25.05.2014 Views

Soil Carbon Fractions Based on their Degree of Oxidation, and the ...

Soil Carbon Fractions Based on their Degree of Oxidation, and the ...

Soil Carbon Fractions Based on their Degree of Oxidation, and the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Aust. J. Agric. Res., 1995, 46, 1459-66<br />

<str<strong>on</strong>g>Soil</str<strong>on</strong>g> <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Fracti<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> <strong><strong>the</strong>ir</strong> <strong>Degree</strong> <strong>of</strong> Oxidati<strong>on</strong>,<br />

<strong>and</strong> <strong>the</strong> Development <strong>of</strong> a <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Management Index<br />

for Agricultural Systems<br />

Graeme J. Blair, Rod D. B. Lefroy <strong>and</strong> Leanne Lisle<br />

Department <strong>of</strong> Agr<strong>on</strong>omy <strong>and</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Science, University <strong>of</strong> New Engl<strong>and</strong>, Armidale, NSW 2351.<br />

Abstract<br />

Increasing populati<strong>on</strong> pressure is increasing <strong>the</strong> dem<strong>and</strong> <strong>on</strong> agricultural systems in many parts<br />

<strong>of</strong> <strong>the</strong> world <strong>and</strong> this has <strong>of</strong>ten led to <strong>the</strong> degradati<strong>on</strong> <strong>of</strong> <strong>the</strong> soil resource. <str<strong>on</strong>g>Soil</str<strong>on</strong>g> carb<strong>on</strong> (C) is<br />

a major determinant <strong>of</strong> sustainability <strong>of</strong> agricultural systems <strong>and</strong> changes can occur in both<br />

total <strong>and</strong> active, or labile, C pools.<br />

A procedure is presented to determine <strong>the</strong> degree <strong>of</strong> lability <strong>of</strong> soil C. By treating a ground<br />

sample <strong>of</strong> soil with 333 mM potassium permanganate (KMn04) to oxidize a proporti<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> carb<strong>on</strong> <strong>and</strong> by determining <strong>the</strong> total carb<strong>on</strong> by combusti<strong>on</strong>, two fracti<strong>on</strong>s <strong>of</strong> C can be<br />

measured. These fracti<strong>on</strong>s represent carb<strong>on</strong> <strong>of</strong> different lability, with fracti<strong>on</strong> I representing<br />

<strong>the</strong> Labile C (CL), which is oxidized by 333 mM KMn04, <strong>and</strong> fracti<strong>on</strong> I1 representing <strong>the</strong><br />

n<strong>on</strong>-labile C (CNL), which is not oxidized by 333 mM KMn04. On <strong>the</strong> basis <strong>of</strong> changes in<br />

total carb<strong>on</strong> (CT), a <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Pool Index (CPI) is calculated <strong>and</strong>, <strong>on</strong> <strong>the</strong> basis <strong>of</strong> changes<br />

in <strong>the</strong> proporti<strong>on</strong> <strong>of</strong> labile C in <strong>the</strong> soil between a reference site <strong>and</strong> those subjected to<br />

agricultural practice or research treatments, a Lability Index (LI) is determined. These two<br />

indices are used to calculate a <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Management Index (CMI), with CMI = C Pool Index<br />

(CPI) xLability Index (LI) x 100.<br />

Analyses <strong>of</strong> paired samples (cropped <strong>and</strong> uncropped) from three sites in nor<strong>the</strong>rn <strong>and</strong><br />

central New South Wales, Australia, have shown a decline in CPI, a greater decline in LI <strong>and</strong><br />

hence a decline in <strong>the</strong> CMI with cropping. Introducti<strong>on</strong> <strong>of</strong> a legume into a wheat cropping<br />

system restored <strong>the</strong> CMI from 22 to 37 at <strong>the</strong> Warialda site. Analyses <strong>of</strong> paired samples from<br />

a sugarcane area in north Queensl<strong>and</strong> have shown a decline in CMI in systems dominated by<br />

trash burning, but an increase in CMI in systems dominated by green cane trash management.<br />

