24.05.2014 Views

Propane Cracking in a Micro Channel Reactor - Process ...

Propane Cracking in a Micro Channel Reactor - Process ...

Propane Cracking in a Micro Channel Reactor - Process ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Intensification of the<br />

Steam <strong>Crack<strong>in</strong>g</strong> <strong>Process</strong><br />

Mohamed Ellob, Jonathan Lee, Arthur Gough<br />

School of Chemical Eng<strong>in</strong>eer<strong>in</strong>g and Advanced Materials<br />

University of Newcastle<br />

Does Steam <strong>Crack<strong>in</strong>g</strong> Need Steam


Presentation outl<strong>in</strong>e<br />

Introduction<br />

Catalytic plate reactors<br />

Coke formation<br />

Objectives<br />

Benefits<br />

Methodology<br />

Experimental Work<br />

Results<br />

Conclusions


Introduction<br />

Olef<strong>in</strong>s demand <strong>in</strong> year 2005 :<br />

Ethylene (107 million tons )<br />

propylene (67.1 million tons )<br />

Olef<strong>in</strong>s demand growth dur<strong>in</strong>g years(2005 –2010):<br />

Ethylene about 4.3% per year<br />

propylene about 5.4% per year<br />

Olef<strong>in</strong>s production capacity growth:<br />

Ethylene about 5.4% per year<br />

Propylene about 5.1% per year


Typical Steam <strong>Crack<strong>in</strong>g</strong> Furnaces<br />

Total Number of crack<strong>in</strong>g tubes about 600<br />

Total Reaction Volume about 45 m³<br />

Total firebox volume about 9,000 m³<br />

Residence Time 0.25 to 0.75 s<br />

Firebox Efficiency about 65%


Steam function and process limitation<br />

Enhance heat transfer<br />

Reduce coke formation and deposition<br />

Improve selectivity towards ethylene<br />

Operation purposes<br />

Coke deposition is the ma<strong>in</strong> process limitations<br />

due to:<br />

- High tube sk<strong>in</strong> temperature<br />

- High pressure drop


Exothermic<br />

channel gas<br />

Exothermic reaction<br />

catalyst<br />

Heat<br />

Th<strong>in</strong> plate<br />

Endothermic<br />

channel gas<br />

Endothermic reaction<br />

catalyst<br />

Catalytic Plate <strong>Reactor</strong>


Source: Velocys,(2005),olef<strong>in</strong>s by high <strong>in</strong>tensity oxidation, http: // www.velocys.com/Img/pdf.2250.pdf


Advantages Of Catalytic Plate <strong>Reactor</strong><br />

High Surface to volume Ratio<br />

Lam<strong>in</strong>ar flow Conditions<br />

High Heat transfer Coefficient<br />

Th<strong>in</strong> Catalyst Layer M<strong>in</strong>imize Diffusion Limitation<br />

Surface Temperature only few degrees above the<br />

process temperature<br />

Improved Safety and Environmental Impact<br />

Scale-up by Number<strong>in</strong>g –up<br />

Low Capital and operat<strong>in</strong>g Costs


Coke formation<br />

Metal-catalyzed coke<br />

Non-catalytic coke from tars<br />

Small chemical species (coke precursors) react<br />

with free radicals on the coke surface<br />

Heterogeneous Catalytic<br />

Heterogeneous non catalytic<br />

Homogeneous non catalytic<br />

Chemisorbed<br />

HC. Molecule<br />

Molecule<br />

Radical<br />

Coke particle<br />

Radical on coke surface<br />

Surface reaction<br />

Tar droplet


Objectives<br />

1-Study and <strong>in</strong>vestigate the possibility of <strong>in</strong>tensify<strong>in</strong>g the<br />

thermal crack<strong>in</strong>g of propane to produce ethylene through<br />

the use of the catalytic plate reactors.<br />

2- Reduc<strong>in</strong>g the coke formation and deposition.<br />

3- Reduc<strong>in</strong>g the use of steam.<br />

4- Modell<strong>in</strong>g and simulation for propane crack<strong>in</strong>g us<strong>in</strong>g<br />

Catalytic Plate <strong>Reactor</strong>.


