23.05.2014 Views

Fractional topological insulators

Fractional topological insulators

Fractional topological insulators

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Fractional</strong> <strong>topological</strong> <strong>insulators</strong><br />

Claudio Chamon<br />

Christopher Mudry - PSI<br />

Titus Neupert - PSI <br />

Shinsei Ryu - Berkeley<br />

Luiz Santos - Harvard<br />

PRL 106, 236804 (2011)<br />

PRB 84, 165107 (2011)<br />

PRB 84, 165138 (2011)<br />

PRL 108, 046806 (2012)<br />

arXiv:1202.5188<br />

support: DOE<br />

Thursday, March 22, 2012


Christopher Mudry<br />

Shinsei Ryu<br />

Luiz Santos<br />

Titus Neupert <br />

Thursday, March 22, 2012


<strong>Fractional</strong> <strong>topological</strong> <strong>insulators</strong><br />

Claudio Chamon<br />

Christopher Mudry - PSI<br />

Titus Neupert - PSI <br />

Shinsei Ryu - Berkeley<br />

Luiz Santos - Harvard<br />

PRL 106, 236804 (2011)<br />

PRB 84, 165107 (2011)<br />

PRB 84, 165138 (2011)<br />

PRL 108, 046806 (2012)<br />

arXiv:1202.5188<br />

support: DOE<br />

Thursday, March 22, 2012


Landau flat bands<br />

Landau levels<br />

E<br />

ω c<br />

ω c<br />

ω c<br />

B<br />

degeneracy N φ = B A/φ 0<br />

Thursday, March 22, 2012


Landau flat bands are interesting!<br />

Partially filled Landau levels<br />

fractional quantum Hall effect (FQHE)<br />

source:<br />

Willett et al, PRL 1987<br />

Thursday, March 22, 2012


Are there other ways to get flat bands?<br />

Are they as interesting as Landau levels?<br />

Thursday, March 22, 2012


Early flat bands<br />

D. Weire and M. F. Thorpe, PRB 4, 2508 (1971)<br />

J. P. Straley, PRB 6, 4086 (1972)<br />

Thursday, March 22, 2012


More early flat bands E. Dagotto, E. Fradkin, and A. Moreo, Phys. Lett. B 172, 383 (1986).<br />

Volume 172, number 3,4<br />

PHYSICS L<br />

PHYSICS LETTERS B 22 May 1986<br />

a<br />

I<br />

~E<br />

C2<br />

C-I<br />

= C- 2 tx~,<br />

Fig. 2. A two-dimensional example showing the position of<br />

the variables used in eq. (1).<br />

Of the generic form in<br />

sites. U 1 represents an on-site coupling while U 2<br />

couples the variables belonging to the same line. i and<br />

J. P. Straley, PRB 6, 4086 (1972)<br />

j take the values -+1, +2, +3. A related hamiltonian<br />

was originally proposed in ref. [8] in the context of<br />

<strong>topological</strong> disorder in a tetrahedrally bonded solid.<br />

(A similar model was analyzed in ref. [9] in writing<br />

the classical path integral version of two-dimensional<br />

Ising model). It can be shown that by choosing a special<br />

ratio between U 1 and U2, there is a band crossing<br />

at zero momentum. By explicit diagonalization in mo-<br />

Thursday, March mentum 22, 2012space<br />

or using the method presented in ref.<br />

I<br />

P,: py=o<br />

b<br />

Motivation was to get Weyl fermions on the<br />

lattice, with a single cone<br />

E<br />

Z<br />

I ~-


Possible flat band energies in the Kagome model<br />

D. Green, L. Santos, and C. Chamon, PRB 2010<br />

E = −2g<br />

E =+2g<br />

E =0<br />

Flat very bottom band<br />

Flat very top band<br />

φ ± =2π n ±<br />

φ ± = π (2n ± + 1)<br />

Flat middle band φ + + φ − = π (mod 2π)<br />

Thursday, March 22, 2012


Flat band as a “critical point”<br />

φ + = φ − =3(π/2 − )<br />

< 0 =0 > 0<br />

Thursday, March 22, 2012


Can go on and on...<br />

Parallel flat bands- honeycomb lattice w/ 3 flavors<br />

Thursday, March 22, 2012


Are there other ways to get flat bands?<br />

Are they as interesting as Landau levels?<br />

Thursday, March 22, 2012


Are there other ways to get flat bands?<br />

Are they as interesting as Landau levels?<br />

Thursday, March 22, 2012


Are they as interesting as Landau levels?<br />

Up to that point, had examples of flat bands with<br />

zero Chern number<br />

Thursday, March 22, 2012


Quantum Hall effect w/o Landau levels<br />

wo examples of Hamiltonians of the the form (1a) are<br />

he following. F. D. M. Haldane, Example Phys. 1: Rev. The Lett. honeycomb 61, 2015 lattice. (1988). We<br />

