23.05.2014 Views

General Relativity: Homework 4 Solutions - Department of Physics ...

General Relativity: Homework 4 Solutions - Department of Physics ...

General Relativity: Homework 4 Solutions - Department of Physics ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>General</strong> <strong>Relativity</strong>: <strong>Homework</strong> 4 <strong>Solutions</strong><br />

1. Carroll Problem 4.1<br />

The Lagrange density for electromagnetism in curved space is<br />

where J µ is the conserved current.<br />

L = √ −g ( − 1 4 F µν F µν + A µ J µ)<br />

a) Derive the energy-momentum tensor by functional differentiation with respect to the metric. You can assume<br />

that the A µ J µ term does not contribute to the energy momentum tensor.<br />

b) Consider adding a new term to the Lagrangian,<br />

L ′ = βR µν g ρσ F µρ F νσ<br />

How are Maxwell’s equations altered in the presence <strong>of</strong> this term? Einstein’s equation? Is the current still<br />

conserved?<br />

Solution:<br />

a) To start let’s make all <strong>of</strong> the metric dependence <strong>of</strong> L explicit. In particular the trace <strong>of</strong> the field strength<br />

depends on the metric so let’s lower all <strong>of</strong> the indices and drop the piece associated with the conserved current<br />

because <strong>of</strong> the assumption stated by the problem.<br />

L = − 1 4√ −g g λµ g ρν F λρ F µν<br />

Now perform the variation <strong>of</strong> the metric, g µν ↦→ g µν + δg µν . Under such variations we have that the square<br />

root <strong>of</strong> the determinant varies as<br />

√ √ 1√ −g ↦→ −g − −g gµν δg µν<br />

2<br />

Now make the corresponding changes in the Lagrangian<br />

L + δL = − 1 4 (√ −g − 1 2√ −g gµν δg µν )(g λµ + δg λµ )(g ρν + δg ρν )F λρ F µν<br />

Now expand all <strong>of</strong> the factors out, keeping terms only linear in the variation<br />

L + δL = − 1 √ ( 1 −g 1 −<br />

4 2 g στ δg στ )( g λµ g ρν + δg λµ g ρν + g λµ δg ρν) F λρ F µν<br />

L + δL = − 1 4√ −g<br />

(<br />

g λµ g ρν + δg λµ g ρν + g λµ δg ρν − 1 2 g στ δg στ g λµ g ρν) F λρ F µν<br />

Now subtract the original Lagrangian from both sides leaving just the variation<br />

δL = − 1 4√ −g<br />

(<br />

δg λµ g ρν + g λµ δg ρν − 1 2 g στ δg στ g λµ g ρν) F λρ F µν<br />

= − 1 √ (<br />

−g δg λµ g ρν F λρ F µν + g λµ δg ρν F λρ F µν − 1 4<br />

2 g στ δg στ g λµ g ρν )<br />

F λρ F µν<br />

1


Now take some care in permuting the indices <strong>of</strong> F µν in the fist term, remembering that it is antisymmetric,<br />

so we will flip the indices <strong>of</strong> both factors and raise one <strong>of</strong> them<br />

δL = − 1 √ (<br />

−g δg λµ F ρλ F ρ µ + δg ρν F µ<br />

4<br />

ρF µν − 1 2 g στ δg στ F µν )<br />

F µν<br />

Since there are no free indices we can relabel any paired indices within a given term. In particular we should<br />

look to match all <strong>of</strong> the indices <strong>of</strong> the variation term.<br />