Benefits<br />

Lower environmental and safety impacts.<br />

(NO x , contam<strong>in</strong>ated water, CO 2 , H 2 S)<br />

Improved energy efficiency.<br />

Lower capital cost.<br />

Improved overall plant economics


Experimental setup design criteria<br />

Allows for accurate coke measurement<br />

Constant and uniform temperature along the reactor<br />

Very fast cool<strong>in</strong>g of reaction products<br />

Easy to change reactor size and material


Nitrogen<br />

To CO2<br />

<strong>Propane</strong><br />

V-1 V-2 Filter-1<br />

FIC-1<br />

V-9<br />

V12<br />

V14<br />

analyser<br />

V-3 V-4 Filter-2<br />

FIC-2<br />

PI-1<br />

PI-2<br />

Air<br />

V13<br />

<strong>Reactor</strong><br />

V-5 V-6 Filter-3<br />

FIC-3<br />

Argon<br />

V-10<br />

V-7 V-8 Filter-4<br />

FIC-4<br />

Catchpot<br />

V15<br />

To GCs<br />

Catchpot<br />

V16<br />

<strong>Propane</strong> cracker<br />

show<strong>in</strong>g flow paths<br />

dur<strong>in</strong>g decoke<br />

Manometer<br />

Knock-out<br />

V17<br />

Vent


Experimental variables<br />

<strong>Reactor</strong> materials and <strong>in</strong>ternal coat<strong>in</strong>gs<br />

<strong>Reactor</strong> channel size<br />

<strong>Process</strong> variables ( temperature, pressure, and flow rate)<br />

Run time length


Conversion at low and high operat<strong>in</strong>g parameters<br />

Low flow rate<br />

10 0<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

Conversion, %<br />

65<br />

60<br />

Temperature<br />

low<br />

high low<br />

high<br />

Pressure<br />

High flow rate<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

Conversion, %<br />

65<br />

Temperature<br />

60<br />

low<br />

high low<br />

high<br />

Pressure


Coke yield vs Flow at 835 o C and 1.35 bar<br />

Coke yield ( mg/g-propane reacted)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1.5 2 2.5 3 3.5 4 4.5 5<br />

Flow, l/h


Coke yield vs Temperature. at 3.5 l/h and 1.35 bar<br />

1.2<br />

Coke yield (mg/g-propane reacted)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

810 820 830 840 850 860<br />

Temperature, o C


Coke yield vs Pressure at 3.5 l/h and 835 o C<br />

Coke yield (mg/g-propane reacted)<br />

1.1<br />

0.9<br />

0.7<br />

0.5<br />

0.3<br />

0.1<br />

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8<br />

Pressure, bar


Coke yield at low and high operat<strong>in</strong>g parameters<br />

Low flow rate<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

Coke yield (mg/g-propane reacted)<br />

Temperature<br />

Low<br />

High Low<br />

High<br />

pressure<br />

High flow rate<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

Low<br />

Coke yield (mg/g-propane reacted)<br />

Temperature<br />

High Low<br />

High<br />

pressure


Inlet of the reactor<br />

Middle of the reactor<br />

Outlet end of the reactor + Quench<strong>in</strong>g l<strong>in</strong>e


UY of Ethylene at low and high operat<strong>in</strong>g parameters<br />

Low flow rate<br />

50<br />

UY of Ethylene, Weight %<br />

48<br />

46<br />

44<br />

42<br />

40<br />

low<br />

Pressure<br />

high low<br />

High flow rate<br />

high<br />

Temperature<br />

Ultimate Yield =<br />

Mass Ethylene Produced<br />

Mass <strong>Propane</strong> In Feed<br />

Assum<strong>in</strong>g that the unreacted propane and<br />

the ethane produced by one pass through<br />

the reactor, are recycled to the feed<br />

50<br />

UY of Ethylene, Weight %<br />

48<br />

46<br />

44<br />

42<br />

40<br />

low<br />

Pressure<br />

high<br />

low<br />

high<br />

Temperature


Conclusions<br />

• Conversion of about 90 % can be achieved <strong>in</strong> 2 mm <strong>in</strong>ternal<br />

diameter fused silica reactor without any significant<br />

pressure drop.<br />

• Steam use can be reduced or possibly elim<strong>in</strong>ated.<br />

• High olef<strong>in</strong>s yield can be obta<strong>in</strong>ed without steam.<br />

• Low acetylene and C 4+ yield.<br />

• Run length of about 14 – 20 days was estimated to be<br />

possible before any decok<strong>in</strong>g is required. This run length<br />

was achieved with no steam.


THANK YOU

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!