23.05.2014 Views

Fractional topological insulators

Fractional topological insulators

Fractional topological insulators

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Fractional</strong> <strong>topological</strong> <strong>insulators</strong><br />

Claudio Chamon<br />

Christopher Mudry - PSI<br />

Titus Neupert - PSI <br />

Shinsei Ryu - Berkeley<br />

Luiz Santos - Harvard<br />

PRL 106, 236804 (2011)<br />

PRB 84, 165107 (2011)<br />

PRB 84, 165138 (2011)<br />

PRL 108, 046806 (2012)<br />

arXiv:1202.5188<br />

support: DOE<br />

Thursday, March 22, 2012


Christopher Mudry<br />

Shinsei Ryu<br />

Luiz Santos<br />

Titus Neupert <br />

Thursday, March 22, 2012


<strong>Fractional</strong> <strong>topological</strong> <strong>insulators</strong><br />

Claudio Chamon<br />

Christopher Mudry - PSI<br />

Titus Neupert - PSI <br />

Shinsei Ryu - Berkeley<br />

Luiz Santos - Harvard<br />

PRL 106, 236804 (2011)<br />

PRB 84, 165107 (2011)<br />

PRB 84, 165138 (2011)<br />

PRL 108, 046806 (2012)<br />

arXiv:1202.5188<br />

support: DOE<br />

Thursday, March 22, 2012


Landau flat bands<br />

Landau levels<br />

E<br />

ω c<br />

ω c<br />

ω c<br />

B<br />

degeneracy N φ = B A/φ 0<br />

Thursday, March 22, 2012


Landau flat bands are interesting!<br />

Partially filled Landau levels<br />

fractional quantum Hall effect (FQHE)<br />

source:<br />

Willett et al, PRL 1987<br />

Thursday, March 22, 2012


Are there other ways to get flat bands?<br />

Are they as interesting as Landau levels?<br />

Thursday, March 22, 2012


Early flat bands<br />

D. Weire and M. F. Thorpe, PRB 4, 2508 (1971)<br />

J. P. Straley, PRB 6, 4086 (1972)<br />

Thursday, March 22, 2012


More early flat bands E. Dagotto, E. Fradkin, and A. Moreo, Phys. Lett. B 172, 383 (1986).<br />

Volume 172, number 3,4<br />

PHYSICS L<br />

PHYSICS LETTERS B 22 May 1986<br />

a<br />

I<br />

~E<br />

C2<br />

C-I<br />

= C- 2 tx~,<br />

Fig. 2. A two-dimensional example showing the position of<br />

the variables used in eq. (1).<br />

Of the generic form in<br />

sites. U 1 represents an on-site coupling while U 2<br />

couples the variables belonging to the same line. i and<br />

J. P. Straley, PRB 6, 4086 (1972)<br />

j take the values -+1, +2, +3. A related hamiltonian<br />

was originally proposed in ref. [8] in the context of<br />

<strong>topological</strong> disorder in a tetrahedrally bonded solid.<br />

(A similar model was analyzed in ref. [9] in writing<br />

the classical path integral version of two-dimensional<br />

Ising model). It can be shown that by choosing a special<br />

ratio between U 1 and U2, there is a band crossing<br />

at zero momentum. By explicit diagonalization in mo-<br />

Thursday, March mentum 22, 2012space<br />

or using the method presented in ref.<br />

I<br />

P,: py=o<br />

b<br />

Motivation was to get Weyl fermions on the<br />

lattice, with a single cone<br />

E<br />

Z<br />

I ~-


Possible flat band energies in the Kagome model<br />

D. Green, L. Santos, and C. Chamon, PRB 2010<br />

E = −2g<br />

E =+2g<br />

E =0<br />

Flat very bottom band<br />

Flat very top band<br />

φ ± =2π n ±<br />

φ ± = π (2n ± + 1)<br />

Flat middle band φ + + φ − = π (mod 2π)<br />

Thursday, March 22, 2012


Flat band as a “critical point”<br />

φ + = φ − =3(π/2 − )<br />

< 0 =0 > 0<br />

Thursday, March 22, 2012


Can go on and on...<br />

Parallel flat bands- honeycomb lattice w/ 3 flavors<br />

Thursday, March 22, 2012


Are there other ways to get flat bands?<br />

Are they as interesting as Landau levels?<br />

Thursday, March 22, 2012


Are there other ways to get flat bands?<br />

Are they as interesting as Landau levels?<br />

Thursday, March 22, 2012


Are they as interesting as Landau levels?<br />

Up to that point, had examples of flat bands with<br />

zero Chern number<br />

Thursday, March 22, 2012


Quantum Hall effect w/o Landau levels<br />

wo examples of Hamiltonians of the the form (1a) are<br />

he following. F. D. M. Haldane, Example Phys. 1: Rev. The Lett. honeycomb 61, 2015 lattice. (1988). We<br />

