22.05.2014 Views

It's Rough Reflecting Short Wavelengths - Physics and Astronomy ...

It's Rough Reflecting Short Wavelengths - Physics and Astronomy ...

It's Rough Reflecting Short Wavelengths - Physics and Astronomy ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

<strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong><br />

R. Steven Turley<br />

Department of <strong>Physics</strong> <strong>and</strong> <strong>Astronomy</strong><br />

Brigham Young University<br />

The University of Mississippi<br />

April 24, 2012<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Outline<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

1 Introduction<br />

Why XUV is Interesting<br />

Challenges<br />

2 H<strong>and</strong>ling Surface Reections<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

3 Details of Exact Integral Equations<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

4 Results<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Electromagnetic Spectrum<br />

XUV Interest<br />

Challenges<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Applications<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

XUV Interest<br />

Challenges<br />

smaller, faster computers<br />

high-resolution light microscopes<br />

plasma images<br />

fusion reactors<br />

stars<br />

Earth's magnetosphere<br />

nuclear weapons<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Challenges<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

XUV Interest<br />

Challenges<br />

air is black (strongly absorbing)<br />

index of refraction for everything is complex<br />

real part is close to one (low reectivity)<br />

imaginary part is signicant (high absorption)<br />

surface contamination is deadly<br />

oxidation reduces reection<br />

short wavelength<br />

uniformity of layer thicknesses is critical<br />

very sensitive to surface irregularities<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Problem Denition<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

Incident plane wave<br />

Interaction with optical surface<br />

induced surface current<br />

Final State<br />

direct interaction from incident wave<br />

self interaction from other parts of surface<br />

continuing incident wave<br />

scattered (reected wave)<br />

interested in the far eld<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Simplications<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

To better visualize qualitative features of process<br />

2d scattering<br />

wave in x-y plane<br />

wave <strong>and</strong> scatterer invariant in the z direction<br />

scalar wave<br />

no polarization<br />

only one eld<br />

perfect electrical conductor<br />

eld is zero at the surface<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Plane Wave<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

ψ(x,y) = R<br />

(e )<br />

i(⃗ k·⃗r−ωt)<br />

= cos(k x x + k y y − ωt)<br />

k = 2πn<br />

λ 0<br />

ω = 2πν<br />

take real part at end<br />

drop time dependence<br />

focus on peak locations<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Scattering Process<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

incident<br />

scattered<br />

surface<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

<strong>Short</strong> Wavelength <strong>Rough</strong>ness<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

short wavelength limit: geometrical optics (ray tracing)<br />

leaves out wave nature of light (diraction)<br />

add diraction<br />

physical optics<br />

leaves out<br />

self interactions of currents on mirror<br />

surface traveling waves<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Ray Optics<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

replace phase fronts with<br />

vectors in direction of<br />

propagation<br />

apply Snell's Law at each<br />

point on reecting surface<br />

allow multiple bounces<br />

shadow regions<br />

unilluminated<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Surface<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Far Field Distributions<br />

Gaussian Noise in Surface Angle<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Adding Diraction<br />

Physical Optics<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

assume surface is locally smooth<br />

compute surface current based on what one would get from an<br />

innite smooth surface<br />

in far eld<br />

∫<br />

φ(x,y) ∝ √ eikρ<br />

kρ<br />

S<br />

J(x ′ ,y ′ )e i⃗ k i ·⃗s ′ d⃗s ′<br />

ρ = √ x 2 + y 2<br />

)<br />

J(⃗s) =<br />

(e i⃗p·⃗s + e i⃗q·⃗s sinθ<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Scattering Amplitude<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

φ(ρ,θ f ) ∝ eikρ<br />

√<br />

kρ<br />

f (θ f )<br />

f (θ f ) = 8<br />

kL ei3π/4 sin(θ i ) sin(δ)<br />

δ<br />

δ = kL 2 [cosθ i − cosθ f )]<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Reected Intensity<br />

Smooth Plate, kL=200<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

0.0008<br />

0.0006<br />

0.0004<br />

0.0002<br />

35 40 45 50 55 60<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Reected Intensity<br />

<strong>Rough</strong> Plate, kL=200<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

35 40 45 50 55 60<br />

degrees<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


More <strong>Rough</strong>ness<br />

<strong>Rough</strong>er Plate, kL=200<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

intensity<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

35 40 45 50 55 60<br />

degrees<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Dielectric <strong>Rough</strong> Plate<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

more complete solution<br />

E s z = kg(ρ)e i 3π 4<br />

∫<br />

r s exp { ik[x ′ (cosθ i − cosθ r ) − y ′ (sinθ i + sinθ r )] }<br />

dy<br />

×<br />

(S ′ )<br />

sinθ i + sinθ r − cosθ r<br />

dx ′ dx ′<br />

r s is Fresnel reection coecient<br />

√<br />

S =<br />

1 +<br />

(<br />

dy ′<br />

dx ′ ) 2<br />

R. Steven Turley<br />

<strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Dielectric Plate<br />

kL = 200π, 2000π<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Dielectric <strong>and</strong> Conducting Plate<br />

kL = 200π<br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Intermediate <strong>Wavelengths</strong><br />