troduce the vectors a t 1 =(0, −1), a t 2 = √ 3/2, 1/2 ,<br />

t<br />

3 = − √ 3/2, 1/2 connecting NN and the vectors b t 1 =<br />

t<br />

2−a t 3, b t 2 = a t 3−a t 1, b t 3 = a t 1−a t 2 connecting NNN from<br />

he honeycomb lattice depicted in Fig. 1(a). We denote<br />

ith k a wave vector from the BZ of the reciprocal lattice<br />

ual to the triangular lattice spanned by b 1 and b 2 ,say.<br />

he model is then defined by the Bloch Hamiltonian [1]<br />

B 0,k := 2t 2 cos Φ<br />

B k :=<br />

3<br />

cos k · b i ,<br />

i=1<br />

⎛<br />

3<br />

⎝<br />

t ⎞<br />

1 cos k · a i<br />

t 1 sin k · a i<br />

⎠ ,<br />

−2t 2 sin Φ sin k · b i<br />

i=1<br />

σ xy = −1<br />

(2a)<br />

σ xy =+1<br />

(2b)<br />

here t 1 ≥ 0 and t 2 ≥ 0 are NN and NNN hoping<br />

amplitudes, respectively, and the real numbers ±Φ<br />

re the magnetic fluxes penetrating the two halves of<br />

he Thursday, hexagonal March 22, 2012 unit cell. For t 1 t 2 , the gap ∆ ≡<br />

a) b)<br />

c)<br />

d)<br />

ε/t 1<br />

2<br />

0<br />

ε/t 1<br />

2<br />

0<br />

− 4π<br />

3 √ 3<br />

t 2<br />

k x<br />

0<br />

A i<br />

B i


Can one flatten bands with a Chern number?<br />

YES!<br />

T. Neupert, L. Santos, C. Chamon, and C. Mudry, PRL 2011<br />

E. Tang, J. W. Mei, and X. G. Wen, PRL 2011<br />

K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, PRL 2011<br />

Thursday, March 22, 2012


a) b)<br />

Quantum Hall effect w/o Landau levels<br />

A i<br />

c)<br />

d)<br />

t 2 /t 1 =<br />

ε/t 1<br />

2<br />

0<br />

ε/t 1<br />

√<br />

43<br />

Two examples of Hamiltonians of the the form (1a)<br />

12 √ 3 ≈ 0.315495 cos Φ = 1 are<br />

t 1<br />

the following. Example 1: The honeycomb lattice. We<br />

introduce the vectors a A t<br />

1 =(0, −1), a t 2 = √ 3/2, 41/2 i t 2 ,<br />

a t 3 = − √ 3/2, 1/2 connecting B i<br />

NN and the vectors b t 1 =<br />

a t 2−a t 3, b t 2 = a t 3−a t 1, b t 3 = a t 1−a t 2 connecting NNN from<br />

the honeycomb lattice depicted in Fig. 1(a). We denote<br />

with k a wave vector from the BZ of the reciprocal lattice<br />

dual to the triangular lattice spanned by b 1 and b 2 ,say.<br />

The model is then defined by the Bloch Hamiltonian [1]<br />

δ − /∆ =1/7<br />

B 0,k := 2t 2 cos Φ<br />

B k :=<br />

3<br />

cos k · b i ,<br />

i=1<br />

⎛<br />

3<br />

⎝<br />

t ⎞<br />

1 cos k · a i<br />

t 1 sin k · a i<br />

⎠ ,<br />

−2t 2 sin Φ sin k · b i<br />

i=1<br />

(2a)<br />

(2b)<br />

where t 1 ≥ 0 and t 2 ≥ 0 are NN and NNN hopping<br />

amplitudes, respectively, and the real numbers ±Φ<br />

are<br />

− 4π<br />

k<br />

3 √ the magnetic fluxes penetrating the two halves<br />

3 x<br />

3 √ − 2π of<br />

the hexagonal unit cell. For t 1 t 2 , the gap ∆ ≡<br />

min k ε +,k<br />

− max k<br />

ε −,k<br />

is proportional to t 2<br />

3. The3width<br />

of the lower band is δ − ≡ max k<br />

ε −,k<br />

− min k ε −,k<br />

. The<br />

flatness ratio δ − /∆ is extremal for the choice cos Φ =<br />

<br />

Thursday, March 22, 2012<br />

0 4π<br />

0<br />

a) b)<br />

c)<br />

k<br />

0<br />

y<br />

–2<br />

B i<br />

ε/t 1<br />

2<br />

0<br />

σ xy = −1<br />

d)<br />

σ xy =+1<br />

ε/t 1<br />

2<br />

− 4π<br />

3 √ 3<br />

− π<br />

2π<br />

3<br />

k x<br />

k x<br />

0<br />

0<br />

A i<br />

B i<br />

4π<br />

3 √


B i<br />

c)<br />

ε/t 1<br />

Quantum Hall effect w/o Landau levels 2<br />

ples of Hamiltonians<br />

2<br />

t 2 /t 1 = 1<br />

of the the form (1a) are<br />

ing. Example 1: The honeycomb lattice. We<br />

√<br />

the vectors a t 1 =(0, −1), 2<br />

a t 2 = √ 3/2, 1/2 ,<br />

3/2, 1/2 0 connecting NN and the vectors b t 1 =<br />

= a t 3−a t 1, b t 3 = a t 1−a t 2 connecting NNN from<br />

omb lattice δ depicted − /∆ ≈ 1/5 in Fig. 1(a). We denote<br />

ave vector<br />

− 4π from the BZ of the reciprocal lattice<br />

e triangular lattice kspanned x<br />

by 0 b 1 and b 2 ,say. 4π c) ε/t<br />

0<br />

1<br />

l is then defined by the Bloch Hamiltonian [1]<br />

d)<br />

ε/t 1<br />

2<br />

0<br />

3 √ 3<br />

3 √ − 2π 3 3<br />

B 0,k := 2t 2 cos Φ<br />

B k :=<br />

3<br />

cos k · b i ,<br />

i=1<br />

⎛<br />

3<br />

⎝<br />

t ⎞<br />

1 cos k · a i<br />

t 1 sin k · a i<br />

⎠ ,<br />

−2t 2 sin Φ sin k · b i<br />

i=1<br />

(2a)<br />

(2b)<br />

≥ 0–2and t 2 ≥ 0 are NN and NNN hopitudes,<br />

respectively, and the real numbers ±Φ<br />

2<br />

agnetic fluxes penetrating the two halves of<br />

0<br />

onal unit − πcell. For k t<br />

x<br />

1 t0 2 , the gap ∆ ≡<br />

π<br />

max<br />

− π<br />

k<br />

ε −,k<br />

is proportional to t 2 . The width<br />

–2<br />

0<br />

er band is δ − ≡ max k<br />

ε −,k<br />

− min k ε −,k<br />

. The<br />

tio<br />

Thursday,<br />

δ − /∆ is extremal for the choice cos Φ =<br />

March 22, 2012<br />

− π<br />

a) b)<br />

. 1. (Color online) (a) Unit cell of Haldane’s model on the<br />

d)<br />

2<br />

0<br />

k y<br />

k y<br />

2π<br />

3<br />

π<br />

σ xy = −1<br />

− 4π<br />

k x<br />

4π<br />

3 √ 3<br />

3 √ − 2π 3 3<br />

ε/t 1<br />

k x<br />

A i<br />

B i<br />

A i<br />

0 0<br />

σ xy =+1<br />

0 0<br />

π − π<br />

k y<br />

k y<br />

B i<br />

2π<br />

3<br />

π


c)<br />

ε/t 1<br />

2<br />

0<br />

− 4π<br />

k x<br />

4π<br />

3 √ 3<br />

3 √ − 2π 3 3<br />

Can one get perfectly flat bands?<br />

0 0<br />

les d) of Hamiltonians of the the form (1a) are<br />

ε/t 1<br />

g. Example 1: The honeycomb lattice. We<br />

he vectors 2 a t 1 =(0, −1), a t 2 = √ 3/2, 1/2 ,<br />

/2, 1/2 0 connecting NN and the vectors b t 1 =<br />

= a t 3−a –2<br />

t 1, b t 3 = a t 1−a t 2 connecting NNN from<br />

omb lattice depicted in Fig. 1(a). We denote<br />

− π<br />

ve vector fromk x the BZ 0 of the reciprocal 0 lattice k y<br />

triangular lattice spanned by b 1 and b 2 ,say.<br />

is then defined by the Bloch Hamiltonian [1]<br />

FIG. 1. (Color online) (a) Unit cell of Haldane’s model on the<br />

honeycomb lattice: The ψ † kNN H kψ hopping k , amplitudes t 1 are real<br />

(solid lines) and the NNN hopping amplitudes are t 2 e i2πΦ/Φ 0<br />

k∈BZ 3<br />

in the direction of the arrow (dotted lines). The flux 3Φ<br />

Band 0,k −Φ<br />

:=<br />

penetrate<br />

2t 2 cos Φthe dark<br />

cosshaded k · b i ,<br />

region and each<br />

(2a)<br />

of the<br />

light shaded regions, i=1 respectively. For Φ = π/3, the model<br />

⎛<br />

is gauge equivalent to having one flux quantum per unit cell.<br />

(b) The chiral-π-flux<br />

3 on the square lattice, where the unit cell<br />

corresponds to Hthe k flat<br />

shaded := H k<br />

B k := ⎝<br />

t ⎞<br />

1 cos k · a i<br />

t 1 sinarea. k · aThe NN hopping amplitudes<br />

are t 1<br />

|ε i<br />

⎠ , (2b)<br />

e iπ/4 in the direction of −,k<br />

|<br />

i=1 −2t the arrow (solid lines) and the<br />

2 sin Φ k · b i<br />

NNN hopping amplitudes are t 2 and −t 2 along the dashed and<br />

≥dotted 0 and<br />

lines, respectively.<br />

t<br />

(c) The band structure of Haldane’s<br />

2 ≥ 0 are<br />

model for cos Φ =1/(4t 2 )=3 NN and NNN hoptudes,<br />

3/43 with the flatness ratio<br />

1/7. √ (d)<br />

respectively,<br />

The band structure<br />

and<br />

of<br />

the<br />

thereal chiral-π-flux<br />

numbers<br />

for<br />

±Φ<br />

t 1 /t 2 =<br />

gnetic 2 with the fluxes flatness penetrating ratio 1/5. The the lower two bands halves can be of made<br />

exactly flat by adding longer range hoppings.<br />

H 0 = <br />

To enhance the effect of interactions, highly degenerate<br />

(i.e., flat) bands are desirable. It is always possible to<br />

π<br />

− π<br />

k y<br />

2π<br />

3<br />

π<br />

H k = B k · σ<br />

nal unit cell. For t 1 t 2 , the gap ∆ ≡<br />

max k<br />

ε −,k<br />

is proportional to t 2 . The width<br />

r band is δ − ≡ max k<br />

ε −,k<br />

− min k ε −,k<br />

. The<br />

io Thursday, δ − /∆ is extremal for the choice cos Φ =<br />

March 22, 2012<br />

a) b)<br />

c)<br />

ε/t 1<br />

2<br />

0<br />

ψ † k = c † k,A ,c† k,B<br />

⇒ In real space, hoppings decay exponentially with distance<br />

d)<br />

− 4π<br />

k x<br />

4π<br />

3 √ 3<br />

3 √ − 2π 3 3<br />

ε/t 1<br />

2<br />

0<br />

–2<br />

− π<br />

k x<br />

A i<br />

B i<br />

A i<br />

0 0<br />

0 0<br />

π − π<br />

k y<br />

k y<br />

B i<br />

<br />

2π<br />

3<br />

π<br />

2


Thursday, March 22, 2012<br />

Is there a FQHE when flat bands with<br />

non-zero Chern number are partially fixed?


