24.05.2014 Views

Propane Cracking in a Micro Channel Reactor - Process ...

Propane Cracking in a Micro Channel Reactor - Process ...

Propane Cracking in a Micro Channel Reactor - Process ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Intensification of the<br />

Steam <strong>Crack<strong>in</strong>g</strong> <strong>Process</strong><br />

Mohamed Ellob, Jonathan Lee, Arthur Gough<br />

School of Chemical Eng<strong>in</strong>eer<strong>in</strong>g and Advanced Materials<br />

University of Newcastle<br />

Does Steam <strong>Crack<strong>in</strong>g</strong> Need Steam


Presentation outl<strong>in</strong>e<br />

Introduction<br />

Catalytic plate reactors<br />

Coke formation<br />

Objectives<br />

Benefits<br />

Methodology<br />

Experimental Work<br />

Results<br />

Conclusions


Introduction<br />

Olef<strong>in</strong>s demand <strong>in</strong> year 2005 :<br />

Ethylene (107 million tons )<br />

propylene (67.1 million tons )<br />

Olef<strong>in</strong>s demand growth dur<strong>in</strong>g years(2005 –2010):<br />

Ethylene about 4.3% per year<br />

propylene about 5.4% per year<br />

Olef<strong>in</strong>s production capacity growth:<br />

Ethylene about 5.4% per year<br />

Propylene about 5.1% per year


Typical Steam <strong>Crack<strong>in</strong>g</strong> Furnaces<br />

Total Number of crack<strong>in</strong>g tubes about 600<br />

Total Reaction Volume about 45 m³<br />

Total firebox volume about 9,000 m³<br />

Residence Time 0.25 to 0.75 s<br />

Firebox Efficiency about 65%


Steam function and process limitation<br />

Enhance heat transfer<br />

Reduce coke formation and deposition<br />

Improve selectivity towards ethylene<br />

Operation purposes<br />

Coke deposition is the ma<strong>in</strong> process limitations<br />

due to:<br />

- High tube sk<strong>in</strong> temperature<br />

- High pressure drop


Exothermic<br />

channel gas<br />

Exothermic reaction<br />

catalyst<br />

Heat<br />

Th<strong>in</strong> plate<br />

Endothermic<br />

channel gas<br />

Endothermic reaction<br />

catalyst<br />

Catalytic Plate <strong>Reactor</strong>


Source: Velocys,(2005),olef<strong>in</strong>s by high <strong>in</strong>tensity oxidation, http: // www.velocys.com/Img/pdf.2250.pdf


Advantages Of Catalytic Plate <strong>Reactor</strong><br />

High Surface to volume Ratio<br />

Lam<strong>in</strong>ar flow Conditions<br />

High Heat transfer Coefficient<br />

Th<strong>in</strong> Catalyst Layer M<strong>in</strong>imize Diffusion Limitation<br />

Surface Temperature only few degrees above the<br />

process temperature<br />

Improved Safety and Environmental Impact<br />

Scale-up by Number<strong>in</strong>g –up<br />

Low Capital and operat<strong>in</strong>g Costs


Coke formation<br />

Metal-catalyzed coke<br />

Non-catalytic coke from tars<br />

Small chemical species (coke precursors) react<br />

with free radicals on the coke surface<br />

Heterogeneous Catalytic<br />

Heterogeneous non catalytic<br />

Homogeneous non catalytic<br />

Chemisorbed<br />

HC. Molecule<br />

Molecule<br />

Radical<br />

Coke particle<br />

Radical on coke surface<br />

Surface reaction<br />

Tar droplet


Objectives<br />

1-Study and <strong>in</strong>vestigate the possibility of <strong>in</strong>tensify<strong>in</strong>g the<br />

thermal crack<strong>in</strong>g of propane to produce ethylene through<br />

the use of the catalytic plate reactors.<br />

2- Reduc<strong>in</strong>g the coke formation and deposition.<br />

3- Reduc<strong>in</strong>g the use of steam.<br />

4- Modell<strong>in</strong>g and simulation for propane crack<strong>in</strong>g us<strong>in</strong>g<br />

Catalytic Plate <strong>Reactor</strong>.