Similar data from Brazil showed no increase in CT with mulching but a 48% increase in CMI<br />

due to an increase in <strong>the</strong> lability <strong>of</strong> C in <strong>the</strong> soil. The fracti<strong>on</strong>ati<strong>on</strong> procedure <strong>and</strong> CMI<br />

outlined can be used to determine <strong>the</strong> state <strong>and</strong> rate <strong>of</strong> change in soil C <strong>of</strong> agricultural <strong>and</strong><br />

natural systems.<br />

Keywords: soil organic matter, labile carb<strong>on</strong>, KMn04 oxidati<strong>on</strong>, sustainability.<br />

Introducti<strong>on</strong><br />

Throughout <strong>the</strong> world, agricultural activity has generally involved exploitati<strong>on</strong><br />

<strong>of</strong> soil organic matter reserves (SOM) as a source <strong>of</strong> nutrients (Salter <strong>and</strong> Green<br />

1933). <str<strong>on</strong>g>Soil</str<strong>on</strong>g> organic matter c<strong>on</strong>tent (pool size) is a balance between additi<strong>on</strong><br />

<strong>and</strong> decompositi<strong>on</strong> rates (turnover rates) <strong>and</strong>, as such, changes in agricultural<br />

practices can result in marked changes in both <strong>the</strong> pool size <strong>and</strong> turnover rate<br />

<strong>of</strong> SOM, carb<strong>on</strong> <strong>and</strong> <strong>the</strong>refore, nutrients.


Graeme J. Blair et al.<br />

The key to sustained productivity <strong>of</strong> agricultural systems is <strong>the</strong> maintenance<br />

<strong>of</strong> SOM levels <strong>and</strong> nutrient cycling. Both are closely related through <strong>the</strong><br />

microbially driven mobilizati<strong>on</strong>/immobilizati<strong>on</strong> processes (Duxbury et al. 1989).<br />

Some researchers argue that measurement <strong>of</strong> <strong>the</strong> size <strong>of</strong> <strong>the</strong> soil microbial biomass<br />

(SMB) is <strong>the</strong> key to underst<strong>and</strong>ing <strong>the</strong> turnover rate <strong>of</strong> <strong>the</strong> SOM (Ocio et al.<br />

1991), whilst o<strong>the</strong>rs c<strong>on</strong>sider SMB is a poor indicator <strong>of</strong> <strong>the</strong>se changes because<br />

factors such as <strong>the</strong> particular species <strong>of</strong> organisms comprizing <strong>the</strong> SMB <strong>and</strong> <strong>the</strong><br />

soil moisture can markedly affect <strong>the</strong> size <strong>of</strong> <strong>the</strong> SMB (Mazzarino et al. 1987).<br />

Sanchez <strong>and</strong> Logan (1992) calculated from data <strong>of</strong> Greenl<strong>and</strong> <strong>and</strong> Nye (1959)<br />

that <strong>the</strong> generally higher SOM decompositi<strong>on</strong> rates found in <strong>the</strong> humid tropics<br />

are balanced by higher litter inputs, such that mean SOM c<strong>on</strong>tents vary little<br />

between tropical <strong>and</strong> temperate soils (Sanchez et al. 1982). However, Buol et al.<br />

(1990) found that at <strong>the</strong> same annual mean temperature, soils from tropical<br />

areas, with iso<strong>the</strong>rmic regimes, had higher organic carb<strong>on</strong> (OC) c<strong>on</strong>tents than<br />

those from temperate areas with n<strong>on</strong>-iso<strong>the</strong>rmic regimes. The difference between<br />

<strong>the</strong>se two groups diminished as mean temperature increased.<br />

Small changes in total SOM or C are difficult to detect because <strong>of</strong> <strong>the</strong> generally<br />

high background levels <strong>and</strong> natural soil variability. For this reas<strong>on</strong> many attempts<br />

have been made to use subpools <strong>of</strong> SOM or C as more sensitive indicators<br />

<strong>of</strong> changes in pool size. Jenkins<strong>on</strong> <strong>and</strong> Rayner (1977) identified five pools in<br />