⇒<br />

δL<br />

δg µν = −1 4<br />

δL = − 1 √ (<br />

−g δg µν F ρµ F ρ ν + δg µν F ρ<br />

4<br />

µF ρν − 1 2 g µνδg µν F λρ )<br />

F λρ<br />

√ (<br />

−g Fλµ F λ ν + F λ µF λν − 1 2 g µνF λρ ) 1√ (<br />

F λρ = − −g 2F<br />

λ<br />

4<br />

µ F λν − 1 2 g µνF λρ )<br />

F λρ<br />

So finally we have the energy-momentum tensor<br />

T µν = − 2 √ −g<br />

δL<br />

δg µν = F λ µF λν − 1 4 g µνF λρ F λρ<br />

b) Let’s look at the full Lagrangian (where the field strength tensor has all lower indices) to get an idea <strong>of</strong> how<br />

the resulting equations <strong>of</strong> motion might change<br />

L + L ′ = √ −g ( − 1 4 gλµ g ρν F λρ F µν + A µ J µ + βR µν g ρσ F µρ F νσ<br />

)<br />

To see how this new term affects Maxwell’s equations we should focus on the parts containing the field<br />

strength tensor (see Carroll §1.10). Using the freedom to relabel the indices, we will make it so that the field<br />

strength tensors in each term have matching indices, and then factor that term out<br />

L+L ′ = √ −g ( − 1 4 gλµ g ρν F λρ F µν +A µ J µ +βR λµ g ρν F λρ F µν<br />

)<br />

=<br />

√ −g<br />

(<br />

−<br />

1<br />

4 gλµ g ρν +βR λµ g ρν) F λρ F µν + √ −gA µ J µ<br />

Now to derive Maxwell’s equations (i.e. the equations <strong>of</strong> motion for the field A µ ) we should derive the Euler-<br />

Lagrange equations corresponding to variations <strong>of</strong> A µ and ∇ ν A µ (demanding covariant equations). However<br />

note that the only term dependent upon ∇ ν A µ is the field strength tensor.<br />

δ<br />

δ(∂ σ A τ ) [F δ<br />

λρF µν ] =<br />

δ(∇ σ A τ ) [(∇ λA ρ − ∇ ρ A λ )(∇ µ A ν − ∇ ν A µ )]<br />

= (δ σ λδ τ ρ − δ σ ρ δ τ λ)(∇ µ A ν − ∇ ν A µ ) + (∇ λ A ρ − ∇ ρ A λ )(δ σ µδ τ ν − δ σ ν δ τ µ)<br />

= (δ σ λδ τ ρ − δ σ ρ δ τ λ)F µν + F λρ (δ σ µδ τ ν − δ σ ν δ τ µ)<br />

Therefore the variational derivative <strong>of</strong> the Lagrangian is<br />

δ(L + L ′ )<br />

δ(∂ σ A τ ) = √ −g ( − 1 4 gλµ g ρν + βR λµ g ρν) [(δ σ λδ τ ρ − δ σ ρ δ τ λ)F µν + F λρ (δ σ µδ τ ν − δ σ ν δ τ µ)]<br />

= √ −g ( F τσ + 2β(R σµ g τν − R τµ g σν ) √ (<br />

)F µν = −g F τσ + 2βR µ[τ F σ] )<br />

µ<br />

We can now write out Maxwell’s equation<br />

(<br />

∇ µ F νµ + 2βR λ[ν F µ] )<br />

λ = J<br />

ν<br />

A quick check shows that we recover the usual equation when β goes to zero. Because mixed partial derivatives<br />

commute and the new term is antisymmetric in µ and ν, we see that the current is still conserved locally ,<br />

that is ∂ ν J ν = 0, however because covariant derivatives do not commute, the current is not conserved globally ,<br />

that is ∇ ν J ν ≠ 0.<br />

2


Now we must consider variations <strong>of</strong> the metric to see how this new term affects Einstein’s equation. Let’s<br />

consider the terms that will vary.<br />

L ′ + δL ′ = β( √ −g + δ √ −g)(R µν + δR µν )(g ρσ + δg ρσ )F µρ F νσ<br />

= √ −gβF µρ F νσ (R µν g ρσ + g ρσ δR µν + R µν δg ρσ − 1 2 Rµν g ρσ g λγ δg λγ )<br />

⇒ δL ′ = √ −gβF µρ F νσ (g ρσ δR µν + R µν δg ρσ − 1 2 Rµν g ρσ g λγ δg λγ )<br />