troduce the vectors a t 1 =(0, −1), a t 2 = √ 3/2, 1/2 ,<br />

t<br />

3 = − √ 3/2, 1/2 connecting NN and the vectors b t 1 =<br />

t<br />

2−a t 3, b t 2 = a t 3−a t 1, b t 3 = a t 1−a t 2 connecting NNN from<br />

he honeycomb lattice depicted in Fig. 1(a). We denote<br />

ith k a wave vector from the BZ of the reciprocal lattice<br />

ual to the triangular lattice spanned by b 1 and b 2 ,say.<br />

he model is then defined by the Bloch Hamiltonian [1]<br />

B 0,k := 2t 2 cos Φ<br />

B k :=<br />

3<br />

cos k · b i ,<br />

i=1<br />

⎛<br />

3<br />

⎝<br />

t ⎞<br />

1 cos k · a i<br />

t 1 sin k · a i<br />

⎠ ,<br />

−2t 2 sin Φ sin k · b i<br />

i=1<br />

σ xy = −1<br />

(2a)<br />

σ xy =+1<br />

(2b)<br />

here t 1 ≥ 0 and t 2 ≥ 0 are NN and NNN hoping<br />

amplitudes, respectively, and the real numbers ±Φ<br />

re the magnetic fluxes penetrating the two halves of<br />

he Thursday, hexagonal March 22, 2012 unit cell. For t 1 t 2 , the gap ∆ ≡<br />

a) b)<br />

c)<br />

d)<br />

ε/t 1<br />

2<br />

0<br />

ε/t 1<br />

2<br />

0<br />

− 4π<br />

3 √ 3<br />

t 2<br />

k x<br />

0<br />

A i<br />

B i


Can one flatten bands with a Chern number?<br />

YES!<br />

T. Neupert, L. Santos, C. Chamon, and C. Mudry, PRL 2011<br />

E. Tang, J. W. Mei, and X. G. Wen, PRL 2011<br />

K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, PRL 2011<br />

Thursday, March 22, 2012


a) b)<br />

Quantum Hall effect w/o Landau levels<br />

A i<br />

c)<br />

d)<br />

t 2 /t 1 =<br />

ε/t 1<br />

2<br />

0<br />

ε/t 1<br />

√<br />

43<br />

Two examples of Hamiltonians of the the form (1a)<br />

12 √ 3 ≈ 0.315495 cos Φ = 1 are<br />

t 1<br />

the following. Example 1: The honeycomb lattice. We<br />

introduce the vectors a A t<br />

1 =(0, −1), a t 2 = √ 3/2, 41/2 i t 2 ,<br />

a t 3 = − √ 3/2, 1/2 connecting B i<br />

NN and the vectors b t 1 =<br />

a t 2−a t 3, b t 2 = a t 3−a t 1, b t 3 = a t 1−a t 2 connecting NNN from<br />

the honeycomb lattice depicted in Fig. 1(a). We denote<br />

with k a wave vector from the BZ of the reciprocal lattice<br />

dual to the triangular lattice spanned by b 1 and b 2 ,say.<br />

The model is then defined by the Bloch Hamiltonian [1]<br />

δ − /∆ =1/7<br />

B 0,k := 2t 2 cos Φ<br />

B k :=<br />

3<br />

cos k · b i ,<br />

i=1<br />

⎛<br />

3<br />

⎝<br />

t ⎞<br />

1 cos k · a i<br />

t 1 sin k · a i<br />

⎠ ,<br />

−2t 2 sin Φ sin k · b i<br />

i=1<br />

(2a)<br />

(2b)<br />

where t 1 ≥ 0 and t 2 ≥ 0 are NN and NNN hopping<br />

amplitudes, respectively, and the real numbers ±Φ<br />

are<br />

− 4π<br />

k<br />

3 √ the magnetic fluxes penetrating the two halves<br />

3 x<br />

3 √ − 2π of<br />

the hexagonal unit cell. For t 1 t 2 , the gap ∆ ≡<br />

min k ε +,k<br />

− max k<br />

ε −,k<br />

is proportional to t 2<br />

3. The3width<br />

of the lower band is δ − ≡ max k<br />

ε −,k<br />

− min k ε −,k<br />

. The<br />

flatness ratio δ − /∆ is extremal for the choice cos Φ =<br />

<br />

Thursday, March 22, 2012<br />

0 4π<br />

0<br />

a) b)<br />

c)<br />

k<br />

0<br />

y<br />

–2<br />

B i<br />

ε/t 1<br />

2<br />

0<br />

σ xy = −1<br />

d)<br />

σ xy =+1<br />

ε/t 1<br />

2<br />

− 4π<br />

3 √ 3<br />

− π<br />

2π<br />

3<br />

k x<br />

k x<br />

0<br />

0<br />

A i<br />

B i<br />

4π<br />

3 √


B i<br />

c)<br />

ε/t 1<br />

Quantum Hall effect w/o Landau levels 2<br />

ples of Hamiltonians<br />

2<br />

t 2 /t 1 = 1<br />

of the the form (1a) are<br />

ing. Example 1: The honeycomb lattice. We<br />

√<br />

the vectors a t 1 =(0, −1), 2<br />

a t 2 = √ 3/2, 1/2 ,<br />

3/2, 1/2 0 connecting NN and the vectors b t 1 =<br />

= a t 3−a t 1, b t 3 = a t 1−a t 2 connecting NNN from<br />

omb lattice δ depicted − /∆ ≈ 1/5 in Fig. 1(a). We denote<br />

ave vector<br />

− 4π from the BZ of the reciprocal lattice<br />

e triangular lattice kspanned x<br />

by 0 b 1 and b 2 ,say. 4π c) ε/t<br />

0<br />

1<br />

l is then defined by the Bloch Hamiltonian [1]<br />

d)<br />

ε/t 1<br />

2<br />

0<br />

3 √ 3<br />

3 √ − 2π 3 3<br />

B 0,k := 2t 2 cos Φ<br />

B k :=<br />

3<br />

cos k · b i ,<br />

i=1<br />

⎛<br />

3<br />

⎝<br />

t ⎞<br />

1 cos k · a i<br />

t 1 sin k · a i<br />

⎠ ,<br />

−2t 2 sin Φ sin k · b i<br />

i=1<br />

(2a)<br />

(2b)<br />

≥ 0–2and t 2 ≥ 0 are NN and NNN hopitudes,<br />

respectively, and the real numbers ±Φ<br />

2<br />

agnetic fluxes penetrating the two halves of<br />

0<br />

onal unit − πcell. For k t<br />

x<br />

1 t0 2 , the gap ∆ ≡<br />

π<br />

max<br />

− π<br />

k<br />

ε −,k<br />

is proportional to t 2 . The width<br />

–2<br />

0<br />

er band is δ − ≡ max k<br />

ε −,k<br />

− min k ε −,k<br />

. The<br />

tio<br />

Thursday,<br />

δ − /∆ is extremal for the choice cos Φ =<br />

March 22, 2012<br />

− π<br />

a) b)<br />

. 1. (Color online) (a) Unit cell of Haldane’s model on the<br />

d)<br />

2<br />

0<br />

k y<br />

k y<br />

2π<br />

3<br />

π<br />

σ xy = −1<br />

− 4π<br />

k x<br />

4π<br />

3 √ 3<br />

3 √ − 2π 3 3<br />

ε/t 1<br />

k x<br />

A i<br />

B i<br />

A i<br />

0 0<br />

σ xy =+1<br />

0 0<br />

π − π<br />

k y<br />

k y<br />

B i<br />

2π<br />

3<br />

π


c)<br />

ε/t 1<br />

2<br />

0<br />

− 4π<br />

k x<br />

4π<br />

3 √ 3<br />

3 √ − 2π 3 3<br />

Can one get perfectly flat bands?<br />

0 0<br />

les d) of Hamiltonians of the the form (1a) are<br />

ε/t 1<br />

g. Example 1: The honeycomb lattice. We<br />

he vectors 2 a t 1 =(0, −1), a t 2 = √ 3/2, 1/2 ,<br />

/2, 1/2 0 connecting NN and the vectors b t 1 =<br />

= a t 3−a –2<br />

t 1, b t 3 = a t 1−a t 2 connecting NNN from<br />

omb lattice depicted in Fig. 1(a). We denote<br />

− π<br />

ve vector fromk x the BZ 0 of the reciprocal 0 lattice k y<br />

triangular lattice spanned by b 1 and b 2 ,say.<br />

is then defined by the Bloch Hamiltonian [1]<br />

FIG. 1. (Color online) (a) Unit cell of Haldane’s model on the<br />

honeycomb lattice: The ψ † kNN H kψ hopping k , amplitudes t 1 are real<br />

(solid lines) and the NNN hopping amplitudes are t 2 e i2πΦ/Φ 0<br />

k∈BZ 3<br />

in the direction of the arrow (dotted lines). The flux 3Φ<br />

Band 0,k −Φ<br />

:=<br />

penetrate<br />

2t 2 cos Φthe dark<br />

cosshaded k · b i ,<br />

region and each<br />

(2a)<br />

of the<br />

light shaded regions, i=1 respectively. For Φ = π/3, the model<br />

⎛<br />

is gauge equivalent to having one flux quantum per unit cell.<br />

(b) The chiral-π-flux<br />

3 on the square lattice, where the unit cell<br />

corresponds to Hthe k flat<br />

shaded := H k<br />

B k := ⎝<br />

t ⎞<br />

1 cos k · a i<br />

t 1 sinarea. k · aThe NN hopping amplitudes<br />

are t 1<br />

|ε i<br />

⎠ , (2b)<br />

e iπ/4 in the direction of −,k<br />

|<br />

i=1 −2t the arrow (solid lines) and the<br />

2 sin Φ k · b i<br />

NNN hopping amplitudes are t 2 and −t 2 along the dashed and<br />

≥dotted 0 and<br />

lines, respectively.<br />

t<br />

(c) The band structure of Haldane’s<br />

2 ≥ 0 are<br />

model for cos Φ =1/(4t 2 )=3 NN and NNN hoptudes,<br />

3/43 with the flatness ratio<br />

1/7. √ (d)<br />

respectively,<br />

The band structure<br />

and<br />

of<br />

the<br />

thereal chiral-π-flux<br />

numbers<br />

for<br />

±Φ<br />

t 1 /t 2 =<br />

gnetic 2 with the fluxes flatness penetrating ratio 1/5. The the lower two bands halves can be of made<br />

exactly flat by adding longer range hoppings.<br />

H 0 = <br />

To enhance the effect of interactions, highly degenerate<br />

(i.e., flat) bands are desirable. It is always possible to<br />

π<br />

− π<br />

k y<br />

2π<br />

3<br />

π<br />

H k = B k · σ<br />

nal unit cell. For t 1 t 2 , the gap ∆ ≡<br />

max k<br />

ε −,k<br />

is proportional to t 2 . The width<br />

r band is δ − ≡ max k<br />

ε −,k<br />

− min k ε −,k<br />

. The<br />

io Thursday, δ − /∆ is extremal for the choice cos Φ =<br />

March 22, 2012<br />

a) b)<br />

c)<br />

ε/t 1<br />

2<br />

0<br />

ψ † k = c † k,A ,c† k,B<br />

⇒ In real space, hoppings decay exponentially with distance<br />

d)<br />

− 4π<br />

k x<br />

4π<br />

3 √ 3<br />

3 √ − 2π 3 3<br />

ε/t 1<br />

2<br />

0<br />

–2<br />

− π<br />

k x<br />

A i<br />

B i<br />

A i<br />

0 0<br />

0 0<br />

π − π<br />

k y<br />

k y<br />

B i<br />

<br />

2π<br />

3<br />

π<br />

2


Thursday, March 22, 2012<br />

Is there a FQHE when flat bands with<br />

non-zero Chern number are partially fixed?


