Leaf Area Index: 3.0 [ m2/m2]<br />

Height of the canopy: 2.0 [ m]<br />

Normal Distribution: Erectophile<br />

Leaf scattering law: Bi-Lambertian<br />

Leaf reflectance: 0.0546<br />

Leaf transmittance: 0.0149<br />

Soil scattering law: Lambertian<br />

Soil reflectance: 0.127<br />

http://rami-benchmark.jrc.it<br />

52


Ω•∇I λ<br />

(x,Ω)+G(x,Ω)u L<br />

(x)I λ<br />

(x,Ω)= u L(x)<br />

π<br />

Multiple Scattering<br />

Multiple scattering intensities are computed solving<br />

RT equations using various numerical tools, like:<br />

• Discrete Ordinate Methods<br />

• δ-Eddington method<br />

• Adding-doubling<br />

• Two-streams<br />

∫<br />

4π<br />

Γ λ<br />

(x,Ω→ Ω ′)I λ<br />

(x, Ω ′)d Ω ′<br />

53


Multiple Scattering<br />

http://rami-benchmark.jrc.it<br />

54


Outline<br />

• <strong>Radiative</strong> <strong>Transfer</strong> Equations<br />

• <strong>Radiative</strong> <strong>Transfer</strong> Modeling for vegetation<br />

canopy.<br />

• Inversion problem for the retrieval of land<br />

products with actual remote sensing data.<br />

55


Association of physical<br />

measurements, models & models<br />

representing the biosphere<br />

The process of fitting data, as seen by Subramanian Raman in Science with a Smile.<br />

56


Association of physical<br />

measurements, models & models<br />

representing the biosphere<br />

The process of fitting data, as seen by Subramanian Raman in Science with a Smile.<br />

57


Association of physical<br />

measurements, models & models<br />

representing the biosphere<br />

The process of fitting data, as seen by Subramanian Raman in Science with a Smile.<br />