We must now figure out δR µν in terms <strong>of</strong> the variation <strong>of</strong> the metric (note that the argument in Carroll that<br />

this variation disappears, fails in this case because we are not contracting with g µν ). Recall that<br />

R µν = g µα g νγ R λ αλγ<br />

and so the variation is<br />

δR µν = g µα g νγ δR λ αλγ<br />

Now let’s pluck the variation <strong>of</strong> the Riemann tensor and Christ<strong>of</strong>fel symbols from Carroll (eqs. 4.62 and 4.64)<br />

δR λ αλγ = ∇ λ (δΓ λ γα) − ∇ γ (δΓ λ λα)<br />

δΓ λ γα = − 1 2 [g ρα∇ γ (δg ρλ ) + g ργ ∇ α (δg ρλ ) − g ασ g γτ ∇ λ (δg στ )]<br />

Putting this into the expression for the variation <strong>of</strong> the Riemann tensor gives us<br />

δR λ αλγ = − 1 2 [g ργ∇ λ ∇ α (δg ρλ ) − g ασ g γτ ∇ λ ∇ λ (δg στ ) + g ασ ∇ λ ∇ γ (δg σλ ) − ∇ γ ∇ α (g ρλ δg ρλ )]<br />

δR λ αλγ = − 1 2 [∇ λ∇ α (δg λ γ) − ∇ γ ∇ α (δg λ λ) + ∇ λ ∇ γ (δg λ α) − g ασ g γτ ∇ λ ∇ λ (δg στ )]<br />

⇒ δR µν = g µα g νγ δR λ αλγ = − 1 2 [∇ λ∇ µ (δg λν ) − ∇ ν ∇ µ (δg λ λ) + ∇ λ ∇ ν (δg λµ ) − δ µ σδ ν τ ∇ λ ∇ λ (δg στ )]<br />

δR µν = − 1 2 [∇ λ∇ µ (δg λν ) − ∇ ν ∇ µ (δg λ λ) + ∇ λ ∇ ν (δg λµ ) − ∇ λ ∇ λ (δg µν )]<br />

Now just focus on the variation <strong>of</strong> the action due to the variation <strong>of</strong> the Ricci tensor<br />

∫ ∫<br />

√−gβFµρ<br />

δS R = F νσ g ρσ δR µν = − 1 −gβFµρ F νσ g<br />

2√ ρσ [∇ λ ∇ µ (δg λν )−∇ ν ∇ µ (δg λ λ)+∇ λ ∇ ν (δg λµ )−∇ λ ∇ λ (δg µν )]<br />

Now integrate by parts twice, using the fact that the variation and it’s covariant derivative vanish at the<br />

boundary to arrive at<br />

∫<br />

δS R = − 1 √ [<br />

−gβ ∇ µ ∇ λ (F µρ F νσ g ρσ )δg λν −∇ µ ∇ ν (F µρ F νσ g ρσ )δg λ<br />

2<br />

λ+∇ ν ∇ λ (F µρ F νσ g ρσ )δg λµ −∇ λ ∇ λ (F µρ F νσ g ρσ )δg µν]<br />

Now do some relabelling<br />

∫<br />

δS R = − 1 √ [<br />

−gβ ∇ λ ∇ µ (F λρ F νσ g ρσ )−∇ λ ∇ γ (F λρ F γσ g ρσ )g µν +∇ λ ∇ µ (F νρ F λσ g ρσ )−∇ λ ∇ λ (F µρ F νσ g ρσ ) ] δg µν<br />

2<br />

So now the variation <strong>of</strong> the new term is<br />

δL ′ = √ (<br />

−gβ − 1 [<br />

∇ λ ∇ µ (F λρ F νσ g ρσ ) − ∇ λ ∇ γ (F λρ F γσ g ρσ )g µν + ∇ λ ∇ µ (F νρ F λσ g ρσ ) − ∇ λ ∇ λ (F µρ F νσ g ρσ ) ]<br />