Benefits<br />

Lower environmental and safety impacts.<br />

(NO x , contam<strong>in</strong>ated water, CO 2 , H 2 S)<br />

Improved energy efficiency.<br />

Lower capital cost.<br />

Improved overall plant economics


Experimental setup design criteria<br />

Allows for accurate coke measurement<br />

Constant and uniform temperature along the reactor<br />

Very fast cool<strong>in</strong>g of reaction products<br />

Easy to change reactor size and material


Nitrogen<br />

To CO2<br />

<strong>Propane</strong><br />

V-1 V-2 Filter-1<br />

FIC-1<br />

V-9<br />

V12<br />

V14<br />

analyser<br />

V-3 V-4 Filter-2<br />

FIC-2<br />

PI-1<br />

PI-2<br />

Air<br />

V13<br />

<strong>Reactor</strong><br />

V-5 V-6 Filter-3<br />

FIC-3<br />

Argon<br />

V-10<br />

V-7 V-8 Filter-4<br />

FIC-4<br />

Catchpot<br />

V15<br />

To GCs<br />

Catchpot<br />

V16<br />

<strong>Propane</strong> cracker<br />

show<strong>in</strong>g flow paths<br />

dur<strong>in</strong>g decoke<br />

Manometer<br />

Knock-out<br />

V17<br />

Vent


Experimental variables<br />

<strong>Reactor</strong> materials and <strong>in</strong>ternal coat<strong>in</strong>gs<br />

<strong>Reactor</strong> channel size<br />

<strong>Process</strong> variables ( temperature, pressure, and flow rate)<br />

Run time length


Conversion at low and high operat<strong>in</strong>g parameters<br />

Low flow rate<br />

10 0<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

Conversion, %<br />

65<br />

60<br />

Temperature<br />

low<br />

high low<br />

high<br />

Pressure<br />

High flow rate<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

Conversion, %<br />

65<br />

Temperature<br />

60<br />

low<br />

high low<br />

high<br />

Pressure


Coke yield vs Flow at 835 o C and 1.35 bar<br />

Coke yield ( mg/g-propane reacted)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1.5 2 2.5 3 3.5 4 4.5 5<br />

Flow, l/h


Coke yield vs Temperature. at 3.5 l/h and 1.35 bar<br />

1.2<br />

Coke yield (mg/g-propane reacted)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

810 820 830 840 850 860<br />

Temperature, o C


Coke yield vs Pressure at 3.5 l/h and 835 o C<br />

Coke yield (mg/g-propane reacted)<br />

1.1<br />

0.9<br />

0.7<br />

0.5<br />

0.3<br />

0.1<br />

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8<br />

Pressure, bar


Coke yield at low and high operat<strong>in</strong>g parameters<br />

Low flow rate<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

Coke yield (mg/g-propane reacted)<br />

Temperature<br />

Low<br />

High Low<br />

High<br />

pressure<br />

High flow rate<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

Low<br />

Coke yield (mg/g-propane reacted)<br />

Temperature<br />

High Low<br />

High<br />

pressure


Inlet of the reactor<br />

Middle of the reactor<br />

Outlet end of the reactor + Quench<strong>in</strong>g l<strong>in</strong>e


UY of Ethylene at low and high operat<strong>in</strong>g parameters<br />

Low flow rate<br />

50<br />

UY of Ethylene, Weight %<br />

48<br />

46<br />

44<br />

42<br />

40<br />

low<br />

Pressure<br />

high low<br />

High flow rate<br />

high<br />

Temperature<br />

Ultimate Yield =<br />

Mass Ethylene Produced<br />

Mass <strong>Propane</strong> In Feed<br />

Assum<strong>in</strong>g that the unreacted propane and<br />

the ethane produced by one pass through<br />

the reactor, are recycled to the feed<br />

50<br />

UY of Ethylene, Weight %<br />

48<br />

46<br />

44<br />

42<br />

40<br />

low<br />

Pressure<br />

high<br />

low<br />

high<br />

Temperature


Conclusions<br />

• Conversion of about 90 % can be achieved <strong>in</strong> 2 mm <strong>in</strong>ternal<br />

diameter fused silica reactor without any significant<br />

pressure drop.<br />

• Steam use can be reduced or possibly elim<strong>in</strong>ated.<br />

• High olef<strong>in</strong>s yield can be obta<strong>in</strong>ed without steam.<br />

• Low acetylene and C 4+ yield.<br />

• Run length of about 14 – 20 days was estimated to be<br />

possible before any decok<strong>in</strong>g is required. This run length<br />

was achieved with no steam.


THANK YOU

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!