Add interactions 2<br />

b)<br />

A i<br />

B i<br />

A i<br />

B i<br />

ε/t 1<br />

2<br />

H int := 1 2<br />

<br />

i,j<br />

ρ i V i,j ρ j ≡ V ij<br />

ρ i ρ j , V > 0<br />

0<br />

− 4π<br />

2π<br />

k x 0 0 k<br />

3 √ 3 − 2π 3<br />

Thursday, March 22, 2012<br />

y<br />

4π √


Chern insulator: exact diagonalization<br />

inverse compressibility<br />

6x4 la/ce<br />

1/3 <br />

filling<br />

2/3 <br />

filling<br />

Thursday, March 22, 2012


Chern insulator: exact diagonalization<br />

6x4 la/ce<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0 2 4 6 8 10<br />

Q<br />

9.9<br />

10.0<br />

10.1<br />

10.2<br />

10.3<br />

10.4<br />

10.5<br />

E<br />

3x4 la/ce<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0 2 4 6 8 10 12 14<br />

Q<br />

12.3<br />

12.4<br />

12.5<br />

12.6<br />

12.7<br />

12.8<br />

E<br />

3x5 la/ce<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0 5 10 15<br />

Q<br />

14.8<br />

14.9<br />

15.0<br />

15.1<br />

15.2<br />

E<br />

3x6 la/ce<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0 5 10 15 20<br />

Q<br />

19.7<br />

19.8<br />

19.9<br />

20.0<br />

E<br />

Thursday, March 22, 2012


!&<br />

"#(<br />

"#"$<br />

"#"$<br />

Thursday, March 22, 2012<br />

Chern insulator: exact diagonalization<br />

"<br />

3 × 6 plaquettes (36 sites)<br />

" "#$ %& '<br />

%()(* ' ( +<br />

!"! !<br />

"#(<br />

-<br />

%& '<br />

%(,(* '<br />

*&<br />

+(.(" +(.((<br />

# $<br />

)- " -<br />

)-<br />

!"! !<br />

FIG. 2. (Color Nonline) (a) The lowest eigenvalues of H flat<br />

GS =3 N GS =1 0 +<br />

H int for the chiral π-flux phase obtained from exact diagonalization<br />

tfor 2 6 C particles = 1 on a 3 × 6sublatticeA μ C = 0 (1/3 filling),<br />

normalized by the bandwidth E b . The parameters t 2<br />

and µ s of H0 flat interpolate between <strong>topological</strong> (|t 2 | > |µ s |)<br />

and non<strong>topological</strong> (|t 2 | < |µ s |) single-particle bands. Here,<br />

"#(<br />

"#"$<br />

# $<br />

bands o<br />

ing ma<br />

interact<br />

that a<br />

1/3 filli<br />

by Lau<br />

in futur<br />

We<br />

Storni,<br />

work w<br />

06ER46<br />

Theory<br />

port.<br />

Note<br />

19] in w<br />

cussed.<br />

onaliza<br />

[1] F.


Is there a fractional Hall effect?<br />

Other recent works<br />

• D. N. Sheng, Z. Gu, K. Sun, and L. Sheng, Nature Comm. 2, 389 (2011)<br />

• N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011)<br />

• Yang-Le Wu; B. A. Bernevig, N. Regnault, arXiv:1111.1172<br />

• S. Parameswaran, R. Roy, and S. Sondhi, arXiv:1106.4025<br />

• B. A. Bernevig, N. Regnault arXiv:1110.4488<br />

• M. Goerbig, Eur. Phys. J. B 85(1), 15 (2012)<br />

• R. Shankar and G. Murthy arXiv:1108.5501<br />

Thursday, March 22, 2012


Thursday, March 22, 2012<br />

Is there a FQHE when flat bands with<br />

non-zero Chern number are partially fixed?


Thursday, March 22, 2012<br />

Is there a FQHE when flat bands with<br />

non-zero Chern number are partially fixed?