2<br />

+F µρ F νσ R ρσ − 1 2 Rλγ g ρσ F λρ F γσ g µν<br />

)<br />

δg µν<br />

3


and Einstein’s equation now reads<br />

(<br />

R µν − 1 2 Rg µν + β − 1 ∇<br />

2[ λ ∇ µ (F λρ F νσ g ρσ ) − ∇ λ ∇ γ (F λρ F γσ g ρσ )g µν + ∇ λ ∇ µ (F νρ F λσ g ρσ )<br />

−∇ λ ∇ λ (F µρ F νσ g ρσ ) ] + F µρ F νσ R ρσ − 1 2 Rλγ g ρσ F λρ F γσ g µν<br />

)<br />

= T µν<br />

where T µν is the energy momentum tensor associated with the electromagnetic field derived in part a.<br />

2.<br />

The point <strong>of</strong> this exercise is to compute the first correction to the Newtonian solution caused by a source that<br />

rotates. In Newtonian gravity, the angular momentum <strong>of</strong> the source does not affect the field: two sources with<br />

identical densities, ρ(x i ), but different angular momenta have the same gravitational field. This is not so in <strong>General</strong><br />

<strong>Relativity</strong>, since all components <strong>of</strong> T µν generate the field. This is an example <strong>of</strong> a post-Newtonian effect.<br />

a) Suppose a spherical body <strong>of</strong> uniform density ρ and radius R rotates rigidly about the x 3 axis with constant<br />

angular velocity ω. Write down the components T 0ν in a Lorentz frame at rest with respect to the center <strong>of</strong><br />

mass <strong>of</strong> the body, assuming ρ, ω, and R are independent <strong>of</strong> time. For each component, work to the lowest<br />

non-vanishing order in ωR.<br />

b) The general solution to the equation ∇ 2 f = g, that vanishes at infinity, is the generalization <strong>of</strong> Φ(r) = −Gm/r,<br />

f(x) = − 1 ∫<br />

4π<br />

g(y)<br />

|x − y| d3 y<br />

Use this to solve Einstein’s Equation, keeping only terms linear in the perturbation, for the components <strong>of</strong><br />

the trace-reversed perturbation h 00 and h 0i , where h µν = h µν − 1 2 ηµν h, for the source described in part (a).<br />

Obtain solutions only outside the body and only to the lowest non-vanishing order in r −1 , where r is the<br />

distance from the center <strong>of</strong> the body. Express the result for h 0i in terms <strong>of</strong> ω. Find the metric tensor within<br />

this approximation and transform it to spherical coordinates.<br />

c) Since the metric is independent <strong>of</strong> t and the azimuthal angle, φ, particles orbiting this body will have constant<br />

p 0 and p φ along their trajectories. Consider a particle <strong>of</strong> non-zero rest mass in a circular orbit <strong>of</strong> radius r in<br />

the equitorial plane. To lowest order in ω, calculate the difference between its orbital period when it’s orbiting<br />

with the direction <strong>of</strong> the body’s rotation (prograde) and when it’s orbiting against the direction <strong>of</strong> the body’s<br />

rotation (retrograde). (Define the period to be the coordinate time taken for one orbit <strong>of</strong> ∆φ = 2π).<br />

Solution:<br />

a) Given that we are doing a small perturbation to the Newtonian solution, we should assume that the rotation<br />