Problem Denition<br />

<strong>Short</strong> <strong>and</strong> Long Wavelength Limits<br />

Arbitrary Accuracy<br />

diraction is a large correction, sometimes dominant<br />

solution<br />

develop integral equation using Greene's function<br />

more robust than dierential equation solutions<br />

compact domain for homogeneous materials<br />

solve equation numerically using Nyström technique<br />

ecient <strong>and</strong> high order<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Exact Integral Equations<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

Research<br />

vector wave equation in 2d <strong>and</strong> 3d derived form Maxwell's<br />

Equations<br />

special care taken with singularities <strong>and</strong> boundary conditions<br />

Scalar analog<br />

no polarization<br />

simple Dirichlet boundary condition<br />

illustrates techniques <strong>and</strong> basic results<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Scalar Wave Equation<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

(<br />

∇ 2 − 1<br />

c 2 ∂ 2<br />

∂ t 2 )<br />

ξ (⃗r,t) = 0<br />

separation of variables (or Fourier Transform)<br />

ξ (⃗r,t) = ψ(⃗r)τ(t)<br />

c 2 τ(t)∇ 2 ψ(⃗r) − ψ(⃗r)τ ′′ (t) = 0<br />

c 2 ∇2 ψ( ⃗ r)<br />

ψ(⃗r)<br />

− τ′′ (t)<br />

τ(t) = 0 .<br />

set both terms equal to −ω 2 = −k 2 c 2<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Single Frequency Solutions<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

(<br />

∇ 2 + k 2) ψ(⃗r) = ρ(⃗r)<br />

τ ′′ (t) = −ω 2 τ(t)<br />

τ(t) = e ±iωt<br />

use e iωt <strong>and</strong> allow negative frequencies<br />

restrict solution to single frequency (<strong>and</strong> wavelength)<br />

general time-domain solutions built by superposition<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Greene's Function Solution<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

(<br />

∇ 2 + k 2) G(⃗r,⃗r ′ ) = δ(⃗r −⃗r ′ )<br />

solution is Fredholm Integral Equation<br />

∫<br />

ψ(⃗r) = φ(⃗r) + G(⃗r,⃗r ′ )ρ(⃗r ′ )d⃗r ′<br />

S<br />

(<br />

∇ 2 + k 2) φ(⃗r) = 0<br />

choose plane wave solutions for φ for our case.<br />

ψ is the total eld <strong>and</strong> ξ = ψ − φ is the scattered eld<br />

On surface, Dirichelt Boundary condition requires ψ = 0<br />

∫<br />

φ(⃗r) = − G(⃗r,⃗r ′ )ρ(⃗r ′ )d⃗r ′<br />

S<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

Validity of Greene's Function Solution<br />

(<br />

∇ 2 + k 2) ψ = [( ∇ 2 + k 2) φ(⃗r) ] ∫<br />

+<br />

(<br />

∇ 2 + k 2) G(⃗r,⃗r ′ )ρ(⃗r ′ )d⃗r ′<br />

∫<br />

= [0] + δ(⃗r −⃗r ′ )ρ(⃗r ′ )d⃗r ′<br />

S<br />

= ρ(⃗r)<br />

S<br />

legitimacy of switching order of integration <strong>and</strong> dierentiation<br />

surface should be smooth<br />

care required for surface charge distribution<br />

less of a problem for Dirichlet boundary conditions<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Greene's Function<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

nd solution to<br />

(<br />

∇ 2 + k 2) G(⃗r,⃗r ′ ) = δ(⃗r −⃗r ′ )<br />

which satises boundary conditions of outgoing spherical wave<br />

for large r<br />

skipping details<br />

complication<br />

Y 0 (z) is singular at z = 0<br />

G(⃗r,⃗r ′ ) = i 4 H(1) 0 (kr)<br />

r = |⃗r −⃗r ′ |<br />

H (1)<br />

0 (z) = J 0(z) + iY 0 (z)<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Solving Integral Equation<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

∫<br />

φ(⃗r) = − G(⃗r,⃗r ′ )ρ(⃗r ′ )d⃗r ′<br />

S<br />

φ is known (incident plane wave)<br />

G is known (Greene's function listed above)<br />

solve for ρ inside integral<br />

original approach: Method of Moments<br />

current approach: Nyström Technique<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Current Expansion<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