Add interactions 2<br />

b)<br />

A i<br />

B i<br />

A i<br />

B i<br />

ε/t 1<br />

2<br />

H int := 1 2<br />

<br />

i,j<br />

ρ i V i,j ρ j ≡ V ij<br />

ρ i ρ j , V > 0<br />

0<br />

− 4π<br />

2π<br />

k x 0 0 k<br />

3 √ 3 − 2π 3<br />

Thursday, March 22, 2012<br />

y<br />

4π √


Chern insulator: exact diagonalization<br />

inverse compressibility<br />

6x4 la/ce<br />

1/3 <br />

filling<br />

2/3 <br />

filling<br />

Thursday, March 22, 2012


Chern insulator: exact diagonalization<br />

6x4 la/ce<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0 2 4 6 8 10<br />

Q<br />

9.9<br />

10.0<br />

10.1<br />

10.2<br />

10.3<br />

10.4<br />

10.5<br />

E<br />

3x4 la/ce<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0 2 4 6 8 10 12 14<br />

Q<br />

12.3<br />

12.4<br />

12.5<br />

12.6<br />

12.7<br />

12.8<br />

E<br />

3x5 la/ce<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0 5 10 15<br />

Q<br />

14.8<br />

14.9<br />

15.0<br />

15.1<br />

15.2<br />

E<br />

3x6 la/ce<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0 5 10 15 20<br />

Q<br />

19.7<br />

19.8<br />

19.9<br />

20.0<br />

E<br />

Thursday, March 22, 2012


!&<br />

"#(<br />

"#"$<br />

"#"$<br />

Thursday, March 22, 2012<br />

Chern insulator: exact diagonalization<br />

"<br />

3 × 6 plaquettes (36 sites)<br />

" "#$ %& '<br />

%()(* ' ( +<br />

!"! !<br />

"#(<br />

-<br />

%& '<br />

%(,(* '<br />

*&<br />

+(.(" +(.((<br />

# $<br />

)- " -<br />

)-<br />

!"! !<br />

FIG. 2. (Color Nonline) (a) The lowest eigenvalues of H flat<br />

GS =3 N GS =1 0 +<br />

H int for the chiral π-flux phase obtained from exact diagonalization<br />

tfor 2 6 C particles = 1 on a 3 × 6sublatticeA μ C = 0 (1/3 filling),<br />

normalized by the bandwidth E b . The parameters t 2<br />

and µ s of H0 flat interpolate between <strong>topological</strong> (|t 2 | > |µ s |)<br />

and non<strong>topological</strong> (|t 2 | < |µ s |) single-particle bands. Here,<br />

"#(<br />

"#"$<br />

# $<br />

bands o<br />

ing ma<br />

interact<br />

that a<br />

1/3 filli<br />

by Lau<br />

in futur<br />

We<br />

Storni,<br />

work w<br />

06ER46<br />

Theory<br />

port.<br />

Note<br />

19] in w<br />

cussed.<br />

onaliza<br />

[1] F.


Is there a fractional Hall effect?<br />

Other recent works<br />

• D. N. Sheng, Z. Gu, K. Sun, and L. Sheng, Nature Comm. 2, 389 (2011)<br />

• N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011)<br />

• Yang-Le Wu; B. A. Bernevig, N. Regnault, arXiv:1111.1172<br />

• S. Parameswaran, R. Roy, and S. Sondhi, arXiv:1106.4025<br />

• B. A. Bernevig, N. Regnault arXiv:1110.4488<br />

• M. Goerbig, Eur. Phys. J. B 85(1), 15 (2012)<br />

• R. Shankar and G. Murthy arXiv:1108.5501<br />

Thursday, March 22, 2012


Thursday, March 22, 2012<br />

Is there a FQHE when flat bands with<br />

non-zero Chern number are partially fixed?


Thursday, March 22, 2012<br />

Is there a FQHE when flat bands with<br />

non-zero Chern number are partially fixed?