What about time-reversal symmetric systems?<br />

T. Neupert, L. Santos, S. Ryu C. Chamon, and C. Mudry<br />

PRB 84, 165107 (2011)<br />

PRB 84, 165138 (2011)<br />

PRL 108, 046806 (2011)<br />

Thursday, March 22, 2012


Spin quantum Hall effect - two FQHE layers<br />

S = S ↑ CS + S↓ CS<br />

Doubled model with opposite FQHE for each spin species<br />

B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).<br />

M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803 (2009).<br />

Thursday, March 22, 2012


Time-reversal symmetric Abelian fractional liquids<br />

T. Neupert, L. Santos, S. Ryu C. Chamon, and C. Mudry PRB (2011)<br />

“ ”<br />

ν = 0<br />

FQHE<br />

constraints from TRS<br />

S ≡ 1<br />

4π<br />

K =<br />

κ<br />

∆ T<br />

<br />

Abelian Chern-Simons action<br />

dt d 2 x µνρ K ij a i µ ∂ ν a j ρ<br />

∆<br />

−κ<br />

κ T = κ,<br />

∆ T = −∆<br />

degeneracy on torus<br />

for this subclass<br />

# GS =<br />

=<br />

κ<br />

det <br />

∆<br />

T<br />

Pf<br />

κ<br />

∆ T<br />

∆ =<br />

∆<br />

−κ det T<br />

−κ <br />

κ ∆<br />

2<br />

−κ<br />

= [integer] 2<br />

∆<br />

Thursday, March 22, 2012


Lattice realization of time-reversal symmetric<br />

fractional <strong>topological</strong> liquids<br />

2<br />

T. Neupert, L. Santos, S. Ryu C. Chamon, and C. Mudry PRB (2011); PRL (2011).<br />

i<br />

b) 2 copies of flatband models,<br />

with opposite chirality for<br />

flattened Kane+Mele model<br />

spins<br />

A i<br />

B i<br />

i<br />

Add interactions<br />

H int := U i∈Λ<br />

ρ i,↑ ρ i,↓ + V<br />

<br />

ij∈Λ<br />

<br />

ρi,↑ ρ j,↑ + ρ i,↓ ρ j,↓ +2λρ i,↑ ρ j,↓<br />

<br />

Thursday, March 22, 2012


Topological insulator: 1/2 filling<br />

1/2 filling of lower bands,<br />

4x3 la/ce, <br />

12 parCcles<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓<br />

Thursday, March 22, 2012


Topological insulator: 1/2 filling<br />

1/2 filling of lower bands,<br />

4x3 la/ce, <br />

12 parCcles<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓<br />

flat band <br />

ferromagneCsm<br />

Thursday, March 22, 2012


Topological insulator: 1/2 filling<br />

1/2 filling of lower bands,<br />

4x3 la/ce, <br />

12 parCcles<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓<br />

flat band <br />

ferromagneCsm<br />

t 2<br />

μ<br />

Thursday, March 22, 2012


Topological insulator: 1/2 filling<br />

1/2 filling of lower bands,<br />

4x3 la/ce, <br />

12 parCcles<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓<br />

flat band <br />

ferromagneCsm<br />

t 2<br />

μ<br />

Thursday, March 22, 2012


Topological insulator: 1/2 filling<br />

1/2 filling of lower bands,<br />

4x3 la/ce, <br />

12 parCcles<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓<br />

flat band <br />

ferromagneCsm<br />

Spontaneous <br />

QHE<br />

σ xy = e2<br />

h<br />

t 2<br />

μ<br />

Thursday, March 22, 2012


Topological insulator: 1/2 filling<br />

Restoring bandwidth: <br />

full polarizaCon stable up to W ≈ 0.7 U<br />

Thursday, March 22, 2012


Topological insulator: 2/3 filling<br />

Thursday, March 22, 2012<br />

!<br />

%<br />

$./<br />

!"<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

B 0,k := 0,<br />

$<br />

$ % &<br />

B<br />

' 1,k +iB 2,<br />

!"#<br />

#"<br />

2" ,"<br />

!"#()($01!"#"$ !"#()($01!"#"% !"#()('01!"#"%<br />

B 3,k := 2t<br />

H 2<br />

int := U ρ i,↑ ρ i,↓ + V<br />

<br />

ρi,↑ ρ j,↑ + ρ i,↓ ρ j,↓ +2λρ i,↑ ρ j,↓<br />

i∈Λ<br />

ij∈Λ<br />

and the three Pau<br />

sublattice index.<br />

neighbor (NN) an<br />

ping amplitudes.<br />

$"#<br />

$.&<br />

$.%<br />

&<br />

lattice momentum<br />

α = A, B and c<br />

ψ † k,σ := c † k,A,σ ,<br />

single-particle Ha<br />

H 0 := <br />

k∈BZ<br />

ψ † k<br />

where the 3-vecto


= 0<br />

γ x<br />

3-fold<br />

9-fold<br />

0 10 20<br />

Topological insulator: 2/3 0filling<br />

1 2 3 U/V<br />

c) a)<br />

d)<br />

U/V = 0, λ = 1 U/V = 3, λ = 1<br />

1<br />

λ<br />

0.5<br />

2ϖ<br />

γ x<br />

!<br />

%<br />

$./<br />

!"<br />

3-fold<br />

9-fold<br />

0 ϖ 2ϖ 0 ϖ γ 2ϖ<br />

x<br />

'()*+,<br />

-()*+,<br />

0<br />

0 1 2 3 U/V<br />

b)<br />

c)<br />

E/V<br />

0.2<br />

0.1<br />

0<br />

U/V = 0, λ = 0<br />

0 ϖ<br />

γ x<br />

Thursday, March 22, 2012<br />

2ϖ<br />

U/V = 0, λ = 1<br />

d)<br />

U/V = 3, λ = 1<br />

$ %$ &$<br />

B 0,k := 0,<br />

$<br />

$ % & ' !"#<br />

B 1,k +iB 2,<br />

#"<br />

2" ,"<br />

!"#()($01!"#"$ !"#()($01!"#"% !"#()('01!"#"%<br />

B 3,k := 2t<br />

H 2<br />

int := U ρ i,↑ ρ i,↓ + V<br />

<br />

ρi,↑ ρ j,↑ + ρ i,↓ ρ j,↓ +2λρ i,↑ ρ j,↓<br />

i∈Λ<br />

ij∈Λ<br />

and the three Pau<br />

sublattice index.<br />

γ x<br />

2ϖ 0 ϖ<br />

neighbor (NN) an<br />

ping amplitudes.<br />

$"#<br />

$.&<br />

$.%<br />

∋<br />

0 10 20<br />

E/V<br />

0 ϖ γ x<br />

2ϖ<br />

∋<br />

0.2<br />

0.1<br />

0<br />

3-fold<br />

9-fold<br />

0 10 20<br />

0 1 2 3 U/V<br />

b)<br />

c)<br />

U/V = 0, λ = 0<br />

0 ϖ<br />

γ x<br />

2ϖ<br />

d)<br />

U/V = 0, λ = 1 U/V = 3, λ = 1<br />

&<br />

lattice momentum<br />

α = A, B and c<br />

ψ † k,σ := c † k,A,σ ,<br />

single-particle Ha<br />

H 0 := <br />

0 ϖ γ 2ϖ 0 ϖ<br />

x<br />

γ 2ϖ<br />

x<br />

k∈BZ<br />

ψ † k<br />

where the 3-vecto<br />


λ<br />

1<br />

0.5<br />

Topological insulator: 2/3 filling<br />

a)<br />

!<br />

%<br />

$./<br />

$"#<br />

$.&<br />

$.%<br />

!"<br />

3-fold<br />

9-fold<br />

0 10 20<br />

'()*+,<br />

-()*+,<br />

0<br />

0 1 2 3 U/V<br />

b)<br />

c)<br />

E/V<br />

0.2<br />

0.1<br />

0<br />

U/V = 0, λ = 0<br />

0 ϖ<br />

γ x<br />

Thursday, March 22, 2012<br />

2ϖ<br />

∋<br />

&<br />

lattice momentum<br />

α = A, B and c<br />

ψ † k,σ := c † k,A,σ ,<br />

single-particle Ha<br />

H 0 := <br />

k∈BZ<br />

ψ † k<br />

where the 3-vecto<br />

U/V = 0, λ = 1<br />

d)<br />

U/V = 3, λ = 1$ %$ &$<br />

B 0,k := 0,<br />

$<br />

$ % & ' !"#<br />

B 1,k +iB 2,<br />

#"<br />

!"#()($01!"#"$<br />

2"<br />

!"#()($01!"#"%<br />

,"<br />

!"#()('01!"#"%<br />

lattice realization of a ∆ =0<br />

B 3,k := 2t<br />

(Bernevig+Zhang+Levin+Stern) 2<br />

TRS fractional <strong>topological</strong> insulator<br />

and the three Pau<br />

sublattice index.<br />

0 ϖ γ x<br />

2ϖ 0 ϖ γ x<br />

2ϖ<br />

neighbor (NN) an<br />

ping amplitudes.


Topological insulator: 2/3 filling a)<br />

λ<br />

1<br />

Thursday, March 22, 2012<br />

!<br />

%<br />

$./<br />

!"<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2" ,"<br />

!"#()($01!"#"$ !"#()($01!"#"% !"#()('01!"#"%<br />

$"#<br />

↑ ↑0.5<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ 3-fold ↓ ↓ ↓ ↓ ↓ ↓<br />

9-fold<br />

0 10 20<br />

&<br />

lattice momentum<br />

α = A, B and co<br />

0<br />

0 1 2 3 U/V<br />

b)<br />

c)<br />

d)<br />

E/V<br />

0.2<br />

0.1<br />

0<br />

U/V = 0, λ = 0<br />

0 ϖ<br />

γ x<br />

2ϖ<br />

ψ † k,σ := c † k,A,σ ,c<br />

U/V = 0, λ = 1 U/V = 3, λ = 1<br />

γ x<br />

single-particle Ham<br />

H 0 := <br />

k∈BZ<br />

ψ † k<br />

where the 3-vector<br />

B 0,k := 0,<br />

0 ϖ 2ϖ 0 ϖ γ 2ϖ<br />

x<br />

B 1,k +iB 2,k<br />

B<br />

∋<br />

:= 2t


Topological insulator: 2/3 filling a)<br />

spontaneous TRS breaking<br />

Thursday, March 22, 2012<br />

spontaneous FQHE<br />

!<br />

%<br />

$./<br />

!"<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2" ,"<br />

!"#()($01!"#"$ !"#()($01!"#"% !"#()('01!"#"%<br />

$"#<br />

λ<br />

1<br />

↑ ↑0.5<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ 3-fold ↓ ↓ ↓ ↓ ↓ ↓<br />