<strong>of</strong> the body is non-relativistic (ωR


1<br />

from this we can determine the factor γ = √ , where we will use the unperturbed metric η<br />

dx µ dx ν<br />

µν to<br />

gµν<br />

dt dt<br />

calculate.<br />

1<br />

⇒ γ =<br />

1 − ω 2 r 2 ≈ 1 + ω2 r 2<br />

Now we can write out the 4-velocity<br />

U µ = dxµ<br />

dτ<br />

= γ dxµ<br />

dt<br />

= γ(1, −ωr sin ωt sin θ, ωr cos ωt sin θ, 0)<br />

which to first order in ωR is just dxµ<br />

dt<br />

(i.e. γ = 1). Now we can calculate the components T 0ν for the<br />

energy-momentum tensor (for r = √ x 2 + y 2 + z 2 ≤ R):<br />

T 00 = ρU 0 U 0 = ρ<br />

T 01 = ρU 0 U 1 = −ρωy<br />

T 02 = ρU 0 U 2 = ρωx<br />

T 03 = ρU 0 U 3 = 0<br />

b) We will now use Einstein’s equation (with upper indices) to solve for the perturbation to the metric.<br />

R µν − 1 2 Rgµν = 8πGT µν<br />

where<br />

g µν = η µν − h µν<br />

We will be dealing with the case where |h µν |


equations, we are free to choose our coordinates. There are four coordinates, so we can equivalently enforce<br />

four conditions on the solution to our metric. Before we decide what conditions to impose, let’s write the<br />

Einstein tensor in terms <strong>of</strong> the trace-reversed perturbation h µν = h µν − 1 2 hηµν<br />

G µν = 1 (<br />

∂ µ ∂ λ (h νλ + 1 2<br />

2 hηνλ )+∂ ν ∂ λ (h µλ + 1 2 hηµλ )−∂ λ ∂ λ (h µν + 1 2 hηµν )−∂ µ ∂ ν h+η µν ∂ λ ∂ λ h−η µν ∂ λ ∂ ρ (h λρ + 1 2 hηλρ ) )<br />

which simplifies to<br />

G µν = 1 (<br />

∂ µ ∂ λ h νλ + ∂ ν ∂ λ h µλ − η µν ∂ λ ∂ ρ h λρ − ∂ λ ∂ λ h µν )<br />

2<br />

Now we can decide what conditions we would like to put on the perturbation terms in order to simplify the<br />

calculations. Noting that the four-divergence <strong>of</strong> the perturbation comes up in three <strong>of</strong> the four terms, if we<br />

enforced the four equations<br />

∂ λ h µλ = 0<br />

then, after neglecting the time derivatives, we are led to the tidy expression<br />

G µν = − 1 2 ∇2 h µν<br />

and now Einstein’s equation reads<br />

− 1 2 ∇2 h µν = 8πGT µν<br />

The only non-zero terms in the energy-momentum tensor are those with at least one time component. Therefore<br />

we can set h ij = 0 for i, j = 1, 2, 3.<br />

Consider the first equation<br />

Let’s use the general form <strong>of</strong> the solution to solve<br />

∫<br />

h 00 (r) = 4Gρ<br />

∇ 2 h 00 = −16πGρ<br />

1<br />

|r − r ′ | d3 r ′ ≈ 4Gρ 1 ∫<br />

r<br />

d 3 r ′ = 16πGρR3<br />

3r<br />

= 4GM<br />

r<br />

1<br />

where we have just taken the first order term <strong>of</strong> the Taylor expansion<br />

|r−r ′ | = 1 r′·ˆr<br />

r<br />

(1 +<br />

r<br />

+ ...) for r >> r ′ .<br />

Now consider<br />

∇ 2 h 01 = −16πGρωy<br />

the solution to which is<br />

∫<br />

h 01 y ′ d 3 r ′<br />

(r, θ, φ) = 4Gρω<br />

|r − r ′ |<br />

1<br />

where the integral is taken over the source matter. Now expand<br />

|r−r ′ |<br />

to the first two orders, this will be<br />

necessary because we will see that the first order term will be zero.<br />

∫<br />

h 01 (r, θ, φ) = 4Gρω<br />

( 1 r + r′ · ˆr<br />

r 2 )y′ d 3 r ′ = 4Gρω<br />

∫ ( 1<br />

r y′ + r′ · ˆr<br />

r 2 y′) d 3 r ′<br />

The source matter has a spherical distribution, and as such the region <strong>of</strong> integration is symmetric under sign<br />