What about time-reversal symmetric systems?<br />

T. Neupert, L. Santos, S. Ryu C. Chamon, and C. Mudry<br />

PRB 84, 165107 (2011)<br />

PRB 84, 165138 (2011)<br />

PRL 108, 046806 (2011)<br />

Thursday, March 22, 2012


Spin quantum Hall effect - two FQHE layers<br />

S = S ↑ CS + S↓ CS<br />

Doubled model with opposite FQHE for each spin species<br />

B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).<br />

M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803 (2009).<br />

Thursday, March 22, 2012


Time-reversal symmetric Abelian fractional liquids<br />

T. Neupert, L. Santos, S. Ryu C. Chamon, and C. Mudry PRB (2011)<br />

“ ”<br />

ν = 0<br />

FQHE<br />

constraints from TRS<br />

S ≡ 1<br />

4π<br />

K =<br />

κ<br />

∆ T<br />

<br />

Abelian Chern-Simons action<br />

dt d 2 x µνρ K ij a i µ ∂ ν a j ρ<br />

∆<br />

−κ<br />

κ T = κ,<br />

∆ T = −∆<br />

degeneracy on torus<br />

for this subclass<br />

# GS =<br />

=<br />

κ<br />

det <br />

∆<br />

T<br />

Pf<br />

κ<br />

∆ T<br />

∆ =<br />

∆<br />

−κ det T<br />

−κ <br />

κ ∆<br />

2<br />

−κ<br />

= [integer] 2<br />

∆<br />

Thursday, March 22, 2012


Lattice realization of time-reversal symmetric<br />

fractional <strong>topological</strong> liquids<br />

2<br />

T. Neupert, L. Santos, S. Ryu C. Chamon, and C. Mudry PRB (2011); PRL (2011).<br />

i<br />

b) 2 copies of flatband models,<br />

with opposite chirality for<br />

flattened Kane+Mele model<br />

spins<br />

A i<br />

B i<br />

i<br />

Add interactions<br />

H int := U i∈Λ<br />

ρ i,↑ ρ i,↓ + V<br />

<br />

ij∈Λ<br />

<br />

ρi,↑ ρ j,↑ + ρ i,↓ ρ j,↓ +2λρ i,↑ ρ j,↓<br />

<br />

Thursday, March 22, 2012


Topological insulator: 1/2 filling<br />

1/2 filling of lower bands,<br />

4x3 la/ce, <br />

12 parCcles<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓<br />

Thursday, March 22, 2012


Topological insulator: 1/2 filling<br />

1/2 filling of lower bands,<br />

4x3 la/ce, <br />

12 parCcles<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓<br />

flat band <br />

ferromagneCsm<br />

Thursday, March 22, 2012


Topological insulator: 1/2 filling<br />

1/2 filling of lower bands,<br />

4x3 la/ce, <br />

12 parCcles<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓<br />

flat band <br />

ferromagneCsm<br />

t 2<br />

μ<br />

Thursday, March 22, 2012


Topological insulator: 1/2 filling<br />

1/2 filling of lower bands,<br />

4x3 la/ce, <br />

12 parCcles<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓<br />

flat band <br />

ferromagneCsm<br />

t 2<br />

μ<br />

Thursday, March 22, 2012


Topological insulator: 1/2 filling<br />

1/2 filling of lower bands,<br />

4x3 la/ce, <br />

12 parCcles<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓<br />

flat band <br />

ferromagneCsm<br />

Spontaneous <br />

QHE<br />

σ xy = e2<br />

h<br />

t 2<br />

μ<br />

Thursday, March 22, 2012


Topological insulator: 1/2 filling<br />

Restoring bandwidth: <br />

full polarizaCon stable up to W ≈ 0.7 U<br />

Thursday, March 22, 2012


Topological insulator: 2/3 filling<br />

Thursday, March 22, 2012<br />

!<br />

%<br />

$./<br />

!"<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

B 0,k := 0,<br />

$<br />

$ % &<br />

B<br />

' 1,k +iB 2,<br />

!"#<br />

#"<br />

2" ,"<br />

!"#()($01!"#"$ !"#()($01!"#"% !"#()('01!"#"%<br />

B 3,k := 2t<br />

H 2<br />

int := U ρ i,↑ ρ i,↓ + V<br />

<br />

ρi,↑ ρ j,↑ + ρ i,↓ ρ j,↓ +2λρ i,↑ ρ j,↓<br />

i∈Λ<br />

ij∈Λ<br />

and the three Pau<br />

sublattice index.<br />

neighbor (NN) an<br />

ping amplitudes.<br />

$"#<br />

$.&<br />

$.%<br />

&<br />

lattice momentum<br />

α = A, B and c<br />

ψ † k,σ := c † k,A,σ ,<br />

single-particle Ha<br />

H 0 := <br />

k∈BZ<br />

ψ † k<br />

where the 3-vecto


= 0<br />

γ x<br />

3-fold<br />

9-fold<br />

0 10 20<br />

Topological insulator: 2/3 0filling<br />

1 2 3 U/V<br />

c) a)<br />

d)<br />

U/V = 0, λ = 1 U/V = 3, λ = 1<br />

1<br />

λ<br />

0.5<br />

2ϖ<br />

γ x<br />

!<br />

%<br />

$./<br />

!"<br />

3-fold<br />

9-fold<br />

0 ϖ 2ϖ 0 ϖ γ 2ϖ<br />

x<br />

'()*+,<br />

-()*+,<br />

0<br />

0 1 2 3 U/V<br />

b)<br />

c)<br />

E/V<br />

0.2<br />

0.1<br />

0<br />

U/V = 0, λ = 0<br />

0 ϖ<br />

γ x<br />

Thursday, March 22, 2012<br />

2ϖ<br />

U/V = 0, λ = 1<br />

d)<br />

U/V = 3, λ = 1<br />

$ %$ &$<br />

B 0,k := 0,<br />

$<br />

$ % & ' !"#<br />

B 1,k +iB 2,<br />

#"<br />

2" ,"<br />

!"#()($01!"#"$ !"#()($01!"#"% !"#()('01!"#"%<br />

B 3,k := 2t<br />

H 2<br />

int := U ρ i,↑ ρ i,↓ + V<br />

<br />

ρi,↑ ρ j,↑ + ρ i,↓ ρ j,↓ +2λρ i,↑ ρ j,↓<br />

i∈Λ<br />

ij∈Λ<br />

and the three Pau<br />

sublattice index.<br />

γ x<br />

2ϖ 0 ϖ<br />

neighbor (NN) an<br />

ping amplitudes.<br />

$"#<br />

$.&<br />

$.%<br />

∋<br />

0 10 20<br />

E/V<br />

0 ϖ γ x<br />

2ϖ<br />

∋<br />

0.2<br />

0.1<br />

0<br />

3-fold<br />

9-fold<br />

0 10 20<br />

0 1 2 3 U/V<br />

b)<br />

c)<br />

U/V = 0, λ = 0<br />

0 ϖ<br />

γ x<br />

2ϖ<br />

d)<br />

U/V = 0, λ = 1 U/V = 3, λ = 1<br />

&<br />

lattice momentum<br />

α = A, B and c<br />

ψ † k,σ := c † k,A,σ ,<br />

single-particle Ha<br />

H 0 := <br />

0 ϖ γ 2ϖ 0 ϖ<br />

x<br />

γ 2ϖ<br />

x<br />

k∈BZ<br />

ψ † k<br />

where the 3-vecto<br />


λ<br />

1<br />

0.5<br />

Topological insulator: 2/3 filling<br />

a)<br />

!<br />

%<br />

$./<br />

$"#<br />

$.&<br />

$.%<br />

!"<br />

3-fold<br />

9-fold<br />

0 10 20<br />

'()*+,<br />

-()*+,<br />

0<br />

0 1 2 3 U/V<br />

b)<br />

c)<br />

E/V<br />

0.2<br />

0.1<br />

0<br />

U/V = 0, λ = 0<br />

0 ϖ<br />

γ x<br />

Thursday, March 22, 2012<br />

2ϖ<br />

∋<br />

&<br />

lattice momentum<br />

α = A, B and c<br />

ψ † k,σ := c † k,A,σ ,<br />

single-particle Ha<br />

H 0 := <br />

k∈BZ<br />

ψ † k<br />

where the 3-vecto<br />

U/V = 0, λ = 1<br />

d)<br />

U/V = 3, λ = 1$ %$ &$<br />

B 0,k := 0,<br />

$<br />

$ % & ' !"#<br />

B 1,k +iB 2,<br />

#"<br />

!"#()($01!"#"$<br />

2"<br />

!"#()($01!"#"%<br />

,"<br />

!"#()('01!"#"%<br />

lattice realization of a ∆ =0<br />

B 3,k := 2t<br />

(Bernevig+Zhang+Levin+Stern) 2<br />

TRS fractional <strong>topological</strong> insulator<br />

and the three Pau<br />

sublattice index.<br />

0 ϖ γ x<br />

2ϖ 0 ϖ γ x<br />

2ϖ<br />

neighbor (NN) an<br />

ping amplitudes.


Topological insulator: 2/3 filling a)<br />

λ<br />

1<br />

Thursday, March 22, 2012<br />

!<br />

%<br />

$./<br />

!"<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2" ,"<br />

!"#()($01!"#"$ !"#()($01!"#"% !"#()('01!"#"%<br />

$"#<br />

↑ ↑0.5<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ 3-fold ↓ ↓ ↓ ↓ ↓ ↓<br />