58


Model Inversion<br />

• In general, the system of equations cannot be solved:<br />

– If K< M, the system is still under-determined<br />

– If K= M, measurements errors may prevent the<br />

identification of the exact solution<br />

– If K> M, the system is over-determined<br />

K depends on space observation strategy<br />

M depends on the RT model<br />

59


Space Observation Strategies<br />

• Mono-directional multi-spectral scanning<br />

sensor on a Sun-synchronous orbit<br />

single view of the same target during a<br />

given day (given Sun zenith angle)<br />

• Spinning sensor on a geostationary orbit<br />

multiple views of the same target during<br />

a given day (various Sun zenith angles)<br />

• Multi-directional multi-spectral sensor on<br />

a Sun-synchronous orbit<br />

60


Space Observation Strategies<br />

Source: http://seawifs.gsfc.nasa.gov/SEAWIFS/SEASTAR/<br />

61


Space Observation Strategies<br />

• Mono-directional multi-spectral scanning<br />

sensor on a Sun-synchronous orbit<br />

single view of the same target during a<br />

given day (given Sun zenith angle)<br />

• Spinning sensor on a geostationary orbit<br />

multiple views of the same target during<br />

a given day (various Sun zenith angles)<br />

62


Overview of MISR<br />

Ref: http://www-misr.jpl.nasa.gov/mission/minst.html<br />

63


Spectral Sensor Properties<br />

SeaWiFS<br />

MISR<br />

MODIS<br />

MERIS<br />

64


Bidirectional Reflectance Factor<br />

at Top Of Canopy : Nadir View<br />

SeaWiFS<br />

MISR<br />

MODIS<br />

MERIS<br />

Semi-discret Model<br />

65


Bidirectional Reflectance Factor<br />

at Top Of Canopy : Nadir View<br />

SeaWiFS<br />

MISR<br />

MODIS<br />

MERIS<br />

Semi-discret Model<br />

66


Bidirectional Reflectance Factor<br />

at Top Of Canopy<br />

lai =8.<br />

lai=4.<br />

lai=2.<br />

lai=1.<br />

lai=5.<br />

lai=3.<br />

lai=1.5<br />

lai=0.5<br />

SeaWiFS<br />

MISR<br />

MODIS<br />

MERIS<br />

Semi-discret Model<br />

67


Bidirectional Reflectance Factor Top Of<br />

Atmosphere: Aerosols Optical Depth<br />

Visibility : 151.58 38.33 : 20.22 7.74 5.11 km<br />

SeaWiFS<br />

MISR<br />

MODIS<br />

MERIS<br />

6S Model<br />

Vermote et al. 1997, IEEE<br />

68


Fraction of Absorbed Photosynthetically<br />

Active Radiation (FAPAR)<br />

I ⇓<br />

TOC<br />

I ⇑<br />

TOC<br />

canopy<br />

I ⇑<br />

S<br />

I ⇓<br />

S<br />

soil<br />

FAPAR = [(I ⇓<br />

TOC<br />

+I ⇑S )–(I ⇑<br />

TOC<br />

+I ⇓S )] / I ⇓<br />

TOC<br />

Monitoring this bio-geophysical variable in time provides important<br />

information on the productivity of the vegetation and permits us to estimate,<br />

for example, the effectiveness of plants to assimilate atmospheric carbon<br />

dioxide.<br />

69


Conceptual approach:<br />

Design of FAPAR algorithm<br />

Measurement in the blue spectral domain (which is more<br />

sensitive to atmospheric optical thickness) is used to<br />

decontaminate the measurements in the red and near-infrared<br />

bands, respectively.<br />

A parametric model is used to remove angular effects.<br />

The two rectified values in red and near-infrared bands are<br />

then combined together to derive the FAPAR value.<br />

Technical approach:<br />

A large set of instrument like data (TOA) are simulated with<br />

radiative transfer model in vegetation and atmosphere.<br />

Optimization of coefficients is achieved to derive three<br />

polynomials formulae.<br />

70


Scheme for the algorithm optimization<br />

~<br />

Radiation <strong>Transfer</strong> Models<br />

BRF TOA BRF TOC<br />

Rectified Red<br />

FAPAR<br />

Angular/Atmospheric effects<br />

ρ(<br />

λ ) =<br />

i<br />

TOA<br />

ρ ( Ω<br />

F(<br />

Ω , Ω , k<br />

~<br />

0<br />

v<br />

0<br />

~<br />

, Ωv,<br />

λi<br />

)<br />

HG<br />

, Ω , ρ<br />

λi<br />

λi<br />

λic<br />

)<br />

Rectified NIR<br />

ρ<br />

Rred<br />

= g1[<br />

ρ(<br />

λblu),<br />

ρ(<br />

λred)]<br />

ρ<br />

Rnir<br />

= g2[<br />

ρ(<br />

λblu),<br />

ρ(<br />

λnir)]<br />

i<br />

~<br />

g [ ρ ( λ ), ρ(<br />

λ )] →<br />

~ ρ<br />

blu<br />

~<br />

i<br />

~<br />

TOC<br />

λ<br />

i<br />

~<br />

~<br />

~<br />

g [ ρ(<br />

λ ), ρ(<br />

λ )] = P(<br />

λ , λ ) / Q(<br />

λ , λ )<br />

n<br />

i<br />

P(<br />

λ , λ ) = l<br />

i<br />

Q(<br />

λ , λ ) = l<br />

i<br />

j<br />

n1<br />

+ l<br />

n5<br />

n6<br />

+ l<br />

FAPAR = g<br />

j<br />

j<br />

n10<br />

0<br />

=<br />

( l<br />

04<br />

i<br />

~<br />

( ρ(<br />

λ ) + l<br />

~<br />

~<br />

~<br />

( ρ<br />

i<br />

~<br />

( ρ(<br />

λ ) + l<br />

j<br />

~<br />

, ρ<br />

n2<br />

n7<br />

ρ(<br />

λ ) ρ(<br />

λ ) + l<br />

01 Rnir<br />

2<br />

Rred<br />

)<br />

)<br />

)<br />

)<br />

2<br />

ρ(<br />

λ ) ρ(<br />

λ )<br />

i<br />

i<br />

Rred<br />

i<br />

l ρ<br />

− ρ<br />

Rnir<br />

j<br />

j<br />

i<br />

2<br />

− l<br />

+<br />

j<br />

+ l<br />

+ l<br />

ρ<br />

n3<br />

n8<br />

n11<br />

~<br />

( ρ(<br />

λ ) + l<br />

~<br />

( ρ(<br />

λ ) + l<br />

− l<br />

02 Rred 03<br />

2<br />

( l05<br />

− ρ<br />

Rnir<br />

)<br />

j<br />

j<br />

+ l<br />

Optimization<br />

Procedure<br />

n4<br />

n9<br />

g0(<br />

ρ<br />

Rred<br />

, ρ<br />

Rnir<br />

) → FAPAR<br />

06<br />

)<br />

)<br />

2<br />

2<br />

N. <strong>Gobron</strong>, et al. (2000) ‘Advanced <strong>Vegetation</strong> Indices Optimized for Up-Coming Sensors: Design, Performance and Applications’, 71<br />

IEEE Transactions on Geoscience and Remote Sensing, 38, 2489-2505.