changes <strong>of</strong> the coordinates. We may then see that the first term in the integral, being odd in y ′ , will yield no<br />

contribution.<br />

h 01 (r, θ, φ) = 4Gρω 1 ∫<br />

r 2 (r ′ · ˆr)y ′ d 3 r ′ = 4Gρω 1 ∫<br />

r 2 (x ′ cos φ sin θ + y ′ sin φ sin θ + z ′ cos θ)y ′ d 3 r ′<br />

h 01 (r, θ, φ) = 4Gρω sin θ sin φ < y2 ><br />

r 2<br />

6


where we have used the notation < y 2 >= ∫ y ′2 d 3 y ′ , to denote the average <strong>of</strong> the square <strong>of</strong> the y-coordinate<br />

on the sphere and that ˆr = (cos φ sin θ, sin φ sin θ, cos θ). We have also used symmetry to deduce that the x ′ y ′<br />

and z ′ y ′ terms in the integrand will not contribute. Similarly we deduce<br />

We also know that because T 03 vanishes, h 03 = 0.<br />

h 02 (r, θ, φ) = − 4Gρω sin θ cos φ < x2 ><br />

r 2<br />

Now let’s translate back to the metric perturbations, which gives us the following equations<br />

h µµ = h µµ − h<br />

h 01 = h 01<br />

h 02 = h 02<br />

h 03 = h 03<br />

h = −h 00 + h 11 + h 22 + h 33<br />

We can see readily that<br />

h 01 = 4Gρω sin θ sin φ < y2 ><br />

r 2<br />

h 02 = − 4Gρω sin θ cos φ < x2 ><br />

r 2<br />

h 03 = 0<br />

Because h ii = 0 for i = 1, 2, 3 we have that h ii = 1 2 h (which implies all hµµ are equal) so we can write the<br />

trace entirely in terms <strong>of</strong> h 00 h = 2h 00<br />

and we have h 00 = h 00 − 1 2 (2h00 ) which implies<br />

h µµ = 1 2 h00 = 2GM<br />

r<br />

Now let’s transform from Cartesian to spherical coordinates using the transformation law for (0, 2)-tensors.<br />

h 0r = ∂x<br />

∂r h 01 + ∂y<br />

∂r h 02 = (cos φ sin θ) ( −4Gρω sin θ sin φ < y 2 ><br />

r 2 )<br />

+ (sin φ sin θ)<br />

(4Gρω sin θ cos φ < x 2 ><br />

r 2 )<br />

= 0<br />

where we’ve used that by the spherical symmetry <strong>of</strong> the source distribution < x 2 >=< y 2 >.<br />

h 0φ = ∂x<br />

∂φ h 01 + ∂y<br />

∂φ h 02<br />

h 0φ = (−r sin φ sin θ) ( −4Gρω sin θ sin φ < y 2 > ) (4Gρω sin θ cos φ < x 2 > )<br />

+ (r cos φ sin θ)<br />

r 2 r 2<br />

h 0φ = 4Gρω sin2 θ(< x 2 > + < y 2 >)<br />

r<br />

While they are equal we have kept the distinction between < x 2 > and < y 2 > so that we may make an<br />

observation. In particular the combination ρ(< x 2 > + < y 2 >) = ∫ ρ(x ′2 + y ′2 )d 3 r ′ is equal to the moment<br />

<strong>of</strong> inertia about the z-axis <strong>of</strong> the sphere (for a uniform sphere this is I = 2 5 MR2 = 8π 5 ρR5 ). We may then<br />

rewrite this component as<br />

h 0φ = 4G sin2 θL<br />

r<br />

where L = Iω is the angular momentum <strong>of</strong> the source matter.<br />

Let’s focus on the remaining non-zero components <strong>of</strong> the metric,<br />