9-fold<br />

0 10 20<br />

&<br />

lattice momentum<br />

α = A, B and co<br />

0<br />

0 1 2 3 U/V<br />

b)<br />

c)<br />

d)<br />

E/V<br />

0.2<br />

0.1<br />

0<br />

U/V = 0, λ = 0<br />

0 ϖ<br />

γ x<br />

2ϖ<br />

ψ † k,σ := c † k,A,σ ,c<br />

U/V = 0, λ = 1 U/V = 3, λ = 1<br />

γ x<br />

single-particle Ham<br />

H 0 := <br />

k∈BZ<br />

ψ † k<br />

where the 3-vector<br />

B 0,k := 0,<br />

0 ϖ 2ϖ 0 ϖ γ 2ϖ<br />

x<br />

B 1,k +iB 2,k<br />

B<br />

∋<br />

:= 2t


Topological insulator: 2/3 filling a)<br />

spontaneous TRS breaking<br />

Thursday, March 22, 2012<br />

spontaneous FQHE<br />

!<br />

%<br />

$./<br />

!"<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2" ,"<br />

!"#()($01!"#"$ !"#()($01!"#"% !"#()('01!"#"%<br />

$"#<br />

λ<br />

1<br />

↑ ↑0.5<br />

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

↓ ↓ ↓ ↓ ↓ ↓ 3-fold ↓ ↓ ↓ ↓ ↓ ↓<br />

9-fold<br />

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ν ↓ =1<br />

0 10 20<br />

&<br />

lattice momentum<br />

α = A, B and co<br />

0<br />

0 1 2 3 U/V<br />

b)<br />

c)<br />

d)<br />

E/V<br />

0.2<br />

0.1<br />

0<br />

U/V = 0, λ = 0<br />

0 ϖ<br />

γ x<br />

2ϖ<br />

γ x<br />

ψ † k,σ := c † k,A,σ ,c<br />

U/V = 0, λ = 1 U/V = 3, λ = 1<br />

single-particle Ham<br />

H 0 := <br />

k∈BZ<br />

ψ † k<br />

where the 3-vector<br />

B 0,k := 0,<br />

0 ϖ 2ϖ 0 ϖ γ 2ϖ<br />

x<br />

B 1,k +iB 2,k<br />

B<br />

ν ↑ =1/3<br />

∋<br />

:= 2t


%<br />

!"<br />

!<br />

Perspective - bulk vs. edge<br />

$./<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2"<br />

$"#<br />

$.&<br />

$.%<br />

$<br />

!"#()($01!"#"$<br />

$ '<br />

Thursday, March 22, 2012<br />

% &<br />

&'<br />

,"<br />

!"#()($01!"#"% !"#()('01!"#"%<br />

$ ' % &' $ '<br />

&<br />

% &'<br />

&<br />

FIG. 1. (color online). Numerical exact diagonalization results<br />

of Hamiltonian (2.1) for 16 electrons when sublattice A<br />

is made of 3 × 4sitesandwitht 2 /t 1 =0.4. (a) Ground state<br />

degeneracies. Denote with E n the n-th lowest energy eigenvalue<br />

of the many-body spectrum where E 1 is the many-body<br />

ground state, i.e., E n+1 ≥ E n for n =1, 2, ···. Define the parameter<br />

by n := (E n+1 − E n )/(E n − E 1 ). If a large gap<br />

&<br />

lattice momentum k and spin σ =↑, ↓ in t<br />

α = A, B and combine them in the subl<br />

ψ † k,σ<br />

c := † k,A,σ ,c† k,B,σ<br />

. Then, the secon<br />

single-particle Hamiltonian reads<br />

H 0 := <br />

B k · τ<br />

|B k<br />

| ψ k,↑ + ψ † B −k ·<br />

<br />

k,↓ B −<br />

ψ † k,↑<br />

k∈BZ<br />

Edge modes?<br />

where the 3-vector B k<br />

is defined by<br />

M. Levin and A. Stern, PRL (2009)<br />

B 0,k := 0,<br />

T. Neupert et al. PRB (2011)<br />

K =<br />

B 1,k +iB 2,k := t 1 e −iπ/4 1+e +i (k y −<br />

⎛<br />

+1 +2 0 0<br />

⎜+2 +1 0 0<br />

⎝<br />

+ t 1 e +iπ/4 e −ik x + e<br />

B 3,k := 2t 2<br />

<br />

cos kx − cos k y<br />

<br />

,<br />

and the three 0 Pauli-matrices 0 −1 −2τ =(τ 1 , τ 2 , τ 3<br />

sublattice<br />

0index. 0Here, −2t 1 −1<br />

and t 2 represent<br />

neighbor (NN) and next-nearest neighbor<br />

ping amplitudes. The Hamiltonian (2.2a)<br />

defined if t 2 = 0.<br />

One verifies that H 0 is both time-reversa<br />

and invariant under U(1) spin-1/2 rotations<br />

time-reversal operation T acts on numbers<br />

conjugation and on the electron-operators a<br />

ψ † k,↑<br />

T<br />

−→ +ψ † −k,↓ ,<br />

ψ† k,↓<br />

T<br />

−→ −ψ † −k<br />

The action of the U(1) spin-1/2 rotation R γ<br />

0 ≤ γ < 2π is given by<br />

ψ † k,↑<br />

R γ<br />

−→ e +iγ ψ † k,↑ ,<br />

⎞<br />

⎟<br />

⎠<br />

ψ† k,↓<br />

R γ<br />

−→ e −iγ ψ † k


%<br />

!"<br />

!<br />

Perspective - bulk vs. edge<br />

$./<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2"<br />

$"#<br />

$.&<br />

$.%<br />

$<br />

!"#()($01!"#"$<br />

$ '<br />

Thursday, March 22, 2012<br />

% &<br />

&'<br />

,"<br />

!"#()($01!"#"% !"#()('01!"#"%<br />

$ ' % &' $ '<br />

&<br />

% &'<br />

&<br />

FIG. 1. (color online). Numerical exact diagonalization results<br />

of Hamiltonian (2.1) for 16 electrons when sublattice A<br />

is made of 3 × 4sitesandwitht 2 /t 1 =0.4. (a) Ground state<br />

degeneracies. Denote with E n the n-th lowest energy eigenvalue<br />

of the many-body spectrum where E 1 is the many-body<br />

ground state, i.e., E n+1 ≥ E n for n =1, 2, ···. Define the parameter<br />

by n := (E n+1 − E n )/(E n − E 1 ). If a large gap<br />

&<br />

lattice momentum k and spin σ =↑, ↓ in t<br />

α = A, B and combine them in the subl<br />

ψ † k,σ<br />

c := † k,A,σ ,c† k,B,σ<br />

. Then, the secon<br />

single-particle Hamiltonian reads<br />

H 0 := <br />

B k · τ<br />

|B k<br />

| ψ k,↑ + ψ † B −k ·<br />

<br />

k,↓ B −<br />

ψ † k,↑<br />

k∈BZ<br />

Edge modes?<br />

where the 3-vector B k<br />

is defined by<br />

M. Levin and A. Stern, PRL (2009)<br />

B 0,k := 0,<br />

T. Neupert et al. PRB (2011)<br />

B 1,k +iB 2,k := t 1 e −iπ/4 1+e +i (k y −<br />

+ t 1 e +iπ/4 e −ik x + e<br />

B 3,k := 2t 2<br />

<br />

cos kx − cos k y<br />

<br />

,<br />

and the three Pauli-matrices τ =(τ 1 , τ 2 , τ 3<br />

sublattice index. Here, t 1 and t 2 represent<br />

neighbor (NN) and next-nearest neighbor<br />

ping amplitudes. The Hamiltonian (2.2a)<br />

defined if t 2 = 0.<br />

One verifies that H 0 is both time-reversa<br />

and invariant under U(1) spin-1/2 rotations<br />

time-reversal operation T acts on numbers<br />

conjugation and on the electron-operators a<br />

ψ † k,↑<br />

T<br />

−→ +ψ † −k,↓ ,<br />

ψ† k,↓<br />

T<br />

−→ −ψ † −k<br />

The action of the U(1) spin-1/2 rotation R γ<br />

0 ≤ γ < 2π is given by<br />

ψ † k,↑<br />

NO<br />

R γ<br />

−→ e +iγ ψ † k,↑ ,<br />

ψ† k,↓<br />

R γ<br />

−→ e −iγ ψ † k


%<br />

!"<br />

!<br />

Perspective - bulk vs. edge<br />

$./<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2"<br />

$"#<br />

$.&<br />

$.%<br />

!"#()($01!"#"$<br />

,"<br />

!"#()($01!"#"% !"#()('01!"#"%<br />

$<br />

fractionalized excitations in the bulk!<br />

Bulk $ rich '...% &' $ '<br />

&<br />

edge poor % &' $ '<br />

&<br />

% &'<br />

&<br />

Thursday, March 22, 2012<br />

No propagating edge modes, but...<br />

FIG. 1. (color online). Numerical exact diagonalization results<br />

of Hamiltonian (2.1) for 16 electrons when sublattice A<br />

is made of 3 × 4sitesandwitht 2 /t 1 =0.4. (a) Ground state<br />

degeneracies. Denote with E n the n-th lowest energy eigenvalue<br />

of the many-body spectrum where E 1 is the many-body<br />

ground state, i.e., E n+1 ≥ E n for n =1, 2, ···. Define the parameter<br />

by n := (E n+1 − E n )/(E n − E 1 ). If a large gap<br />

&<br />

lattice momentum k and spin σ =↑, ↓ in t<br />

α = A, B and combine them in the subl<br />

ψ † k,σ<br />

c := † k,A,σ ,c† k,B,σ<br />

. Then, the secon<br />

single-particle Hamiltonian reads<br />

H 0 := <br />

B k · τ<br />

|B k<br />

| ψ k,↑ + ψ † B −k ·<br />

<br />

k,↓ B −<br />

ψ † k,↑<br />

k∈BZ<br />

Edge modes?<br />

where the 3-vector B k<br />

is defined by<br />

M. Levin and A. Stern, PRL (2009)<br />

B 0,k := 0,<br />

T. Neupert et al. PRB (2011)<br />

B 1,k +iB 2,k := t 1 e −iπ/4 1+e +i (k y −<br />

+ t 1 e +iπ/4 e −ik x + e<br />

B 3,k := 2t 2<br />

<br />

cos kx − cos k y<br />

<br />

,<br />

and the three Pauli-matrices τ =(τ 1 , τ 2 , τ 3<br />

sublattice index. Here, t 1 and t 2 represent<br />

neighbor (NN) and next-nearest neighbor<br />

ping amplitudes. The Hamiltonian (2.2a)<br />

defined if t 2 = 0.<br />

One verifies that H 0 is both time-reversa<br />

and invariant under U(1) spin-1/2 rotations<br />

time-reversal operation T acts on numbers<br />

conjugation and on the electron-operators a<br />

ψ † k,↑<br />

T<br />

−→ +ψ † −k,↓ ,<br />

ψ† k,↓<br />

T<br />

−→ −ψ † −k<br />

The action of the U(1) spin-1/2 rotation R γ<br />

0 ≤ γ < 2π is given by<br />

ψ † k,↑<br />

NO<br />

R γ<br />

−→ e +iγ ψ † k,↑ ,<br />

ψ† k,↓<br />

R γ<br />

−→ e −iγ ψ † k


%<br />

!"<br />

!<br />

Perspective - bulk vs. edge<br />

$./<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2"<br />

$"#<br />

$.&<br />

$.%<br />

!"#()($01!"#"$<br />

,"<br />

!"#()($01!"#"% !"#()('01!"#"%<br />

$<br />

fractionalized excitations in the bulk!<br />