<strong><strong>the</strong>ir</strong> organic matter cycling model ranging from a decomposable pool, with a<br />

radiocarb<strong>on</strong> age <strong>of</strong> less than 1 year, through a biomass pool at 25.9 years to a<br />

chemically stabilized pool with a radiocarb<strong>on</strong> age <strong>of</strong> 2565 years. Variati<strong>on</strong>s <strong>on</strong><br />

<strong>the</strong>se pools have been used in o<strong>the</strong>r organic matter cycling models (Hunt 1977;<br />

Paul <strong>and</strong> van Veen 1978; Smith 1979; Coughenour et al. 1980; McCaskill 1987;<br />

Part<strong>on</strong> et al. 1989).<br />

In additi<strong>on</strong> to <strong>the</strong>se major pools, SOM fracti<strong>on</strong>ati<strong>on</strong> has been carried out <strong>on</strong><br />

<strong>the</strong> basis <strong>of</strong> extracti<strong>on</strong> <strong>of</strong> humic substances (Schnitzer 1982), dissolved organic C<br />

(Cook <strong>and</strong> Allan 1992), particle size (Christensen 1986), natural abundance<br />

(Balesdent et al. 1990; Lefroy et al. 1993), microbial biomass C (Sparling 1992)<br />

<strong>and</strong> ease <strong>of</strong> oxidati<strong>on</strong> <strong>of</strong> C (Loginow et al. 1987). Although this latter method<br />

does not provide quantitative data <strong>on</strong> C fracti<strong>on</strong>s, it does provide qualitative<br />

characterizati<strong>on</strong> <strong>of</strong> soil C.<br />

Changes in <strong>the</strong> lability <strong>of</strong> soil carb<strong>on</strong> have been proposed by Lefroy et al.<br />

(1993) as a measure <strong>of</strong> sustainability. This procedure relies <strong>on</strong> <strong>the</strong> ease <strong>of</strong><br />

oxidati<strong>on</strong> <strong>of</strong> <strong>the</strong> soil organic C by potassium permanganate. This paper reports<br />

<strong>on</strong> <strong>the</strong> st<strong>and</strong>ardizati<strong>on</strong> <strong>of</strong> <strong>the</strong> KMn04 oxidati<strong>on</strong> procedure <strong>of</strong> Loginow et al.<br />

(1987) <strong>and</strong> <strong>on</strong> <strong>the</strong> development <strong>of</strong> a carb<strong>on</strong> management index based <strong>on</strong> changes<br />

in <strong>the</strong> total C in <strong>the</strong> soil <strong>and</strong> its lability as determined by KMn04 oxidati<strong>on</strong>.<br />

Materials <strong>and</strong> Methods<br />

The carb<strong>on</strong> fracti<strong>on</strong>ati<strong>on</strong> method is based <strong>on</strong> that described by Loginow et al. (1987).<br />

Potassium permanganate is a powerful oxidizing agent under neutral c<strong>on</strong>diti<strong>on</strong>s, but it is<br />

relatively unstable <strong>and</strong> thus cannot be used as a primary st<strong>and</strong>ard. This creates some problems<br />

in obtaining repeatable <strong>and</strong> quantitative results. If <strong>the</strong> precauti<strong>on</strong>s outlined in this paper are<br />

taken, however, this technique can be used as a quantitative measure <strong>of</strong> soil carb<strong>on</strong> fracti<strong>on</strong>s.<br />

The original method <strong>of</strong> Loginow et al. (1987) relied <strong>on</strong> using three different c<strong>on</strong>centrati<strong>on</strong>s<br />

<strong>of</strong> <strong>the</strong> oxidizing agent to oxidize increasing proporti<strong>on</strong>s <strong>of</strong> <strong>the</strong> soil C within a fixed time<br />

interval. Preliminary studies by Lefroy et al. (1993) found that <strong>the</strong> use <strong>of</strong> a single strength <strong>of</strong>


<str<strong>on</strong>g>Soil</str<strong>on</strong>g> <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Fracti<strong>on</strong>s</str<strong>on</strong>g> <strong>and</strong> a <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Management Index<br />

KMn04 provided sufficient characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong> labile C to define <strong>the</strong> state <strong>of</strong> soil systems.<br />