9-fold<br />

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ν ↓ =1<br />

0 10 20<br />

&<br />

lattice momentum<br />

α = A, B and co<br />

0<br />

0 1 2 3 U/V<br />

b)<br />

c)<br />

d)<br />

E/V<br />

0.2<br />

0.1<br />

0<br />

U/V = 0, λ = 0<br />

0 ϖ<br />

γ x<br />

2ϖ<br />

γ x<br />

ψ † k,σ := c † k,A,σ ,c<br />

U/V = 0, λ = 1 U/V = 3, λ = 1<br />

single-particle Ham<br />

H 0 := <br />

k∈BZ<br />

ψ † k<br />

where the 3-vector<br />

B 0,k := 0,<br />

0 ϖ 2ϖ 0 ϖ γ 2ϖ<br />

x<br />

B 1,k +iB 2,k<br />

B<br />

ν ↑ =1/3<br />

∋<br />

:= 2t


%<br />

!"<br />

!<br />

Perspective - bulk vs. edge<br />

$./<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2"<br />

$"#<br />

$.&<br />

$.%<br />

$<br />

!"#()($01!"#"$<br />

$ '<br />

Thursday, March 22, 2012<br />

% &<br />

&'<br />

,"<br />

!"#()($01!"#"% !"#()('01!"#"%<br />

$ ' % &' $ '<br />

&<br />

% &'<br />

&<br />

FIG. 1. (color online). Numerical exact diagonalization results<br />

of Hamiltonian (2.1) for 16 electrons when sublattice A<br />

is made of 3 × 4sitesandwitht 2 /t 1 =0.4. (a) Ground state<br />

degeneracies. Denote with E n the n-th lowest energy eigenvalue<br />

of the many-body spectrum where E 1 is the many-body<br />

ground state, i.e., E n+1 ≥ E n for n =1, 2, ···. Define the parameter<br />

by n := (E n+1 − E n )/(E n − E 1 ). If a large gap<br />

&<br />

lattice momentum k and spin σ =↑, ↓ in t<br />

α = A, B and combine them in the subl<br />

ψ † k,σ<br />

c := † k,A,σ ,c† k,B,σ<br />

. Then, the secon<br />

single-particle Hamiltonian reads<br />

H 0 := <br />

B k · τ<br />

|B k<br />

| ψ k,↑ + ψ † B −k ·<br />

<br />

k,↓ B −<br />

ψ † k,↑<br />

k∈BZ<br />

Edge modes?<br />

where the 3-vector B k<br />

is defined by<br />

M. Levin and A. Stern, PRL (2009)<br />

B 0,k := 0,<br />

T. Neupert et al. PRB (2011)<br />

K =<br />

B 1,k +iB 2,k := t 1 e −iπ/4 1+e +i (k y −<br />

⎛<br />

+1 +2 0 0<br />

⎜+2 +1 0 0<br />

⎝<br />

+ t 1 e +iπ/4 e −ik x + e<br />

B 3,k := 2t 2<br />

<br />

cos kx − cos k y<br />

<br />

,<br />

and the three 0 Pauli-matrices 0 −1 −2τ =(τ 1 , τ 2 , τ 3<br />

sublattice<br />

0index. 0Here, −2t 1 −1<br />

and t 2 represent<br />

neighbor (NN) and next-nearest neighbor<br />

ping amplitudes. The Hamiltonian (2.2a)<br />

defined if t 2 = 0.<br />

One verifies that H 0 is both time-reversa<br />

and invariant under U(1) spin-1/2 rotations<br />

time-reversal operation T acts on numbers<br />

conjugation and on the electron-operators a<br />

ψ † k,↑<br />

T<br />

−→ +ψ † −k,↓ ,<br />

ψ† k,↓<br />

T<br />

−→ −ψ † −k<br />

The action of the U(1) spin-1/2 rotation R γ<br />

0 ≤ γ < 2π is given by<br />

ψ † k,↑<br />

R γ<br />

−→ e +iγ ψ † k,↑ ,<br />

⎞<br />

⎟<br />

⎠<br />

ψ† k,↓<br />

R γ<br />

−→ e −iγ ψ † k


%<br />

!"<br />

!<br />

Perspective - bulk vs. edge<br />

$./<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2"<br />

$"#<br />

$.&<br />

$.%<br />

$<br />

!"#()($01!"#"$<br />

$ '<br />

Thursday, March 22, 2012<br />

% &<br />

&'<br />

,"<br />

!"#()($01!"#"% !"#()('01!"#"%<br />

$ ' % &' $ '<br />

&<br />

% &'<br />

&<br />

FIG. 1. (color online). Numerical exact diagonalization results<br />

of Hamiltonian (2.1) for 16 electrons when sublattice A<br />

is made of 3 × 4sitesandwitht 2 /t 1 =0.4. (a) Ground state<br />

degeneracies. Denote with E n the n-th lowest energy eigenvalue<br />

of the many-body spectrum where E 1 is the many-body<br />

ground state, i.e., E n+1 ≥ E n for n =1, 2, ···. Define the parameter<br />

by n := (E n+1 − E n )/(E n − E 1 ). If a large gap<br />

&<br />

lattice momentum k and spin σ =↑, ↓ in t<br />

α = A, B and combine them in the subl<br />

ψ † k,σ<br />

c := † k,A,σ ,c† k,B,σ<br />

. Then, the secon<br />

single-particle Hamiltonian reads<br />

H 0 := <br />

B k · τ<br />

|B k<br />

| ψ k,↑ + ψ † B −k ·<br />

<br />

k,↓ B −<br />

ψ † k,↑<br />

k∈BZ<br />

Edge modes?<br />

where the 3-vector B k<br />

is defined by<br />

M. Levin and A. Stern, PRL (2009)<br />

B 0,k := 0,<br />

T. Neupert et al. PRB (2011)<br />

B 1,k +iB 2,k := t 1 e −iπ/4 1+e +i (k y −<br />

+ t 1 e +iπ/4 e −ik x + e<br />

B 3,k := 2t 2<br />

<br />

cos kx − cos k y<br />

<br />

,<br />

and the three Pauli-matrices τ =(τ 1 , τ 2 , τ 3<br />

sublattice index. Here, t 1 and t 2 represent<br />

neighbor (NN) and next-nearest neighbor<br />

ping amplitudes. The Hamiltonian (2.2a)<br />

defined if t 2 = 0.<br />

One verifies that H 0 is both time-reversa<br />

and invariant under U(1) spin-1/2 rotations<br />

time-reversal operation T acts on numbers<br />

conjugation and on the electron-operators a<br />

ψ † k,↑<br />

T<br />

−→ +ψ † −k,↓ ,<br />

ψ† k,↓<br />

T<br />

−→ −ψ † −k<br />

The action of the U(1) spin-1/2 rotation R γ<br />

0 ≤ γ < 2π is given by<br />

ψ † k,↑<br />

NO<br />

R γ<br />

−→ e +iγ ψ † k,↑ ,<br />

ψ† k,↓<br />

R γ<br />

−→ e −iγ ψ † k


%<br />

!"<br />

!<br />

Perspective - bulk vs. edge<br />

$./<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2"<br />

$"#<br />

$.&<br />

$.%<br />

!"#()($01!"#"$<br />

,"<br />

!"#()($01!"#"% !"#()('01!"#"%<br />

$<br />

fractionalized excitations in the bulk!<br />

Bulk $ rich '...% &' $ '<br />

&<br />

edge poor % &' $ '<br />

&<br />

% &'<br />

&<br />

Thursday, March 22, 2012<br />

No propagating edge modes, but...<br />

FIG. 1. (color online). Numerical exact diagonalization results<br />

of Hamiltonian (2.1) for 16 electrons when sublattice A<br />

is made of 3 × 4sitesandwitht 2 /t 1 =0.4. (a) Ground state<br />

degeneracies. Denote with E n the n-th lowest energy eigenvalue<br />

of the many-body spectrum where E 1 is the many-body<br />

ground state, i.e., E n+1 ≥ E n for n =1, 2, ···. Define the parameter<br />

by n := (E n+1 − E n )/(E n − E 1 ). If a large gap<br />

&<br />

lattice momentum k and spin σ =↑, ↓ in t<br />

α = A, B and combine them in the subl<br />

ψ † k,σ<br />

c := † k,A,σ ,c† k,B,σ<br />

. Then, the secon<br />

single-particle Hamiltonian reads<br />

H 0 := <br />

B k · τ<br />

|B k<br />

| ψ k,↑ + ψ † B −k ·<br />

<br />

k,↓ B −<br />

ψ † k,↑<br />

k∈BZ<br />

Edge modes?<br />

where the 3-vector B k<br />

is defined by<br />

M. Levin and A. Stern, PRL (2009)<br />

B 0,k := 0,<br />

T. Neupert et al. PRB (2011)<br />

B 1,k +iB 2,k := t 1 e −iπ/4 1+e +i (k y −<br />

+ t 1 e +iπ/4 e −ik x + e<br />

B 3,k := 2t 2<br />

<br />

cos kx − cos k y<br />

<br />

,<br />

and the three Pauli-matrices τ =(τ 1 , τ 2 , τ 3<br />

sublattice index. Here, t 1 and t 2 represent<br />

neighbor (NN) and next-nearest neighbor<br />

ping amplitudes. The Hamiltonian (2.2a)<br />

defined if t 2 = 0.<br />

One verifies that H 0 is both time-reversa<br />

and invariant under U(1) spin-1/2 rotations<br />

time-reversal operation T acts on numbers<br />

conjugation and on the electron-operators a<br />