Bulk $ rich '...% &' $ '<br />

&<br />

edge poor % &' $ '<br />

&<br />

% &'<br />

&<br />

Thursday, March 22, 2012<br />

No propagating edge modes, but...<br />

More structure than captured by a<br />

FIG. 1. (color online). Numerical exact diagonalization results<br />

of Hamiltonian (2.1) for 16 electrons when sublattice A<br />

is made of 3 × 4sitesandwitht 2 /t 1 =0.4. (a) Ground state<br />

degeneracies. Denote with E n the n-th lowest energy eigenvalue<br />

of the many-body spectrum where E 1 is the many-body<br />

ground state, i.e., E n+1 ≥ E n for n =1, 2, ···. Define the parameter<br />

by n := (E n+1 − E n )/(E n − E 1 ). If a large gap<br />

&<br />

Z 2<br />

lattice momentum k and spin σ =↑, ↓ in t<br />

α = A, B and combine them in the subl<br />

ψ † k,σ<br />

c := † k,A,σ ,c† k,B,σ<br />

. Then, the secon<br />

single-particle Hamiltonian reads<br />

H 0 := <br />

B k · τ<br />

|B k<br />

| ψ k,↑ + ψ † B −k ·<br />

<br />

k,↓ B −<br />

ψ † k,↑<br />

k∈BZ<br />

Edge modes?<br />

where the 3-vector B k<br />

is defined by<br />

M. Levin and A. Stern, PRL (2009)<br />

B 0,k := 0,<br />

T. Neupert et al. PRB (2011)<br />

B 1,k +iB 2,k := t 1 e −iπ/4 1+e +i (k y −<br />

+ t 1 e +iπ/4 e −ik x + e<br />

B 3,k := 2t 2<br />

<br />

cos kx − cos k y<br />

<br />

,<br />

and the three Pauli-matrices τ =(τ 1 , τ 2 , τ 3<br />

sublattice index. Here, t 1 and t 2 represent<br />

neighbor (NN) and next-nearest neighbor<br />

ping amplitudes. The Hamiltonian (2.2a)<br />

defined if t 2 = 0.<br />

One verifies that H 0 is both time-reversa<br />

and invariant under U(1) spin-1/2 rotations<br />

time-reversal operation T acts on numbers<br />

conjugation and on the electron-operators a<br />

ψ † T<br />

classification<br />

k,↑<br />

−→ +ψ alone.<br />

† −k,↓ ,<br />

ψ† k,↓<br />

T<br />

−→ −ψ † −k<br />

The action of the U(1) spin-1/2 rotation R γ<br />

0 ≤ γ < 2π is given by<br />

ψ † k,↑<br />

NO<br />

R γ<br />

−→ e +iγ ψ † k,↑ ,<br />

ψ† k,↓<br />

R γ<br />

−→ e −iγ ψ † k


%<br />

!"<br />

!<br />

Perspective - bulk vs. edge<br />

$./<br />

'()*+,<br />

-()*+,<br />

$ %$ &$<br />

$<br />

$ % & ' !"#<br />

#"<br />

2"<br />

$"#<br />

$.&<br />

$.%<br />

!"#()($01!"#"$<br />

,"<br />

!"#()($01!"#"% !"#()('01!"#"%<br />

$<br />

fractionalized excitations in the bulk!<br />

Bulk $ rich '...% &' $ '<br />

&<br />

edge poor % &' $ '<br />

&<br />

% &'<br />

&<br />

Thursday, March 22, 2012<br />

No propagating edge modes, but...<br />

More structure than captured by a<br />

FIG. 1. (color online). Numerical exact diagonalization results<br />

of Hamiltonian (2.1) for 16 electrons when sublattice A<br />

is made of 3 × 4sitesandwitht 2 /t 1 =0.4. (a) Ground state<br />

degeneracies. Denote with E n the n-th lowest energy eigenvalue<br />

of the many-body spectrum where E 1 is the many-body<br />

ground state, i.e., E n+1 ≥ E n for n =1, 2, ···. Define the parameter<br />

by n := (E n+1 − E n )/(E n − E 1 ). If a large gap<br />

&<br />

Z 2<br />

lattice momentum k and spin σ =↑, ↓ in t<br />

α = A, B and combine them in the subl<br />

ψ † k,σ<br />

c := † k,A,σ ,c† k,B,σ<br />

. Then, the secon<br />

single-particle Hamiltonian reads<br />

H 0 := <br />

B k · τ<br />

|B k<br />

| ψ k,↑ + ψ † B −k ·<br />

<br />

k,↓ B −<br />

ψ † k,↑<br />

k∈BZ<br />

Edge modes?<br />

where the 3-vector B k<br />

is defined by<br />

M. Levin and A. Stern, PRL (2009)<br />

B 0,k := 0,<br />

T. Neupert et al. PRB (2011)<br />

B 1,k +iB 2,k := t 1 e −iπ/4 1+e +i (k y −<br />

+ t 1 e +iπ/4 e −ik x + e<br />

B 3,k := 2t 2<br />

<br />

cos kx − cos k y<br />

<br />

,<br />

and the three Pauli-matrices τ =(τ 1 , τ 2 , τ 3<br />

sublattice index. Here, t 1 and t 2 represent<br />

neighbor (NN) and next-nearest neighbor<br />

ping amplitudes. The Hamiltonian (2.2a)<br />

defined if t 2 = 0.<br />

One verifies that H 0 is both time-reversa<br />

and invariant under U(1) spin-1/2 rotations<br />

time-reversal operation T acts on numbers<br />

conjugation and on the electron-operators a<br />

ψ † T<br />

classification<br />

k,↑<br />

−→ +ψ alone.<br />

† −k,↓ ,<br />

“Either you are with us, or you are with the terrorists." - G.W. Bush<br />

ψ† k,↓<br />

T<br />

−→ −ψ † −k<br />

The action of the U(1) spin-1/2 rotation R γ<br />

0 ≤ γ < 2π is given by<br />

ψ † k,↑<br />

NO<br />

R γ<br />

−→ e +iγ ψ † k,↑ ,<br />

ψ† k,↓<br />

R γ<br />

−→ e −iγ ψ † k


3D<br />

T. Neupert, L. Santos, S. Ryu C. Chamon, and C. Mudry arXiv:1202.5188<br />

Thursday, March 22, 2012


Classification of non-interacting states of matter<br />

“Periodic Table of Topological Insulators”<br />

Symmetry<br />

d<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 8 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z<br />

d<br />

E Conduction Band<br />

2<br />

Conventional<br />

!=0<br />

Insulator<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

(a)<br />

(b)<br />

E F<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1<br />

Quantum spin<br />

1 Z 0 Z 2 Valence ZBand<br />

2 Z 0 0 0<br />

C 0<br />

"#/a<br />

0 k "#/a<br />

−1 0 0 Z 0 Z 2 Z<br />

FIG. 5 Edge states in the quantum spin Hall insulator. (a) 2 Z 0 0<br />

CI 1<br />

shows the interface between a QSHI and an ordinary insulator,<br />

and 1(b) shows 0the edge0state dispersion Z in0the graphene Z 2 −1 Z 2 Z 0<br />

Symmetry<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z 2<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1 1 Z 0 Z 2 Z 2 Z 0 0 0<br />

C 0 −1 0 0 Z 0 Z 2 Z 2 Z 0 0<br />

CI 1 −1 1 0 0 Z 0 Z 2 Z 2 Z 0<br />

TABLE I Periodic (2001) table corresponds of to<strong>topological</strong> the d = 4 entry in class <strong>insulators</strong> A AII. and superconductors.<br />

The have 10yet symmetry to be filled by realistic classes systems. are The search labeled is using the<br />

There are also other entries in physical dimensions that<br />

on to discover<br />

notation of Altland andNew such<br />

Zirnbauer<br />

J. phases. Phys. 12,<br />

(1997)<br />

065010<br />

(AZ)<br />

(2010)<br />

and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

III. QUANTUM SPIN HALL INSULATOR<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

TABLE I Periodic table of <strong>topological</strong> <strong>insulators</strong> and superconductors.<br />

The 10 symmetry classes are labeled using the<br />

notation of Altland and Zirnbauer (1997) (AZ) and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

the presence and absence of symmetry, with ±1 specifying<br />

the value of Θ 2 and Ξ 2 . As a function of symmetry and space<br />

dimensionality, d, the<strong>topological</strong>classifications(Z, Z 2 and 0)<br />

show a regular pattern that repeats when d → d +8.<br />

Thursday, March 22, 2012<br />

model, in which up and down spins propagate in opposite<br />

directions.<br />

M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)<br />

Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig,<br />

Kitaev, A., 2009, AIP Conf. Proc. 1134, 22; arXiv:0901.2686<br />

The 2D <strong>topological</strong> insulator is known as a quantum<br />

Conven<br />

Insulato<br />

(a)<br />

Quantum<br />

Hall insu<br />

FIG. 5 Edge<br />

shows the int<br />

tor, and (b)<br />

model, in wh<br />

directions.<br />

(2001) corre<br />

There are a<br />

have yet to<br />

on to discov


Classification of non-interacting states of matter<br />

“Periodic Table of Topological Insulators”<br />

Symmetry<br />

IQHE d<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 8 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z<br />

d<br />

E Conduction Band<br />

2<br />

Conventional<br />

!=0<br />

Insulator<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

(a)<br />

(b)<br />

E F<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1<br />

Quantum spin<br />

1 Z 0 Z 2 Valence ZBand<br />

2 Z 0 0 0<br />

C 0<br />

"#/a<br />

0 k "#/a<br />

−1 0 0 Z 0 Z 2 Z<br />

FIG. 5 Edge states in the quantum spin Hall insulator. (a) 2 Z 0 0<br />

CI 1<br />

shows the interface between a QSHI and an ordinary insulator,<br />

and 1(b) shows 0the edge0state dispersion Z in0the graphene Z 2 −1 Z 2 Z 0<br />

Symmetry<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z 2<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1 1 Z 0 Z 2 Z 2 Z 0 0 0<br />

