23.05.2014 Views

Physics 215A PS 4 Solutions

Physics 215A PS 4 Solutions

Physics 215A PS 4 Solutions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Physics</strong> <strong>215A</strong> <strong>PS</strong> 4 <strong>Solutions</strong><br />

Anthony Karmis<br />

February 15, 2010<br />

Problem 1<br />

If we have a particle interacting with an electromagnetic field our hamiltonian<br />

will be:<br />

H = 1 (¯h<br />

∇<br />

2m ı ⃗ − q ) 2<br />

A<br />

c ⃗ + qΦ<br />

For an electron, q = −e. Given a magnetic field B ⃗ = Bẑ and electric field<br />

⃗E = εŷ, we have Φ = −εy. There is more freedom in choosing A, ⃗ as long it<br />

satisfies B ⃗ = ∇ ⃗ × A. ⃗ Using the Landau( gauge, we ) have A ⃗ = −Byˆx, which<br />

additionally satisfies the Coulomb gauge ⃗∇ · A ⃗ = 0 . Using all these facts, we<br />

have:<br />

H =<br />

1<br />

(¯h<br />

∇<br />

2m ı ⃗ − q ) 2<br />

A<br />

c ⃗ + qΦ<br />

= − ¯h2<br />

2m ∇2 + ıq¯h A<br />

mc ⃗ · ⃗∇ +<br />

q2<br />

2mc 2 A2 + qΦ<br />

= − ¯h2<br />

2m ∇2 + ıe¯h<br />

mc By∂ x + e2 B 2<br />

2mc 2y2 + eεy<br />

= − ¯h2<br />

2m ∇2 + ı¯hωy∂ x + 1 2 mω2 y 2 + eεy<br />

with ω = eB<br />

mc . Note that [H, p x] = [H, p z ] = 0, so the eigenstates of<br />

H will be eigenstates of p x and p z , i.e. free waves. Assuming ψ(x, y, z) =<br />