ψ † k,↑<br />

T<br />

−→ +ψ † −k,↓ ,<br />

ψ† k,↓<br />

T<br />

−→ −ψ † −k<br />

The action of the U(1) spin-1/2 rotation R γ<br />

0 ≤ γ < 2π is given by<br />

ψ † k,↑<br />

NO<br />

R γ<br />

−→ e +iγ ψ † k,↑ ,<br />

ψ† k,↓<br />

R γ<br />

−→ e −iγ ψ † k


%<br />

!"<br />

!<br />

Perspective - bulk vs. edge<br />

$./<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2"<br />

$"#<br />

$.&<br />

$.%<br />

!"#()($01!"#"$<br />

,"<br />

!"#()($01!"#"% !"#()('01!"#"%<br />

$<br />

fractionalized excitations in the bulk!<br />

Bulk $ rich '...% &' $ '<br />

&<br />

edge poor % &' $ '<br />

&<br />

% &'<br />

&<br />

Thursday, March 22, 2012<br />

No propagating edge modes, but...<br />

More structure than captured by a<br />

FIG. 1. (color online). Numerical exact diagonalization results<br />

of Hamiltonian (2.1) for 16 electrons when sublattice A<br />

is made of 3 × 4sitesandwitht 2 /t 1 =0.4. (a) Ground state<br />

degeneracies. Denote with E n the n-th lowest energy eigenvalue<br />

of the many-body spectrum where E 1 is the many-body<br />

ground state, i.e., E n+1 ≥ E n for n =1, 2, ···. Define the parameter<br />

by n := (E n+1 − E n )/(E n − E 1 ). If a large gap<br />

&<br />

Z 2<br />

lattice momentum k and spin σ =↑, ↓ in t<br />

α = A, B and combine them in the subl<br />

ψ † k,σ<br />

c := † k,A,σ ,c† k,B,σ<br />

. Then, the secon<br />

single-particle Hamiltonian reads<br />

H 0 := <br />

B k · τ<br />

|B k<br />

| ψ k,↑ + ψ † B −k ·<br />

<br />

k,↓ B −<br />

ψ † k,↑<br />

k∈BZ<br />

Edge modes?<br />

where the 3-vector B k<br />

is defined by<br />

M. Levin and A. Stern, PRL (2009)<br />

B 0,k := 0,<br />

T. Neupert et al. PRB (2011)<br />

B 1,k +iB 2,k := t 1 e −iπ/4 1+e +i (k y −<br />

+ t 1 e +iπ/4 e −ik x + e<br />

B 3,k := 2t 2<br />

<br />

cos kx − cos k y<br />

<br />

,<br />

and the three Pauli-matrices τ =(τ 1 , τ 2 , τ 3<br />

sublattice index. Here, t 1 and t 2 represent<br />

neighbor (NN) and next-nearest neighbor<br />

ping amplitudes. The Hamiltonian (2.2a)<br />

defined if t 2 = 0.<br />

One verifies that H 0 is both time-reversa<br />

and invariant under U(1) spin-1/2 rotations<br />

time-reversal operation T acts on numbers<br />

conjugation and on the electron-operators a<br />

ψ † T<br />

classification<br />

k,↑<br />

−→ +ψ alone.<br />

† −k,↓ ,<br />

ψ† k,↓<br />

T<br />

−→ −ψ † −k<br />

The action of the U(1) spin-1/2 rotation R γ<br />

0 ≤ γ < 2π is given by<br />

ψ † k,↑<br />

NO<br />

R γ<br />

−→ e +iγ ψ † k,↑ ,<br />

ψ† k,↓<br />

R γ<br />

−→ e −iγ ψ † k


%<br />

!"<br />

!<br />

Perspective - bulk vs. edge<br />

$./<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2"<br />

$"#<br />

$.&<br />

$.%<br />

!"#()($01!"#"$<br />

,"<br />

!"#()($01!"#"% !"#()('01!"#"%<br />

$<br />

fractionalized excitations in the bulk!<br />

Bulk $ rich '...% &' $ '<br />

&<br />

edge poor % &' $ '<br />

&<br />

% &'<br />

&<br />

Thursday, March 22, 2012<br />

No propagating edge modes, but...<br />

More structure than captured by a<br />

FIG. 1. (color online). Numerical exact diagonalization results<br />

of Hamiltonian (2.1) for 16 electrons when sublattice A<br />

is made of 3 × 4sitesandwitht 2 /t 1 =0.4. (a) Ground state<br />

degeneracies. Denote with E n the n-th lowest energy eigenvalue<br />

of the many-body spectrum where E 1 is the many-body<br />

ground state, i.e., E n+1 ≥ E n for n =1, 2, ···. Define the parameter<br />

by n := (E n+1 − E n )/(E n − E 1 ). If a large gap<br />

&<br />

Z 2<br />

lattice momentum k and spin σ =↑, ↓ in t<br />

α = A, B and combine them in the subl<br />

ψ † k,σ<br />

c := † k,A,σ ,c† k,B,σ<br />

. Then, the secon<br />

single-particle Hamiltonian reads<br />

H 0 := <br />

B k · τ<br />

|B k<br />

| ψ k,↑ + ψ † B −k ·<br />

<br />

k,↓ B −<br />

ψ † k,↑<br />

k∈BZ<br />

Edge modes?<br />

where the 3-vector B k<br />

is defined by<br />

M. Levin and A. Stern, PRL (2009)<br />

B 0,k := 0,<br />

T. Neupert et al. PRB (2011)<br />

B 1,k +iB 2,k := t 1 e −iπ/4 1+e +i (k y −<br />

+ t 1 e +iπ/4 e −ik x + e<br />

B 3,k := 2t 2<br />

<br />

cos kx − cos k y<br />

<br />

,<br />

and the three Pauli-matrices τ =(τ 1 , τ 2 , τ 3<br />

sublattice index. Here, t 1 and t 2 represent<br />

neighbor (NN) and next-nearest neighbor<br />

ping amplitudes. The Hamiltonian (2.2a)<br />

defined if t 2 = 0.<br />

One verifies that H 0 is both time-reversa<br />

and invariant under U(1) spin-1/2 rotations<br />

time-reversal operation T acts on numbers<br />

conjugation and on the electron-operators a<br />

ψ † T<br />

classification<br />

k,↑<br />

−→ +ψ alone.<br />

† −k,↓ ,<br />

“Either you are with us, or you are with the terrorists." - G.W. Bush<br />

ψ† k,↓<br />

T<br />

−→ −ψ † −k<br />

The action of the U(1) spin-1/2 rotation R γ<br />

0 ≤ γ < 2π is given by<br />

ψ † k,↑<br />

NO<br />

R γ<br />

−→ e +iγ ψ † k,↑ ,<br />

ψ† k,↓<br />

R γ<br />

−→ e −iγ ψ † k


3D<br />

T. Neupert, L. Santos, S. Ryu C. Chamon, and C. Mudry arXiv:1202.5188<br />

Thursday, March 22, 2012


Classification of non-interacting states of matter<br />

“Periodic Table of Topological Insulators”<br />

Symmetry<br />

d<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 8 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z<br />

d<br />

E Conduction Band<br />

2<br />

Conventional<br />

!=0<br />

Insulator<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

(a)<br />

(b)<br />

E F<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1<br />

Quantum spin<br />

1 Z 0 Z 2 Valence ZBand<br />

2 Z 0 0 0<br />

C 0<br />

"#/a<br />

0 k "#/a<br />

−1 0 0 Z 0 Z 2 Z<br />

FIG. 5 Edge states in the quantum spin Hall insulator. (a) 2 Z 0 0<br />

CI 1<br />

shows the interface between a QSHI and an ordinary insulator,<br />

and 1(b) shows 0the edge0state dispersion Z in0the graphene Z 2 −1 Z 2 Z 0<br />

Symmetry<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z 2<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1 1 Z 0 Z 2 Z 2 Z 0 0 0<br />

C 0 −1 0 0 Z 0 Z 2 Z 2 Z 0 0<br />

CI 1 −1 1 0 0 Z 0 Z 2 Z 2 Z 0<br />

TABLE I Periodic (2001) table corresponds of to<strong>topological</strong> the d = 4 entry in class <strong>insulators</strong> A AII. and superconductors.<br />

The have 10yet symmetry to be filled by realistic classes systems. are The search labeled is using the<br />

There are also other entries in physical dimensions that<br />

on to discover<br />

notation of Altland andNew such<br />

Zirnbauer<br />

J. phases. Phys. 12,<br />

(1997)<br />

065010<br />

(AZ)<br />

(2010)<br />

and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

III. QUANTUM SPIN HALL INSULATOR<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

TABLE I Periodic table of <strong>topological</strong> <strong>insulators</strong> and superconductors.<br />