RT model driven improvement for FAPAR<br />

Optimization Procedure<br />

N. <strong>Gobron</strong>, et al. (2000) ‘Advanced <strong>Vegetation</strong> Indices Optimized for Up-Coming Sensors: Design, Performance and Applications’, 72<br />

IEEE Transactions on Geoscience and Remote Sensing, 38, 2489-2505.


RT model driven improvement for FAPAR<br />

N. <strong>Gobron</strong>, et al. (2000) ‘Advanced <strong>Vegetation</strong> Indices Optimized for Up-Coming Sensors: Design, Performance and Applications’, 73<br />

IEEE Transactions on Geoscience and Remote Sensing, 38, 2489-2505.


JRC-FAPAR Algorithm<br />

Satellite Data<br />

BRF TOA View angles Sun angles<br />

Angular/Atmospheric `Rectification'<br />

Rectified Red Rectified NIR<br />

~<br />

~<br />

ρ(<br />

λ ) =<br />

i<br />

~<br />

TOA<br />

ρ ( Ω<br />

F ( Ω , Ω , k<br />

0<br />

, Ωv,<br />

λi<br />

)<br />

HG<br />

, Ω , ρ<br />

ρ<br />

Rred<br />

= g1[<br />

ρ(<br />

λblu<br />

), ρ(<br />

λred<br />

)] ρ<br />

Rnir<br />

= g<br />

2[<br />

ρ(<br />

λblu<br />

), ρ(<br />

λnir<br />

)]<br />

v<br />

0<br />

λi<br />

λi<br />

λic<br />

)<br />

~<br />

~<br />

L2 products<br />

Fapar<br />

FAPAR<br />

= g0(<br />

ρ<br />

Rred<br />

, ρ<br />

Rnir<br />

)<br />

N. <strong>Gobron</strong>, et al. (2000) ‘Advanced <strong>Vegetation</strong> Indices Optimized for Up-Coming Sensors: Design, Performance and Applications’, 74<br />

IEEE Transactions on Geoscience and Remote Sensing, 38, 2489-2505.


JRC-FAPAR products<br />

<br />

Equivalent physically-based algorithm are developed for<br />

SeaWiFS, MERIS, GLI, MODIS and MISR/Terra.<br />

<br />

A processing chain has been designed to deliver time series of<br />

geophysical products from SeaWiFS at a global scale from<br />

October 1997 onwards.<br />

<br />

Time-composite algorithm selects the “most representative<br />

day” in the 10-day and monthly period such that the FAPAR<br />

for this day is closest to the averaged value.<br />

The assumptions in RT models impacts on the illumination<br />

angle at about 50° limit.<br />

The instantaneous accuracy of FAPAR is about ±0.1<br />

75


The time composite algorithm<br />

1) Compute the temporal average and corresponding deviation of<br />

product , e.g. FAPAR, over the N-day period:<br />

T<br />

S<br />

=<br />

S<br />

T<br />

1<br />

∑ T<br />

S t)<br />

t=<br />

1<br />

T<br />

1<br />

( Δ<br />

T<br />

= | S(<br />

t)<br />

− S |<br />

S<br />

T<br />

∑<br />

t=<br />

1<br />

is the number of valid days during the N-day period<br />

2) Select the “most representative day” in the N-days time<br />

series such that it corresponds to the value<br />

which minimizes | S(<br />

t)<br />

− S |<br />

NB: the procedure is applied twice sequentially to reject values outside the range<br />

S ± Δ<br />

T S<br />

Pinty, B., N. <strong>Gobron</strong>, F. Mélin & M. M. Verstraete (2002) ‘A Time Composite Algorithm Theoretical 76<br />

Basis Document’, Institute for Environment and Sustainability, EUR Report No. 20150 EN, 8 pp.