Exp<strong>and</strong> unknown ρ in a series of compact basis functions<br />

Tricks for ecient success<br />

b i<br />

b i<br />

−ρ(⃗r) = ∑I i b i (⃗r)<br />

i<br />

have correct symmetry<br />

have correct physics (reduces number of required terms)<br />

substitute into integral equation<br />

∫<br />

[ ]<br />

φ(⃗r) = G(⃗r,⃗r ′ ) ∑I i b i (⃗r ′ )<br />

S<br />

i<br />

d⃗r ′<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Method of Moments<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

switch order of summation <strong>and</strong> integration<br />

∫<br />

φ(⃗r) = ∑I i G(⃗r,⃗r ′ )b i (⃗r ′ )d⃗r ′<br />

i S<br />

unknowns now outside integral<br />

Galerkin: multiply both sides by same basis vectors <strong>and</strong><br />

integrate<br />

∫<br />

∫ ∫<br />

φ(⃗r)b j (⃗r) = ∑I i G(⃗r,⃗r ′ )b i (⃗r ′ )b j (⃗r)d⃗r ′ d⃗r<br />

i S S<br />

this is just a matrix equation<br />

V j = ∑I i Z ij<br />

i<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Performing Numerical Integrations<br />

Sums of Rectangles<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

sums of rectangles<br />

∫<br />

f (x)dx ≈ h∑f (x i )<br />

exact for piecewise constant<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Trapezoidal Rule<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

sums of trapezoids<br />

∫<br />

f (x)dx ≈ h<br />

exact for piecewise linear<br />

[<br />

N−1<br />

1<br />

2 (f (x 1) + f (x N )) +<br />

∑<br />

i=2<br />

f (x i )<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong><br />

]


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Gaussian Quadrature<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

∫<br />

f (x)dx ≈<br />

N<br />

∑<br />

i=1<br />

w i f (x i )<br />

choose w i <strong>and</strong> x i so integrals are exact for polynomials up to<br />

order 2N − 1<br />

very ecient<br />

can be applied in piecewise fashion<br />

variations<br />

equally spaced points<br />

exact for products of monomials <strong>and</strong> logs<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Nyström Technique<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

In process of integrating Method of Moments found shortcut<br />

Consider doing integral equation numerically<br />

∫<br />

φ(⃗r) = − G(⃗r,⃗r ′ )ρ(⃗r ′ )d⃗r ′<br />

S<br />

≈ −∑<br />

i<br />

w i G(⃗r,⃗r ′<br />

i )ρ i<br />

Solve for ρ i by requiring these equations to be satised at the<br />

same points as the discretization<br />

better numerical stability<br />

useful for later compution of far eld integrals<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Solution<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

straightforward linear algebra<br />

φ(⃗r j ) ≈ −∑w i G(⃗r j ,⃗r i )ρ i<br />

i<br />

problem when i = j: G(⃗r i ,⃗r i ) in singular<br />

special technique for treating matrix elements on same local<br />

patch<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Notes on Solutions<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Model Problem<br />

Method of Moments<br />

Numerical Quadrature<br />

Nyström Technique<br />

Single 2D problem up to 1000 wavelengths can be solved on<br />

PC<br />

Complete solution requires supercomputer<br />

Good results for initial surface<br />

Improved surface model based on AFM data<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Previous Predictions<br />

Debye-Waller Attenuation<br />

R = R 0 exp [ −(qh) 2]<br />

q =2π sinθ/λ<br />

h is surface roughness height<br />

Nevot-Croce<br />

Assume form<br />

R = R 0 exp [ −q 1 q 2 h 2]<br />

R = R 0 exp[f (θ,h,σ)]<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Calculation Comparisons<br />

Conductor<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Parameterization<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

f = α(qh) 3 + β(qh) 2 + γ(qh)<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Future Work<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

periodic surfaces<br />

TE polarization<br />

3d surfaces<br />

parameterization to avoid need for expensive supercomputer<br />

calculations<br />

non-abrupt interfaces<br />

application in visible (ecient solar cells)<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Application<br />

Black Chrome <strong>Rough</strong>ness<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Groove width: 18 ± 1 µm<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Nonspecular Reection<br />

25.6 nm at 10 ◦<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Preliminary Dielectric Data<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Summary<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

roughness calculation important in XUV<br />

computing roughness eects requires care<br />

integral equations with Nyström solution a good approach<br />

applications to acoustic waves <strong>and</strong> other wavelengths<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>


Acknowledgements<br />

Introduction<br />

H<strong>and</strong>ling Surface Reections<br />

Details of Exact Integral Equations<br />

Results<br />

Summary<br />

Hughes Research <strong>and</strong> Yale<br />

Students<br />

Stephen W<strong>and</strong>zura<br />

Vladimir Rohklin<br />

Jed Johnson<br />

Todd Doughty<br />

Elise Martin<br />

Greg Hart<br />

Samuel Kellar<br />

others...<br />

R. Steven Turley <strong>It's</strong> <strong>Rough</strong> Reecting <strong>Short</strong> <strong>Wavelengths</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!