C 0 −1 0 0 Z 0 Z 2 Z 2 Z 0 0<br />

CI 1 −1 1 0 0 Z 0 Z 2 Z 2 Z 0<br />

TABLE I Periodic (2001) table corresponds of to<strong>topological</strong> the d = 4 entry in class <strong>insulators</strong> A AII. and superconductors.<br />

The have 10yet symmetry to be filled by realistic classes systems. are The search labeled is using the<br />

There are also other entries in physical dimensions that<br />

on to discover<br />

notation of Altland andNew such<br />

Zirnbauer<br />

J. phases. Phys. 12,<br />

(1997)<br />

065010<br />

(AZ)<br />

(2010)<br />

and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

III. QUANTUM SPIN HALL INSULATOR<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

TABLE I Periodic table of <strong>topological</strong> <strong>insulators</strong> and superconductors.<br />

The 10 symmetry classes are labeled using the<br />

notation of Altland and Zirnbauer (1997) (AZ) and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

the presence and absence of symmetry, with ±1 specifying<br />

the value of Θ 2 and Ξ 2 . As a function of symmetry and space<br />

dimensionality, d, the<strong>topological</strong>classifications(Z, Z 2 and 0)<br />

show a regular pattern that repeats when d → d +8.<br />

Thursday, March 22, 2012<br />

model, in which up and down spins propagate in opposite<br />

directions.<br />

M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)<br />

Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig,<br />

Kitaev, A., 2009, AIP Conf. Proc. 1134, 22; arXiv:0901.2686<br />

The 2D <strong>topological</strong> insulator is known as a quantum<br />

Conven<br />

Insulato<br />

(a)<br />

Quantum<br />

Hall insu<br />

FIG. 5 Edge<br />

shows the int<br />

tor, and (b)<br />

model, in wh<br />

directions.<br />

(2001) corre<br />

There are a<br />

have yet to<br />

on to discov


Classification of non-interacting states of matter<br />

“Periodic Table of Topological Insulators”<br />

Symmetry<br />

IQHE d<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 8 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z<br />

d<br />

E Conduction Band<br />

2<br />

Conventional<br />

!=0<br />

Insulator<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

(a)<br />

(b)<br />

E F<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1<br />

Quantum spin<br />

1 Z 0 Z 2 Valence ZBand<br />

2 Z 0 0 0<br />

C 0<br />

"#/a<br />

0 k "#/a<br />

−1 0 0 Z 0TI<br />

Z 2 Z<br />

FIG. 5 Edge states in the quantum spin Hall insulator. (a) 2 Z 0 0<br />

CI 1<br />

shows the interface between a QSHI and an ordinary insulator,<br />

and 1(b) shows 0the edge0state dispersion Z in0the graphene Z 2 −1 Z 2 Z 0<br />

Symmetry<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z 2<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1 1 Z 0 Z 2 Z 2 Z 0 0 0<br />

C 0 −1 0 0 Z 0 Z 2 Z 2 Z 0 0<br />

CI 1 −1 1 0 0 Z 0 Z 2 Z 2 Z 0<br />

TABLE I Periodic (2001) table corresponds of to<strong>topological</strong> the d = 4 entry in class <strong>insulators</strong> A AII. and superconductors.<br />

The have 10yet symmetry to be filled by realistic classes systems. are The search labeled is using the<br />

There are also other entries in physical dimensions that<br />

on to discover<br />

notation of Altland andNew such<br />

Zirnbauer<br />

J. phases. Phys. 12,<br />

(1997)<br />

065010<br />

(AZ)<br />

(2010)<br />

and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

III. QUANTUM SPIN HALL INSULATOR<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

TABLE I Periodic table of <strong>topological</strong> <strong>insulators</strong> and superconductors.<br />

The 10 symmetry classes are labeled using the<br />

notation of Altland and Zirnbauer (1997) (AZ) and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

the presence and absence of symmetry, with ±1 specifying<br />

the value of Θ 2 and Ξ 2 . As a function of symmetry and space<br />

dimensionality, d, the<strong>topological</strong>classifications(Z, Z 2 and 0)<br />

show a regular pattern that repeats when d → d +8.<br />

Thursday, March 22, 2012<br />

model, in which up and down spins propagate in opposite<br />

directions.<br />

M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)<br />

Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig,<br />

Kitaev, A., 2009, AIP Conf. Proc. 1134, 22; arXiv:0901.2686<br />

The 2D <strong>topological</strong> insulator is known as a quantum<br />

Conven<br />

Insulato<br />

(a)<br />

Quantum<br />

Hall insu<br />

FIG. 5 Edge<br />

shows the int<br />

tor, and (b)<br />

model, in wh<br />

directions.<br />

(2001) corre<br />

There are a<br />

have yet to<br />

on to discov


Classification of non-interacting states of matter<br />

“Periodic Table of Topological Insulators”<br />

Symmetry<br />

IQHE d<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

chiral<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 8 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z<br />

d<br />

E Conduction Band<br />

2<br />

Conventional<br />

!=0<br />

Insulator<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

(a)<br />

(b)<br />

E F<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1<br />

Quantum spin<br />

1 Z 0 Z 2 Valence ZBand<br />

2 Z 0 0 0<br />

C 0<br />

"#/a<br />

0 k "#/a<br />

−1 0 0 Z 0TI<br />

Z 2 Z<br />

FIG. 5 Edge states in the quantum spin Hall insulator. (a) 2 Z 0 0<br />

CI 1<br />

shows the interface between a QSHI and an ordinary insulator,<br />

and 1(b) shows 0the edge0state dispersion Z in0the graphene Z 2 −1 Z 2 Z 0<br />

Symmetry<br />

AZ Θ Ξ Π 1 2 3 4 5 6 7 8<br />

A 0 0 0 0 Z 0 Z 0 Z 0 Z<br />

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0<br />

AI 1 0 0 0 0 0 Z 0 Z 2 Z 2 Z<br />

BDI 1 1 1 Z 0 0 0 Z 0 Z 2 Z 2<br />

D 0 1 0 Z 2 Z 0 0 0 Z 0 Z 2<br />

DIII −1 1 1 Z 2 Z 2 Z 0 0 0 Z 0<br />

AII −1 0 0 0 Z 2 Z 2 Z 0 0 0 Z<br />

CII −1 −1 1 Z 0 Z 2 Z 2 Z 0 0 0<br />

C 0 −1 0 0 Z 0 Z 2 Z 2 Z 0 0<br />

CI 1 −1 1 0 0 Z 0 Z 2 Z 2 Z 0<br />

TABLE I Periodic (2001) table corresponds of to<strong>topological</strong> the d = 4 entry in class <strong>insulators</strong> A AII. and superconductors.<br />

The have 10yet symmetry to be filled by realistic classes systems. are The search labeled is using the<br />

There are also other entries in physical dimensions that<br />

on to discover<br />

notation of Altland andNew such<br />

Zirnbauer<br />

J. phases. Phys. 12,<br />

(1997)<br />

065010<br />

(AZ)<br />

(2010)<br />

and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

III. QUANTUM SPIN HALL INSULATOR<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

TABLE I Periodic table of <strong>topological</strong> <strong>insulators</strong> and superconductors.<br />