7


h rr = ( ∂x<br />

∂r<br />

) 2h11<br />

+ ( ∂y<br />

∂r<br />

) 2h22<br />

+ ( ∂z ) 2h33<br />

= 8πGρR3<br />

∂r<br />

3r<br />

h φφ = ( ∂x ) 2h11<br />

+ ( ∂y ) 2h22<br />

+ ( ∂z ) 2h33<br />

= 8πGρR3 r sin 2 θ<br />

∂φ ∂φ ∂φ<br />

3<br />

h θθ = ( ∂x) 2h11<br />

+ ( ∂y ) 2h22<br />

+ ( ∂z ) 2h33<br />

= 8πGρR3 r<br />

∂θ ∂θ ∂θ<br />

3<br />

It is easily verified that the remaining <strong>of</strong>f-diagonal terms are zero. Now we can write out the metric as<br />

where Φ = − GM r<br />

ds 2 = −(1 + 2Φ)dt 2 + 4G sin2 θL<br />

(dtdφ + dφdt) + (1 − 2Φ)(dr 2 + r 2 sin 2 θdφ 2 + r 2 dθ 2 )<br />

r<br />

= − 4πGρR3<br />

3r<br />

.<br />

c) A particle in orbit in the equatorial plane will have the trajectory<br />

x µ = (t, r, φ(t), π 2 )<br />

Now consider the r-component <strong>of</strong> the geodesic equation for such trajectories (i.e. constant r and θ = π/2)<br />

d 2 r<br />

dτ 2 + ( dt ) 2 Γr tt + Γ<br />

r<br />

(dφ) 2 (<br />

dτ φφ + 2Γ<br />

r dt dφ) dτ<br />

φt = 0<br />

dτ dτ<br />

⇒ Γ r ( dt ) 2<br />

tt + Γ<br />

r<br />

(dφ) 2 (<br />

dτ φφ + 2Γ<br />

r dt dφ) dτ<br />

φt = 0<br />

dτ dτ<br />

Because the metric is t and φ independent we see that<br />

Γ r tt = − 1 2 grr ∂ r g tt<br />

Γ r φφ = − 1 2 grr ∂ r g φφ<br />

Γ r φt = − 1 2 grr ∂ r g φt<br />

If we assume that the body is orbiting slowly (so that we may assume t ≈ τ) the geodesic equation may then<br />

be written as<br />

(dφ) 2 (dφ) ∂ r g tt + ∂ r g φφ + 2∂r g φt = 0<br />

dt<br />

dt<br />

Plugging in the metric components we have<br />

−∂ r (1 − 2GM ) + ∂ r (r 2 + 2GMr) ( dφ) 2<br />

+ 2∂r ( 4GL<br />

r<br />

dt<br />

r<br />

)( dφ) = 0<br />

dt<br />

− 2GM<br />

r 2 + 2(r + GM) ( dφ) 2 8GL(dφ) − = 0<br />

dt r 2 dt<br />

which we can rewrite as<br />

r 2 (1 +<br />

r<br />

GM )( dφ) 2 4L(dφ) − − 1 = 0<br />

dt M dt<br />

Recognizing this equation as a quadratic, we solve for dφ<br />

dt<br />

4L<br />

dφ<br />

dt =<br />

M ± √<br />

16L 2<br />

M 2 + 4r 2 (1 + r<br />

2r 2 (1 +<br />

Now we may calculate the difference in the orbital period<br />

∆T = 2π | dφ<br />

dt − | − | dφ<br />

dt + |<br />

| dφ dφ<br />

dt + dt − |<br />

r<br />

GM )<br />

GM )<br />

( 4L )(<br />

M<br />

= 2π<br />

r 2 (1 +<br />

r<br />

GM )<br />

∆T = 8πL<br />

M<br />

= 16π<br />

5 R2 ω<br />

r 2( 1 +<br />

r ) )<br />

GM<br />

Note that when L → 0 the difference in orbital period is zero, as we should expect.<br />

8


3.<br />

In the presence <strong>of</strong> a cosmological constant Λ, Einstein’s equation is<br />