e ıpxx/¯h e ıpzz/¯h Y (y), we have:<br />

[<br />

]<br />

¯h 2 (<br />

Hψ = k<br />

2<br />

2m x + kz) 2 p 2 y +<br />

2m − ω¯hk xy + 1 2 ω2 y 2 + eεy Y (y)<br />

where k i = p i /¯h. We see that the problem has now been reduced to a<br />

one-dimensional problem:<br />

H y = p2 y<br />

2m − ω¯hk xy + 1 2 ω2 y 2 + eεy<br />

1


In order to find the eigenenergies, we first complete the square:<br />

H y = p2 y<br />

2m + 1 2 mω2 (y − y 0 ) 2 − 1 2 mω2 y 2 0<br />

where we have introduced y 0 = (¯hωk x − eε)/mω 2 = ¯hkxc<br />

eB<br />

just a harmonic oscillator with energy:<br />

(<br />

E = n + 1 )<br />

¯hω − 1 2 2 mω2 y0<br />

2<br />

Combining this with the above results, we have:<br />

− εmc2<br />

eB<br />

. This is<br />

E n (k x , k z ) =<br />

=<br />

(<br />

n + 1 )<br />

¯hω − 1 2 2 mω2 y0 2 + ¯h2 (<br />

k<br />

2<br />

2m x + kz)<br />

2<br />

(<br />

n + 1 )<br />

¯hω + ¯hk x λ − 1 2<br />

2 mλ2 + ¯h2 kz<br />

2<br />

2m<br />

where λ = cε<br />

B<br />

. These correspond to the eigenstates:<br />

(<br />

ψ (x, y, z) = e ıkxx e ıkzz mω<br />

) (√ )<br />

1/4 1 mω<br />

√<br />

π¯h 2n n! H n<br />

¯h (y − y 0) e − 1 mω<br />

2 ¯h (y−y0)2<br />

2


Problem 2<br />

Part (a)<br />

〉<br />

∣ 1, 1 = ∣ 〉<br />

d 1/2, 1/2 ∣<br />

〉p 1/2, 1/2<br />

n<br />

( ∣∣1/2, 〉<br />

〉<br />

∣ 1, 0 =<br />

〉d 1/2 ∣<br />

p 1/2, -1/2<br />

n + ∣ 〉<br />

1/2, -1/2 ∣<br />

〉p 1/2, 1/2 〉<br />

∣ 1, -1 = ∣ 〉<br />

d 1/2, -1/2 ∣<br />

〉p 1/2, -1/2<br />

n<br />

Part (b)<br />

n<br />

)<br />

/ √ 2<br />

P ∣ ( ∣∣1/2, 〉<br />

〉 )<br />

1, 1 = P<br />

〉d 1/2 ∣<br />

p 1/2, 1/2<br />

n<br />

= ∣ 〉<br />

1/2, 1/2 ∣<br />

〉n 1/2, 1/2<br />

p<br />

= ∣ 1, 1<br />

〉d<br />

P ∣ ( ∣∣1/2, 〉<br />

〉<br />

1, 0 = P<br />

〉d 1/2 ∣<br />

p 1/2, -1/2<br />

n + ∣ 〉 )<br />

1/2, -1/2 ∣<br />

〉p 1/2, 1/2 / √ 2<br />

n<br />

( ∣∣1/2, 〉<br />

〉<br />

= 1/2 ∣ 1/2, -1/2<br />

p + ∣ 〉 )<br />

1/2, -1/2 ∣<br />

〉n 1/2, 1/2 / √ 2<br />

p<br />

n<br />

P ∣ ∣1, -1 〉 d<br />

= P ∣ ∣1, 0 〉 d<br />

( ∣∣<br />

= P 1/2, -1/2 〉 p∣<br />

∣1/2, -1/2 〉 )<br />

n<br />

= ∣ 〉<br />

1/2, -1/2 ∣<br />

〉n 1/2, -1/2<br />

p<br />

= ∣ ∣1, -1 〉 d<br />

Using this, as well as the fact that P 2 = 1, we have:<br />

〈<br />

1, m<br />

′<br />

d<br />

∣ ∣<br />

(<br />

⃗Sp − ⃗ S n<br />

) ∣∣<br />

1, m d<br />

〉<br />

⇒ 〈 1, m ′ ∣ ( ⃗<br />

d Sp − S ⃗ ) ∣∣1, 〉<br />

n md<br />

= 〈 ∣<br />

1, m ′ d<br />

∣P ( 2 Sp ⃗ − S ⃗ )<br />

n P 2∣ 〉<br />

∣1, m d<br />

= 〈 1, m ′ ∣<br />

d P<br />

(<strong>PS</strong> ⃗ p P − <strong>PS</strong> ⃗ )<br />

n P P ∣ 〉<br />

1, md<br />

= 〈 1, m ′ ∣ ( d <strong>PS</strong> ⃗ p P − <strong>PS</strong> ⃗ ) ∣∣1, 〉<br />

n P md<br />

= 〈 1, m ′ ∣ ( ⃗<br />

d Sn − S ⃗ ) ∣∣ 〉<br />

p 1, m d<br />

= − 〈 1, m ′ ∣ ( ⃗<br />

d Sp − S ⃗ ) ∣∣1, 〉<br />

n md<br />

= 0<br />

Part (c)<br />

H HF,d = − c 0<br />

a 3 ⃗µ d · ⃗µ e<br />

0<br />

= 2c 0µ N µ d<br />

¯h 2 a 3 0<br />

= 2c 0µ N µ d<br />

¯h 2 a 3 0<br />

(g p<br />

⃗ Sp + g n<br />

⃗ Sn<br />

)<br />

· ⃗S e<br />

(<br />

gp + g n<br />

2<br />

3<br />

⃗S d + g p − g n<br />

2<br />

(<br />

⃗Sp − ⃗ S n<br />

) ) · ⃗S e


H HF,d = 2c (<br />

0µ N µ d gp + g n<br />

¯h 2 a 3 2<br />

0<br />

(<br />

gp + g n<br />

= 2c 0µ N µ d<br />

¯h 2 a 3 0<br />

2<br />

⃗S d · ⃗S e + g p − g n<br />

2<br />

J 2 − S 2 e − S2 d<br />

2<br />

(<br />

⃗Sp − ⃗ S n<br />

)<br />

· ⃗S e<br />

)<br />

+ g p − g n<br />

2<br />

(<br />

⃗Sp − ⃗ S n<br />

)<br />

· ⃗S e<br />

)<br />

Acting this on our total spin state ∣ ∣j, m j<br />

〉<br />

=<br />

∣ ∣ S d , m d<br />

〉∣ ∣ S e , m e<br />

〉<br />

in order to get<br />

the energy eigenvalues for the hyperfine hamiltonian, and defining ḡ = (g p +<br />

g n )/2:<br />

E HF,d = 〈 H HF,d<br />

〉<br />

= 2c 0µ N µ d<br />

¯h 2 a 3 0<br />

(<br />

ḡ<br />

〈<br />

J 2 − S 2 e − S 2 d〉<br />

2<br />

+ g p − g n 〈 ( Sp ⃗ − S<br />

2<br />

⃗ )<br />

n · ⃗S<br />

〉 )<br />

e<br />

= (j (j + 1) − S e (S e + 1) − S d (S d + 1))ḡ c 0µ N µ d<br />

a 3 0<br />

(<br />

= j (j + 1) − 1 ( ) )<br />

1<br />

2 2 + 1 − 1 (1 + 1) ḡ c 0µ N µ d<br />

a 3 0<br />

(<br />

= j (j + 1) − 11 )<br />

ḡ c 0µ N µ d<br />

4 a 3 0<br />

For S d = 1 and S e = 1 2 , we could have J = 1 2 or J = 3 2<br />

. We are also given<br />

g p = 5.56 and g n = −3.82, so ḡ = 0.87. Therefore, we have (in units of c0µNµ d<br />