The 10 symmetry classes are labeled using the<br />

notation of Altland and Zirnbauer (1997) (AZ) and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

the presence and absence of symmetry, with ±1 specifying<br />

the value of Θ 2 and Ξ 2 . As a function of symmetry and space<br />

dimensionality, d, the<strong>topological</strong>classifications(Z, Z 2 and 0)<br />

show a regular pattern that repeats when d → d +8.<br />

Thursday, March 22, 2012<br />

model, in which up and down spins propagate in opposite<br />

directions.<br />

M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)<br />

Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig,<br />

Kitaev, A., 2009, AIP Conf. Proc. 1134, 22; arXiv:0901.2686<br />

The 2D <strong>topological</strong> insulator is known as a quantum<br />

Conven<br />

Insulato<br />

(a)<br />

Quantum<br />

Hall insu<br />

FIG. 5 Edge<br />

shows the int<br />

tor, and (b)<br />

model, in wh<br />

directions.<br />

(2001) corre<br />

There are a<br />

have yet to<br />

on to discov


Classification of non-interacting states of matter<br />

“Periodic Table of Topological Insulators”<br />

Symmetry<br />

IQHE d<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 8 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z<br />

d<br />

E Conduction Band<br />

2<br />

Conventional<br />

!=0<br />

Insulator<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

(a)<br />

(b)<br />

E F<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1<br />

Quantum spin<br />

1 Z 0 Z 2 Valence ZBand<br />

2 Z 0 0 0<br />

C 0<br />

"#/a<br />

0 k "#/a<br />

−1 0 0 Z 0 Z 2 Z<br />

FIG. 5 Edge states in the quantum spin Hall insulator. (a) 2 Z 0 0<br />

CI 1<br />

shows the interface between a QSHI and an ordinary insulator,<br />

and 1(b) shows 0the edge0state dispersion Z in0the graphene Z 2 −1 Z 2 Z 0<br />

Symmetry<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z 2<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1 1 Z 0 Z 2 Z 2 Z 0 0 0<br />

C 0 −1 0 0 Z 0 Z 2 Z 2 Z 0 0<br />

CI 1 −1 1 0 0 Z 0 Z 2 Z 2 Z 0<br />

TABLE I Periodic (2001) table corresponds of to<strong>topological</strong> the d = 4 entry in class <strong>insulators</strong> A AII. and superconductors.<br />

The have 10yet symmetry to be filled by realistic classes systems. are The search labeled is using the<br />

There are also other entries in physical dimensions that<br />

on to discover<br />

notation of Altland andNew such<br />

Zirnbauer<br />

J. phases. Phys. 12,<br />

(1997)<br />

065010<br />

(AZ)<br />

(2010)<br />

and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

III. QUANTUM SPIN HALL INSULATOR<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

TABLE I Periodic table of <strong>topological</strong> <strong>insulators</strong> and superconductors.<br />

The 10 symmetry classes are labeled using the<br />

notation of Altland and Zirnbauer (1997) (AZ) and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

the presence and absence of symmetry, with ±1 specifying<br />

the value of Θ 2 and Ξ 2 . As a function of symmetry and space<br />

dimensionality, d, the<strong>topological</strong>classifications(Z, Z 2 and 0)<br />

show a regular pattern that repeats when d → d +8.<br />

Thursday, March 22, 2012<br />

model, in which up and down spins propagate in opposite<br />

directions.<br />

M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)<br />

Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig,<br />

Kitaev, A., 2009, AIP Conf. Proc. 1134, 22; arXiv:0901.2686<br />

The 2D <strong>topological</strong> insulator is known as a quantum<br />

Conven<br />

Insulato<br />

(a)<br />

Quantum<br />

Hall insu<br />

FIG. 5 Edge<br />

shows the int<br />

tor, and (b)<br />

model, in wh<br />

directions.<br />

(2001) corre<br />

There are a<br />

have yet to<br />

on to discov


Classification of non-interacting states of matter<br />

“Periodic Table of Topological Insulators”<br />

Symmetry<br />

IQHE d<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 8 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z<br />

d<br />

E Conduction Band<br />

2<br />

Conventional<br />

!=0<br />

Insulator<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

(a)<br />

(b)<br />

E F<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1<br />

Quantum spin<br />

1 Z 0 Z 2 Valence ZBand<br />

2 Z 0 0 0<br />

C 0<br />

"#/a<br />

0 k "#/a<br />

−1 0 0 Z 0TI<br />

Z 2 Z<br />

FIG. 5 Edge states in the quantum spin Hall insulator. (a) 2 Z 0 0<br />

CI 1<br />

shows the interface between a QSHI and an ordinary insulator,<br />

and 1(b) shows 0the edge0state dispersion Z in0the graphene Z 2 −1 Z 2 Z 0<br />

Symmetry<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z 2<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1 1 Z 0 Z 2 Z 2 Z 0 0 0<br />

C 0 −1 0 0 Z 0 Z 2 Z 2 Z 0 0<br />

CI 1 −1 1 0 0 Z 0 Z 2 Z 2 Z 0<br />

TABLE I Periodic (2001) table corresponds of to<strong>topological</strong> the d = 4 entry in class <strong>insulators</strong> A AII. and superconductors.<br />

The have 10yet symmetry to be filled by realistic classes systems. are The search labeled is using the<br />

There are also other entries in physical dimensions that<br />

on to discover<br />

notation of Altland andNew such<br />

Zirnbauer<br />

J. phases. Phys. 12,<br />

(1997)<br />

065010<br />

(AZ)<br />

(2010)<br />

and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

III. QUANTUM SPIN HALL INSULATOR<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

TABLE I Periodic table of <strong>topological</strong> <strong>insulators</strong> and superconductors.<br />

The 10 symmetry classes are labeled using the<br />

notation of Altland and Zirnbauer (1997) (AZ) and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

the presence and absence of symmetry, with ±1 specifying<br />

the value of Θ 2 and Ξ 2 . As a function of symmetry and space<br />

dimensionality, d, the<strong>topological</strong>classifications(Z, Z 2 and 0)<br />

show a regular pattern that repeats when d → d +8.<br />

Thursday, March 22, 2012<br />

model, in which up and down spins propagate in opposite<br />

directions.<br />

M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)<br />

Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig,<br />

Kitaev, A., 2009, AIP Conf. Proc. 1134, 22; arXiv:0901.2686<br />

The 2D <strong>topological</strong> insulator is known as a quantum<br />

Conven<br />

Insulato<br />

(a)<br />

Quantum<br />

Hall insu<br />

FIG. 5 Edge<br />

shows the int<br />

tor, and (b)<br />

model, in wh<br />

directions.<br />

(2001) corre<br />

There are a<br />

have yet to<br />

on to discov


Classification of non-interacting states of matter<br />

“Periodic Table of Topological Insulators”<br />

Symmetry<br />

IQHE d<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

chiral<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 8 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z<br />

d<br />

E Conduction Band<br />

2<br />

Conventional<br />

!=0<br />

Insulator<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

(a)<br />

(b)<br />

E F<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1<br />

Quantum spin<br />

1 Z 0 Z 2 Valence ZBand<br />

2 Z 0 0 0<br />

C 0<br />

"#/a<br />

0 k "#/a<br />

−1 0 0 Z 0TI<br />

Z 2 Z<br />

FIG. 5 Edge states in the quantum spin Hall insulator. (a) 2 Z 0 0<br />

CI 1<br />

shows the interface between a QSHI and an ordinary insulator,<br />

and 1(b) shows 0the edge0state dispersion Z in0the graphene Z 2 −1 Z 2 Z 0<br />

Symmetry<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z 2<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1 1 Z 0 Z 2 Z 2 Z 0 0 0<br />

C 0 −1 0 0 Z 0 Z 2 Z 2 Z 0 0<br />

CI 1 −1 1 0 0 Z 0 Z 2 Z 2 Z 0<br />

TABLE I Periodic (2001) table corresponds of to<strong>topological</strong> the d = 4 entry in class <strong>insulators</strong> A AII. and superconductors.<br />

The have 10yet symmetry to be filled by realistic classes systems. are The search labeled is using the<br />

There are also other entries in physical dimensions that<br />

on to discover<br />

notation of Altland andNew such<br />

Zirnbauer<br />

J. phases. Phys. 12,<br />

(1997)<br />

065010<br />

(AZ)<br />

(2010)<br />

and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

III. QUANTUM SPIN HALL INSULATOR<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

TABLE I Periodic table of <strong>topological</strong> <strong>insulators</strong> and superconductors.<br />