The total soil carb<strong>on</strong>, measured by combusti<strong>on</strong>, <strong>and</strong> <strong>the</strong> amount <strong>of</strong> oxidizing agent c<strong>on</strong>sumed<br />

by <strong>the</strong> KMn04 are used to calculate two fracti<strong>on</strong>s <strong>of</strong> organic carb<strong>on</strong>; <strong>on</strong>e which is oxidized<br />

by KMn04 <strong>and</strong> a sec<strong>on</strong>d fracti<strong>on</strong> which is not oxidized by <strong>the</strong> KMn04.<br />

<str<strong>on</strong>g>Soil</str<strong>on</strong>g> samples were sieved to < 2 mm, subsamples were taken <strong>and</strong> ground to < 500 pm<br />

<strong>and</strong> <strong>the</strong> total C measured in an automatic carb<strong>on</strong> <strong>and</strong> nitrogen analyser mass spectrometer<br />

system (ANCA-MS), c<strong>on</strong>sisting <strong>of</strong> a Dumas-type dynamic flash catalytic combusti<strong>on</strong> sample<br />

preparati<strong>on</strong> system (Carlo Erba NA1500), with <strong>the</strong> evolved gases separated <strong>and</strong> analysed<br />

by mass spectrometry (Europa Scientific Tracermass Stable Isotope Analyser). Where<br />

significant amounts <strong>of</strong> carb<strong>on</strong> are present as carb<strong>on</strong>ates, <strong>the</strong>y are removed by adding sufficient<br />

orthophosphoric acid (2.5% v/v, 85% orthophosphoric acid) to <strong>the</strong> sample prior to combusti<strong>on</strong><br />

so as to evolve all <strong>the</strong> carb<strong>on</strong>ates with gentle heating (approximately 60°C). Repeated<br />

measurement <strong>of</strong> reas<strong>on</strong>ably uniform samples <strong>of</strong> soil gives total carb<strong>on</strong> measurements with CVs<br />

<strong>of</strong> less that 5%.<br />

Samples <strong>of</strong> soil c<strong>on</strong>taining 15 mg C were weighed into 30 mL plastic screw top centrifuge<br />

tubes <strong>and</strong> 25 mL <strong>of</strong> 333 mM KMn04 were added to each vial. Blank samples, c<strong>on</strong>taining no<br />

soil, <strong>and</strong> samples <strong>of</strong> a st<strong>and</strong>ard soil were analysed in each run. The centrifuge tubes were<br />

tightly sealed <strong>and</strong> tumbled for 1 h, at 12 rpm, <strong>on</strong> a tumbler with a radius <strong>of</strong> 15 cm. The<br />

tubes were centrifuged for 5 min at 2000 rpm (RCF=815 g) <strong>and</strong> <strong>the</strong> supernatants diluted<br />

1:250 with dei<strong>on</strong>ized water. The absorbances <strong>of</strong> <strong>the</strong> diluted samples <strong>and</strong> st<strong>and</strong>ards were read<br />

<strong>on</strong> a split beam spectrophotometer at 565 nm. The range for <strong>the</strong> st<strong>and</strong>ards was chosen to<br />

adequately cover <strong>the</strong> sample range, normally 300 to 333 mM.<br />

The change in <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> KMn04 is used to estimate <strong>the</strong> amount <strong>of</strong> carb<strong>on</strong><br />

oxidized, assuming that I mM MnO4 is c<strong>on</strong>sumed (MnVII + MnII) in <strong>the</strong> oxidati<strong>on</strong> <strong>of</strong><br />

0.75 mM, or 9 mg, <strong>of</strong> carb<strong>on</strong>. The results are expressed as mg C g-l soil. The two fracti<strong>on</strong>s<br />

are Labile C (CL) = <strong>the</strong> C oxidized by 333 mM KMn04 <strong>and</strong> n<strong>on</strong>-labile C (CNL) = <strong>the</strong> C not<br />

oxidized by 333 mM KMn04.<br />

The presence <strong>of</strong> MnOz <strong>and</strong> light causes decompositi<strong>on</strong> <strong>of</strong> <strong>the</strong> KMn04. To avoid <strong>the</strong> change<br />