The 10 symmetry classes are labeled using the<br />

notation of Altland and Zirnbauer (1997) (AZ) and are specified<br />

by presence or absence of T symmetry Θ, particle-hole<br />

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and0denotes<br />

the presence and absence of symmetry, with ±1 specifying<br />

the value of Θ 2 and Ξ 2 . As a function of symmetry and space<br />

dimensionality, d, the<strong>topological</strong>classifications(Z, Z 2 and 0)<br />

show a regular pattern that repeats when d → d +8.<br />

Thursday, March 22, 2012<br />

model, in which up and down spins propagate in opposite<br />

directions.<br />

M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)<br />

Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig,<br />

Kitaev, A., 2009, AIP Conf. Proc. 1134, 22; arXiv:0901.2686<br />

The 2D <strong>topological</strong> insulator is known as a quantum<br />

Conven<br />

Insulato<br />

(a)<br />

Quantum<br />

Hall insu<br />

FIG. 5 Edge<br />

shows the int<br />

tor, and (b)<br />

model, in wh<br />

directions.<br />

(2001) corre<br />

There are a<br />

have yet to<br />

on to discov


3D Lattice model<br />

3 orbital model on the cubic lattice<br />

3<br />

H k = λ 3+i sin k i + λ 7<br />

M −<br />

i=1<br />

3<br />

i=1<br />

cos k i<br />

<br />

Gell-Mann matrices<br />

flat band<br />

a) M = 0<br />

3<br />

2<br />

1<br />

0<br />

1<br />

2<br />

3<br />

4<br />

2<br />

0<br />

2<br />

4<br />

X M R X R M<br />

X M R X R M<br />

X M R X R M<br />

X M R X R M<br />

b) M = 1<br />

X M R X R M<br />

4<br />

2<br />

0<br />

2<br />

4<br />

X M R X R M<br />

c) M = 2 d) M = 3<br />

6<br />

4<br />

2<br />

0<br />

2<br />

4<br />

6<br />

X M R X R M<br />

X M R X R M<br />

Thursday, March 22, 2012


3D Lattice model<br />

3 orbital model on the cubic lattice<br />

3<br />

H k = λ 3+i sin k i + λ 7<br />

M −<br />

i=1<br />

3<br />

i=1<br />

cos k i<br />

<br />

Gell-Mann matrices<br />

flat band<br />

<br />

02×2 q<br />

H k = k<br />

q † k<br />

0<br />

chiral class (AIII)<br />

Thursday, March 22, 2012


3D Lattice model<br />

3 orbital model on the cubic lattice<br />

3<br />

H k = λ 3+i sin k i + λ 7<br />

M −<br />

i=1<br />

3<br />

i=1<br />

cos k i<br />

<br />

θ(M) =<br />

⎧<br />

⎪⎨ +2π, |M| < 1,<br />

−π, 1 < |M| < 3,<br />

⎪⎩<br />

0, 3 < |M|.<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Projection onto Landau level<br />

X = P n<br />

R Pn<br />

= R − 2 B<br />

e 3 × Π<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Projection onto Landau level<br />

X = P n<br />

R Pn<br />

= R − 2 B<br />

e 3 × Π<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

X 2<br />

∆X 1<br />

∆X 2<br />

X 1<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Projection onto Landau level<br />

X = P n<br />

R Pn<br />

= R − 2 B<br />

e 3 × Π<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

X 2<br />

∆X 1<br />

∆X 2<br />

non-commuting coordinates<br />

“fuzziness”<br />

X 1<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Coordinate transformation<br />

r µ → f µ (r)<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Coordinate transformation<br />

r µ → f µ (r)<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

<br />

f 1 ( X),f 2 ( X) <br />

=+i 2 B {f 1 ,f 2 } P ( X)+O 4 <br />

B<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Coordinate transformation<br />

r µ → f µ (r)<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

<br />

f 1 ( X),f 2 ( X) <br />

=+i 2 B {f 1 ,f 2 } P ( X)+O 4 <br />

B<br />

Poisson bracket<br />

<br />

{f 1 ,f 2 } P<br />

(r) = µν ∂f1 ∂f 2<br />

∂r µ ∂r ν<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

2D: Coordinate transformation<br />

r µ → f µ (r)<br />

<br />

X1 , X 2<br />

<br />

=+i 2 B<br />

<br />

f 1 ( X),f 2 ( X) <br />

=+i 2 B {f 1 ,f 2 } P ( X)+O 4 <br />

B<br />

Poisson bracket<br />

<br />

{f 1 ,f 2 } P<br />

(r) = µν ∂f1 ∂f 2<br />

∂r µ ∂r ν<br />

transformation preserves area<br />

⇒<br />

commutators are unchanged<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: what would be a “pristine” extension?<br />

<br />

X1 , X 2 , X 3<br />

<br />

=+i 3<br />

Nambu (quantum) 3-bracket<br />

[ A 1 , A 2 , A 3 ]= ijk<br />

Ai Aj Ak<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: what would be a “pristine” extension?<br />

r µ → f µ (r)<br />

<br />

f 1 ( X),f 2 ( X),f 2 ( X) <br />

<br />

X1 , X 2 , X 3<br />

<br />

=+i 3<br />

Nambu (quantum) 3-bracket<br />

[ A 1 , A 2 , A 3 ]= ijk<br />

Ai Aj Ak<br />

=i 3 {f 1 ,f 2 ,f 3 } N ( X)+O( 5 )<br />

<br />

{f 1 ,f 2 ,f 3 } N<br />

(r) = µνλ ∂f1 ∂f 2 ∂f 3<br />

(r)<br />

∂r µ ∂r ν ∂r λ<br />

Nambu (classical) 3-bracket<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: what would be a “pristine” extension?<br />

r µ → f µ (r)<br />

<br />

f 1 ( X),f 2 ( X),f 2 ( X) <br />

<br />

X1 , X 2 , X 3<br />

<br />

=+i 3<br />

Nambu (quantum) 3-bracket<br />

[ A 1 , A 2 , A 3 ]= ijk<br />

Ai Aj Ak<br />

=i 3 {f 1 ,f 2 ,f 3 } N ( X)+O( 5 )<br />

<br />

{f 1 ,f 2 ,f 3 } N<br />

(r) = µνλ ∂f1 ∂f 2 ∂f 3<br />

(r)<br />

∂r µ ∂r ν ∂r λ<br />

Nambu (classical) 3-bracket<br />

transformation preserves volume<br />

⇒<br />

3-brackets are unchanged<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: non-pristine<br />

<br />

X1 , X 2 , X 3<br />

<br />

=+i 3 + ...<br />

X µ =<br />

<br />

d d k χ † ã (k) iD ã ˜b<br />

µ (k) χ˜b(k)<br />

D µ (k) =∂ µ + A µ (k)<br />

when<br />

Tr D µ ,D ν<br />

<br />

= V<br />

<br />

d d k tr F µν (k) =0<br />

<br />

:<br />

<br />

Xµ , X ν , X ρ<br />

<br />

<br />

: = − iTr <br />

D µ ,D ν ,D ρ<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: non-pristine<br />

<br />

:<br />

<br />

Xµ , X ν , X ρ<br />

<br />

<br />

: = − iTr <br />

D µ ,D ν ,D ρ<br />

A. P. Polychronakos (2007)<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: non-pristine<br />

<br />

:<br />

<br />

Xµ , X ν , X ρ<br />

<br />

<br />

: = − iTr <br />

D µ ,D ν ,D ρ<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

= 12π2 i<br />

¯ρ<br />

A. P. Polychronakos (2007)<br />

CS (3)<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: non-pristine<br />

<br />

:<br />

<br />

Xµ , X ν , X ρ<br />

<br />

<br />

: = − iTr <br />

D µ ,D ν ,D ρ<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

= 12π2 i<br />

¯ρ<br />

A. P. Polychronakos (2007)<br />

CS (3)<br />

¯ρ = N p<br />

V<br />

CS (3) = π 2<br />

<br />

d 3 k<br />

(2π) 3<br />

ijk tr<br />

A i F jk − 2 3 A iA j A k<br />

<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: non-pristine<br />

<br />

:<br />

<br />

Xµ , X ν , X ρ<br />

<br />

<br />

: = − iTr <br />

D µ ,D ν ,D ρ<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

= 12π2 i<br />

¯ρ<br />

A. P. Polychronakos (2007)<br />

CS (3)<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

=+i 3<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: fuzzy coordinates<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

=+i 3<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: fuzzy coordinates<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

=+i 3<br />

X 2<br />

X 1<br />

Thursday, March 22, 2012


Non-commuting projected position operators<br />

3D: fuzzy coordinates<br />

1<br />

<br />

:<br />

N p<br />

<br />

X1 , X 2 , X 3<br />

<br />

<br />

:<br />

=+i 3<br />

X 2<br />

X 3<br />

X 1<br />

Thursday, March 22, 2012


Summary<br />

It is possible to have dispersionless bands (flat bands) that are isolated from all<br />

others by an energy gap.<br />

The isolated flat bands can be non-trivial in the sense of having a non-zero<br />

Chern number, and thus sustain an IQHE when fully occupied.<br />

When partially filled, electron-electron interactions can lead to the FQHE and<br />

other <strong>topological</strong> phases in time-reversal invariant systems.<br />

Topological Hubbard models have to ferromagnetic ground states: symmetry<br />

breaking simultaneously with IQHE or FQHE.<br />

<strong>Fractional</strong> TI in 3D: non-commuting coordinates<br />

Thursday, March 22, 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!