The 10 symmetry classes are labeled using the<br />

notation of Altland and Zirnbauer (1997) (AZ) and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

the presence and absence of symmetry, with ±1 specifying<br />

the value of Θ 2 and Ξ 2 . As a function of symmetry and space<br />

dimensionality, d, the<strong>topological</strong>classifications(Z, Z 2 and 0)<br />

show a regular pattern that repeats when d → d +8.<br />

Thursday, March 22, 2012<br />

model, in which up and down spins propagate in opposite<br />

directions.<br />

M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)<br />

Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig,<br />

Kitaev, A., 2009, AIP Conf. Proc. 1134, 22; arXiv:0901.2686<br />

The 2D <strong>topological</strong> insulator is known as a quantum<br />

Conven<br />

Insulato<br />

(a)<br />

Quantum<br />

Hall insu<br />

FIG. 5 Edge<br />

shows the int<br />

tor, and (b)<br />

model, in wh<br />

directions.<br />

(2001) corre<br />

There are a<br />

have yet to<br />

on to discov


3D Lattice model<br />

3 orbital model on the cubic lattice<br />

3<br />

H k = λ 3+i sin k i + λ 7<br />

M −<br />

i=1<br />

3<br />

i=1<br />

cos k i<br />

<br />

Gell-Mann matrices<br />

flat band<br />

a) M = 0<br />

3<br />

2<br />

1<br />

0<br />

1<br />

2<br />

3<br />

4<br />

2<br />

0<br />

2<br />

4<br />

X M R X R M<br />

X M R X R M<br />

X M R X R M<br />

X M R X R M<br />

b) M = 1<br />

X M R X R M<br />

4<br />

2<br />

0<br />

2<br />

4<br />

X M R X R M<br />

c) M = 2 d) M = 3<br />

6<br />

4<br />

2<br />

0<br />

2<br />

4<br />

6<br />

X M R X R M<br />

X M R X R M<br />

Thursday, March 22, 2012


3D Lattice model<br />

3 orbital model on the cubic lattice<br />

3<br />

H k = λ 3+i sin k i + λ 7<br />

M −<br />

i=1<br />

3<br />

i=1<br />

cos k i<br />

<br />

Gell-Mann matrices<br />

flat band<br />

<br />

02×2 q<br />

H k = k<br />

q † k<br />

0<br />

chiral class (AIII)<br />

Thursday, March 22, 2012


3D Lattice model<br />

3 orbital model on the cubic lattice<br />

3<br />

H k = λ 3+i sin k i + λ 7<br />

M −<br />

i=1<br />

3<br />

i=1<br />

cos k i<br />

<br />

θ(M) =<br />

⎧<br />

⎪⎨ +2π, |M| < 1,<br />

−π, 1 < |M| < 3,<br />

⎪⎩<br />

0, 3 < |M|.<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Projection onto Landau level<br />

X = P n<br />

R Pn<br />

= R − 2 B<br />

e 3 × Π<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Projection onto Landau level<br />

X = P n<br />

R Pn<br />

= R − 2 B<br />

e 3 × Π<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

X 2<br />

∆X 1<br />

∆X 2<br />

X 1<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Projection onto Landau level<br />

X = P n<br />

R Pn<br />

= R − 2 B<br />

e 3 × Π<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

X 2<br />

∆X 1<br />

∆X 2<br />

non-commuting coordinates<br />

“fuzziness”<br />

X 1<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Coordinate transformation<br />

r µ → f µ (r)<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Coordinate transformation<br />

r µ → f µ (r)<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

<br />

f 1 ( X),f 2 ( X) <br />

=+i 2 B {f 1 ,f 2 } P ( X)+O 4 <br />

B<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Coordinate transformation<br />

r µ → f µ (r)<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

<br />

f 1 ( X),f 2 ( X) <br />

=+i 2 B {f 1 ,f 2 } P ( X)+O 4 <br />

B<br />

Poisson bracket<br />

<br />

{f 1 ,f 2 } P<br />

(r) = µν ∂f1 ∂f 2<br />

∂r µ ∂r ν<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Coordinate transformation<br />

r µ → f µ (r)<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

<br />

f 1 ( X),f 2 ( X) <br />

=+i 2 B {f 1 ,f 2 } P ( X)+O 4 <br />

B<br />

Poisson bracket<br />

<br />

{f 1 ,f 2 } P<br />

(r) = µν ∂f1 ∂f 2<br />

∂r µ ∂r ν<br />

transformation preserves area<br />

⇒<br />

commutators are unchanged<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: what would be a “pristine” extension?<br />

<br />

X1 , X 2 , X 3<br />

<br />

=+i 3<br />

Nambu (quantum) 3-bracket<br />

[ A 1 , A 2 , A 3 ]= ijk<br />

Ai Aj Ak<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: what would be a “pristine” extension?<br />

r µ → f µ (r)<br />

<br />

f 1 ( X),f 2 ( X),f 2 ( X) <br />

<br />

X1 , X 2 , X 3<br />

<br />

=+i 3<br />

Nambu (quantum) 3-bracket<br />

[ A 1 , A 2 , A 3 ]= ijk<br />

Ai Aj Ak<br />

=i 3 {f 1 ,f 2 ,f 3 } N ( X)+O( 5 )<br />

<br />

{f 1 ,f 2 ,f 3 } N<br />

(r) = µνλ ∂f1 ∂f 2 ∂f 3<br />

(r)<br />

∂r µ ∂r ν ∂r λ<br />

Nambu (classical) 3-bracket<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: what would be a “pristine” extension?<br />

r µ → f µ (r)<br />

<br />

f 1 ( X),f 2 ( X),f 2 ( X) <br />

<br />

X1 , X 2 , X 3<br />

<br />

=+i 3<br />

Nambu (quantum) 3-bracket<br />

[ A 1 , A 2 , A 3 ]= ijk<br />

Ai Aj Ak<br />

=i 3 {f 1 ,f 2 ,f 3 } N ( X)+O( 5 )<br />

<br />

{f 1 ,f 2 ,f 3 } N<br />

(r) = µνλ ∂f1 ∂f 2 ∂f 3<br />

(r)<br />

∂r µ ∂r ν ∂r λ<br />

Nambu (classical) 3-bracket<br />

transformation preserves volume<br />

⇒<br />

3-brackets are unchanged<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: non-pristine<br />

<br />

X1 , X 2 , X 3<br />

<br />

=+i 3 + ...<br />

X µ =<br />

<br />

d d k χ † ã (k) iD ã ˜b<br />

µ (k) χ˜b(k)<br />

D µ (k) =∂ µ + A µ (k)<br />

when<br />

Tr D µ ,D ν<br />

<br />

= V<br />

<br />

d d k tr F µν (k) =0<br />

<br />

:<br />

<br />

Xµ , X ν , X ρ<br />

<br />

<br />

: = − iTr <br />

D µ ,D ν ,D ρ<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: non-pristine<br />

<br />

:<br />

<br />

Xµ , X ν , X ρ<br />

<br />

<br />

: = − iTr <br />

D µ ,D ν ,D ρ<br />

A. P. Polychronakos (2007)<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: non-pristine<br />

<br />

:<br />

<br />

Xµ , X ν , X ρ<br />

<br />

<br />

: = − iTr <br />

D µ ,D ν ,D ρ<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

= 12π2 i<br />

¯ρ<br />

A. P. Polychronakos (2007)<br />

CS (3)<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: non-pristine<br />

<br />

:<br />

<br />

Xµ , X ν , X ρ<br />

<br />

<br />

: = − iTr <br />

D µ ,D ν ,D ρ<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

= 12π2 i<br />

¯ρ<br />

A. P. Polychronakos (2007)<br />

CS (3)<br />

¯ρ = N p<br />

V<br />

CS (3) = π 2<br />

<br />

d 3 k<br />

(2π) 3<br />

ijk tr<br />

A i F jk − 2 3 A iA j A k<br />

<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: non-pristine<br />

<br />

:<br />

<br />

Xµ , X ν , X ρ<br />

<br />

<br />

: = − iTr <br />

D µ ,D ν ,D ρ<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

= 12π2 i<br />

¯ρ<br />

A. P. Polychronakos (2007)<br />

CS (3)<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

=+i 3<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: fuzzy coordinates<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

=+i 3<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: fuzzy coordinates<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

=+i 3<br />

X 2<br />

X 1<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: fuzzy coordinates<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

=+i 3<br />

X 2<br />

X 3<br />

X 1<br />

Thursday, March 22, 2012


Summary<br />

It is possible to have dispersionless bands (flat bands) that are isolated from all<br />

others by an energy gap.<br />

The isolated flat bands can be non-trivial in the sense of having a non-zero<br />

Chern number, and thus sustain an IQHE when fully occupied.<br />

When partially filled, electron-electron interactions can lead to the FQHE and<br />

other <strong>topological</strong> phases in time-reversal invariant systems.<br />

Topological Hubbard models have to ferromagnetic ground states: symmetry<br />

breaking simultaneously with IQHE or FQHE.<br />

<strong>Fractional</strong> TI in 3D: non-commuting coordinates<br />

Thursday, March 22, 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!