<strong>of</strong> KMn04 c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> <strong>the</strong> extracti<strong>on</strong> soluti<strong>on</strong>s <strong>and</strong> <strong>the</strong> st<strong>and</strong>ards, soluti<strong>on</strong>s have to be<br />

carefully prepared <strong>and</strong> stored, <strong>and</strong> <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> all soluti<strong>on</strong>s need to be regularly<br />

measured by titrati<strong>on</strong> against a primary st<strong>and</strong>ard, such as arsenous oxide. When <strong>the</strong> stock<br />

soluti<strong>on</strong>s are prepared, <strong>the</strong>y must be filtered through a n<strong>on</strong>-carb<strong>on</strong> filter, such as glass wool,<br />

to remove any trace <strong>of</strong> MnOa, <strong>and</strong> stored in <strong>the</strong> dark in glassware which has been thoroughly<br />

cleaned to remove any oxidizable material which would result in MnOa. All glassware must<br />

be thoroughly clean. If appropriate procedures are followed, <strong>the</strong> st<strong>and</strong>ard soluti<strong>on</strong>s can be<br />

used for more than 1 m<strong>on</strong>th.<br />

The amount <strong>of</strong> carb<strong>on</strong> in <strong>the</strong> sample <strong>and</strong> <strong>the</strong> time <strong>the</strong> soil was in c<strong>on</strong>tact with <strong>the</strong> extracting<br />

soluti<strong>on</strong> were found to have significant effects <strong>on</strong> <strong>the</strong> amount <strong>of</strong> oxidati<strong>on</strong>. St<strong>and</strong>ardizing<br />

<strong>on</strong> 15 mg C <strong>and</strong> establishing a strict protocol for <strong>the</strong> various steps in <strong>the</strong> extracti<strong>on</strong> were<br />

found to significantly reduce errors. The volume (or weight) <strong>of</strong> <strong>the</strong> extracting soluti<strong>on</strong> <strong>and</strong><br />

<strong>the</strong> diluti<strong>on</strong> <strong>of</strong> <strong>the</strong> supernatant after extracti<strong>on</strong> must be precise, as small errors in <strong>the</strong>se steps<br />

are compounded. All steps in <strong>the</strong> extracti<strong>on</strong> procedure were carried out at 25' C. If <strong>the</strong><br />

tumbling facilities outlined here are not available, any alternative can be used, as l<strong>on</strong>g as <strong>the</strong><br />

c<strong>on</strong>diti<strong>on</strong>s are st<strong>and</strong>ardized. This is possible because in calculating <strong>the</strong> <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Management<br />

Index <strong>the</strong> data are compared with a reference soil measured at <strong>the</strong> same time.<br />

To dem<strong>on</strong>strate <strong>the</strong> technique <strong>and</strong> <strong>the</strong> value <strong>of</strong> CMI, paired soil samples were collected<br />

from cropped <strong>and</strong> uncropped sites in three areas <strong>of</strong> nor<strong>the</strong>rn <strong>and</strong> central New South Wales,<br />

Australia. The uncropped site adjacent to <strong>the</strong> cropped <strong>on</strong>e is used as a reference soil <strong>on</strong> <strong>the</strong><br />

basis that it has been subjected to minimal disturbance <strong>and</strong> is likely to have more stable C<br />

pools than a disturbed site. In <strong>on</strong>e area, Warialda, a sample was also collected from a site<br />

which had been cropped to wheat, but had subsequently been returned to lucerne pasture.<br />

A sec<strong>on</strong>d set <strong>of</strong> paired samples was collected from sugarcane growing areas near Mackay,<br />

Queensl<strong>and</strong>. A fur<strong>the</strong>r set, from <strong>the</strong> sugarcane experiment in Brazil <strong>of</strong> Ball-Coelho et al.<br />

(1993), was kindly made available by <strong>the</strong> authors for analysis. These samples were taken from<br />

experimental plots at <strong>the</strong> time <strong>of</strong> return <strong>of</strong> sugarcane mulch <strong>and</strong> 12 m<strong>on</strong>ths after <strong>the</strong> mulch<br />

return. Where samples are derived from experiments, <strong>the</strong> c<strong>on</strong>trol plot or a sample taken at<br />

<strong>the</strong> start <strong>of</strong> <strong>the</strong> experiment is used as <strong>the</strong> reference.