):<br />

a 3 0<br />

E HF,d<br />

= −2ḡ, ḡ<br />

= −1.74, 0.87<br />

for the j = 1 2 and j = 3 2<br />

states, respectively.<br />

Part (d)<br />

As λ ∼ 1/f ∼ 1/∆E,<br />

λ d<br />

λ p<br />

= ∆E HF,p<br />

∆E HF,d<br />

⇒ λ d = ∆E HF,p<br />

∆E HF,d<br />

λ p<br />

From above, we see that ∆E HF,d = 3ḡ. We are also given λ p = 21.4 cm.<br />

To find ∆E HF,d , we proceed similarly to the previous calculation:<br />

H HF,p = − c 0<br />

a 3 ⃗µ p · ⃗µ e<br />

0<br />

= 2c 0µ N µ d<br />

¯h 2 g<br />

a 3 pSp ⃗ · ⃗S e<br />

0<br />

= 2c 0µ N µ d J 2 − Se 2 − Sp<br />

2<br />

¯h 2 g<br />

a 3 p<br />

2<br />

0<br />

4


Therefore, we have (in units of c0µNµ d<br />

):<br />

a 3 0<br />

(<br />

E HF,p = g p j (j + 1) − 3 )<br />

2<br />

= − 3 2 g p, 1 2 g p<br />

for j = 0 and j = 1, respectively. This means ∆E HF,p = 2g p . Therefore, we<br />

have:<br />

λ d = ∆E HF,p<br />

∆E HF,d<br />

λ p<br />

= 2g p<br />

3ḡ λ p<br />

g p<br />

= 4 λ p<br />

3 g p + g n<br />

= 4 ( )<br />

5.56<br />

21.4 cm<br />

3 5.56 − 3.82<br />

= 91.2 cm<br />

5


Problem 3<br />

H = 1 (¯h<br />

∇<br />

2m ı ⃗ + e ) 2<br />

A<br />

c ⃗ − eΦ<br />

The oft-neglected quadratic term we wish to investigate is:<br />

H (1) =<br />

e2 ∣ ∣ ⃗A 2<br />

2mc 2<br />

For a uniform magnetic fieldB, ⃗ we have A ⃗ = 1 2 (⃗ B × ⃗r):<br />

H (1) =<br />

=<br />

=<br />

e 2 ∣ 1<br />

2mc 2 2 (⃗ B × ⃗r) ∣ 2<br />

e 2 ( )<br />

⃗B × ⃗r<br />

8mc 2 ·<br />

e 2 (<br />

8mc 2 r 2 B 2 −<br />

(<br />

⃗B × ⃗r<br />

)<br />

(<br />

⃗r · ⃗B<br />

) ) 2<br />

have:<br />

Choosing our coordinates such that ⃗ B = Bẑ, we have:<br />

H (1) = e2 B 2<br />

8mc 2 (<br />

x 2 + y 2)<br />

Finding the correction to the first energy level (ψ 100 = √ 1 e −r/a0 ), we<br />

πa 3<br />

0<br />

E (1) = 〈 100 ∣ ∣ 〉<br />

H<br />

(1) 100<br />

∫ ∣∣ψ100 ∣<br />

=<br />

2<br />

H (1) d 3 ⃗r<br />

= 4π e2 B 2 ∫<br />

1<br />

8mc 2 πa 3 e ( −2∗r/a0 x 2 + y 2) r 2 dr<br />

0<br />

= e2 B 2 ∫<br />

1<br />

2mc 2 a 3 e ( −2∗r/a0 x 2 + y 2) r 2 dr<br />

0<br />

Noting that 〈 x 2〉 = 〈 y 2〉 = 1 3〈<br />

r<br />

2 〉 , we have:<br />

E (1) = e2 B 2 ∫<br />

1<br />

3mc 2 a 3 0<br />

= e2 B 2<br />

4mc 2 a2 0<br />

= 1 e 2 a 2 0<br />

2 2mc 2 B2<br />

e −2∗r/a0 r 4 dr<br />

= − 1 2 χB2<br />

with,<br />

χ = − e2 a 2 0<br />

2mc 2<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!