R µν − 1 2 Rg µν + Λg µν = 8πGT µν<br />

a) Calculate the gravitational potential Φ in the Newtonian limit outside a spherically symmetric point source<br />

with ρ = Mδ 3 (r).<br />

b) A good description <strong>of</strong> the gravitational forces in our solar system is given by Newton’s potential, Φ =<br />

−GM ⊙ /r, where M ⊙ is the mass <strong>of</strong> the sun. Use this fact to determine an upper limit for the vacuum energy<br />

density ρ Λ = Λ/8πG, given that the radius <strong>of</strong> Pluto’s orbit is r P luto ≈ 6 × 10 12 m. Express your answer in<br />

GeV 4 .<br />

Solution:<br />

a) Follow the steps in Carroll §4.2 to derive Poisson’s equation from Einstein’s equation in the Newtonian limit.<br />

∇ 2 Φ = 4πGρ<br />

Now set ρ = Mδ 3 (r) − ρ Λ . The spherical symmetry <strong>of</strong> the distribution requires that the potential should only<br />

depend on r, the distance from the point source, that is we should look for a solution <strong>of</strong> the form Φ(r).<br />

Poisson’s equation now reads<br />

∇ 2 Φ = 4πG(Mδ 3 (r) − ρ Λ (r))<br />

Now integrate both sides over the volume <strong>of</strong> a sphere <strong>of</strong> radius r ′<br />

∫<br />

∫<br />

∇ 2 Φ dV = 4πG (Mδ 3 (r) − ρ Λ (r))dV<br />

First look at the right hand side and note that we can apply Stokes’ theorem<br />

∫<br />

∫<br />

∫<br />

∇ 2 Φ dV = ∇ · (∇Φ)dV = (∇Φ) · dS<br />

where the integral is now over the surface <strong>of</strong> the sphere. Due to spherical symmetry ∇Φ must point in the ˆr<br />

direction and be constant on the surface <strong>of</strong> the sphere, therefore the integral now becomes<br />

∫<br />

∇ 2 Φ dV = 4πr ′2 |∇Φ|<br />

Now we deal with the right hand side:<br />

∫<br />

4πG<br />

(Mδ 3 (r) − ρ Λ (r))dV = 4πGM − 16π2 G<br />

ρ Λ r ′3<br />

3<br />

Putting the two together we have:<br />

∇Φ(r ′ ) = ( GM<br />

r ′2 − 4π 3 Gρ Λr ′)ˆr<br />

Now to solve for Φ we just integrate ∇Φ from the edge <strong>of</strong> the universe (let’s call it ∞) to r.<br />

Φ(r) = Φ(∞) +<br />

∫ r<br />

∞<br />

∇Φ · dˆr = Φ(∞) +<br />

∫ r<br />

∞<br />

( GM<br />

r ′2 − 4π 3 Gρ Λr ′ )dr ′ = − GM r<br />

− 4π 3 Gρ Λr 2<br />

where we’ve cancelled out the potential at infinity with the evaluation <strong>of</strong> the anti-derivative at the edge <strong>of</strong><br />

the universe.<br />

9


) To find an upper bound on the vacuum energy density, we will find what value is necessary to keep Pluto<br />

bound to the solar system. We can write this as the requirement that the negative gradient <strong>of</strong> the potential<br />

(i.e. the acceleration) be negative (so that the acceleration is towards the center <strong>of</strong> the solar system).<br />

Isolating the vacuum energy density we arrive at<br />

−∇Φ(r P luto ) = − GM ⊙<br />

rP 2 + 4π<br />

luto<br />

3 Gρ Λr P luto < 0<br />

ρ Λ < 3<br />

4π<br />

M ⊙<br />

r 3 P luto<br />

= 3 1.989 × 10 30 kg ( 1GeV )(1.97 × 10 −16 m<br />

4π (6 × 10 12 m) 3 1.78 × 10 −27 kg GeV −1 ) 3<br />

ρ Λ < 9.44 × 10 −30 GeV 4 ≈ 10 −29 GeV 4<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!