08/01 08/02 08/03 08/04 08/05<br />

08/06 08/07 08/08 08/09 08/10<br />

Daily to temporal composite<br />

08/1-10 08/1-31<br />

77


• JRC Products with SeaWiFS data (0.5°x0.5°,<br />

0.25°x0.25°,10 km x 10 km, 10-day & monthly)<br />

[1997/10-2005/06]<br />

(<strong>Gobron</strong> et al. 1999, 2001)<br />

http://fapar.jrc.it/<br />

at Global Scale<br />

• ESA Products with MERIS data [2002-end<br />

of mission] (<strong>Gobron</strong> et al. 1999)<br />

http://envisat.esa.int/<br />

78


Validation protocol<br />

• The performance for detecting various events<br />

(verisimilitude) is assessed against the time-series of<br />

well documented land surface features.<br />

• The comparison against ground-based estimates can<br />

be performed recognizing the following:<br />

– Categorization of land validation site in their<br />

respective radiative transfer regime (not shown<br />

here)<br />

– Series of approximation to derive FAPAR from<br />

ground-based measurement sets.<br />

79


Fire event<br />

(Pearsoll Peak, CA)<br />

FAPAR September 2002<br />

Long Time series of 10-day<br />

Active Fire Detection 2002<br />

The FAPAR values suddenly decline after the 2002 summer fire events and keep low values, by<br />

comparison to those obtained for the period 1998-2001, until the end of 2003.<br />

The 2003 FAPAR estimations suggest that the vegetation has not recovered from the 2002 fire<br />

stress.<br />

<strong>Gobron</strong> N., et. al. (2006) ‘Evaluation of FAPAR Products for Different Canopy Radiation <strong>Transfer</strong><br />

Regimes: Methodology and Results using JRC Products Derived from SeaWiFS and Ground-based<br />

Estimations', JGR, DOI 10.1029/2005JD006511<br />

80


Rice<br />

(Pavia, IT)<br />

FAPAR July 2003<br />

Long Time series of 10-day<br />

The FAPAR values are stable over all years.<br />

The 2003 FAPAR estimations suggest that the growth period was in advance comparing to a normal<br />

year.<br />

<strong>Gobron</strong> N., et. al. (2006) ‘Evaluation of FAPAR Products for Different Canopy Radiation <strong>Transfer</strong><br />

Regimes: Methodology and Results using JRC Products Derived from SeaWiFS and Ground-based<br />

Estimations', JGR, DOI 10.1029/2005JD006511<br />

81


0.5<br />

Ground-based Estimations<br />

• Three issues and caveats among others:<br />

- Date and time of acquisition<br />

SRF1: 09 July 2004<br />

Fapar<br />

0.45<br />

0.4<br />

0.35<br />

±0.1<br />

0.3<br />

+2 hours<br />

0.25<br />

0.2<br />

Source: M. Meroni (DISAFRI-Unitus)<br />

8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00<br />

82<br />

Time of day


Ground-based Estimations<br />

• Three issues and caveats among others:<br />

- Date and time of acquisition<br />

- Spatial resolution: in-situ measurements at very high<br />

resolution (1 m) to be extrapolated at the medium<br />

resolution pixel (number and spatial distribution of the<br />

samples, impact of horizontal fluxes)<br />

FAPAR Measurements<br />

Widlowski J.-L., et. al. (2006) ‘Horizontal radiation transport in 3-D<br />

forest canopies at multiple spatial resolutions: Simulated impact on<br />

canopy absorption’, RSE<br />

83


Ground-based Estimations<br />

• Three issues and caveats among others:<br />

- Date and time of acquisition<br />

- Spatial resolution: in-situ measurements at very high<br />

resolution (1 m) to be extrapolated at the medium<br />

resolution pixel (number and spatial distribution of the<br />

samples, impact of horizontal fluxes)<br />

- Approximation of FAPAR by the intercepted<br />

radiation (impact of woody elements), i.e.<br />

FAPAR (μ0) ≈ FIPAR (μ0) = 1-T(μ0)<br />

See … <strong>Gobron</strong> N., et. al. (2006) ‘Evaluation of FAPAR Products for<br />

Different Canopy Radiation <strong>Transfer</strong> Regimes: Methodology and<br />

Results using JRC Products Derived from SeaWiFS and Groundbased<br />

Estimations', JGR, DOI 10.1029/2005JD006511<br />

84


http://fapar.jrc.it/<br />

85


http://rami-benchmark.jrc.it/<br />

86

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!