Graeme J. Blair et al.<br />

Results <strong>and</strong> Discussi<strong>on</strong><br />

The results <strong>of</strong> <strong>the</strong> C fracti<strong>on</strong>ati<strong>on</strong> <strong>of</strong> three cropped <strong>and</strong> uncropped soils from<br />

nor<strong>the</strong>rn <strong>and</strong> central New South Wales, Australia, have been presented by Lefroy<br />

et al. (1993) using three strengths <strong>of</strong> KMn04 <strong>and</strong> thus four carb<strong>on</strong> fracti<strong>on</strong>s. The<br />

results showed that reducti<strong>on</strong> in all three fracti<strong>on</strong>s was <strong>of</strong> a similar magnitude<br />

<strong>and</strong> that <strong>the</strong> decline in each fracti<strong>on</strong> was greater than in <strong>the</strong> unoxidized fracti<strong>on</strong>.<br />

C<strong>on</strong>sequently, <strong>the</strong> two lower c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> KMn04, 33 <strong>and</strong> 167 mM, are no<br />

l<strong>on</strong>ger used.<br />

In all three soils, <strong>the</strong> reducti<strong>on</strong> in CL due to cropping was proporti<strong>on</strong>ally<br />

greater than <strong>the</strong> decline in CNL or CT (Table 1). Averaged over <strong>the</strong> three soils<br />

<strong>the</strong> values were -63.3%, -39.3% <strong>and</strong> -44.9% for CL, CNL <strong>and</strong> CT respectively.<br />

Incorporati<strong>on</strong> <strong>of</strong> 2 years lucerne into <strong>the</strong> cropping rotati<strong>on</strong> at Warialda restored<br />

soil C, with <strong>the</strong> increases being +58.8, +15.7 <strong>and</strong> +21.6% for CL, CNL <strong>and</strong> CT<br />

respectively.<br />

Table 1. Labile <strong>and</strong> n<strong>on</strong>-labile C <strong>and</strong> <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Management Indices for some cropped <strong>and</strong><br />

uncropped soils in New South Wales, Australia<br />

Cropping Labile N<strong>on</strong>-labile Total <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Lability Lability <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g><br />

or grazing carb<strong>on</strong> carb<strong>on</strong> carb<strong>on</strong> pool <strong>of</strong> C index management<br />

history index index<br />

(CL) (CNL)~ (CT) (CPI) (L) (LI) (CMI)*<br />

(mg g- )<br />

Nyngan (Sol<strong>on</strong>ized Brown Earth, Palexeralfl<br />

Uncropped 4.50~ 13.53 18.03 - 0.332 - -<br />

4 yrs cropping 2.21 10.38 12.59 0-70 0.213 0.64 45<br />

Gunnedah (Black Earth, Pellustert)<br />

Stock route grazing 3.62 16.83 20.45 - 0.256 - -<br />

7 yrs cropping 1.55 9-18 10.73 0.51 0.169 0.66 33<br />

Warialda (Red Earth, Paleustalf)<br />

Lightly grazed 3.99 12.78 16.77 - 0.312 - -<br />

18 yrs cropping 1.02 6.49 7.51 0.45 0.157 0.50 23<br />

16 yrs cropping 1.62 7.50 9.13 0.54 0.215 0-69 38<br />

<strong>and</strong> 2 yrs lucerne<br />

CT sample<br />

A CMI = CPIxLIx loowhere CPI = , LI<br />

C<br />

=<br />

<strong>and</strong> L = L.<br />

CT reference L reference CNL<br />

CL values are <strong>the</strong> means <strong>of</strong> duplicate samples. The mean CV <strong>of</strong> <strong>the</strong>se seven values = 2.93%.<br />

These data dem<strong>on</strong>strate that CL declines faster <strong>and</strong> is restored faster than<br />

CNL or CT, <strong>and</strong> hence is a more sensitive indicator <strong>of</strong> <strong>the</strong> C dynamics <strong>of</strong> <strong>the</strong><br />

system.<br />

Data from <strong>the</strong> two soils from Mackay, Queensl<strong>and</strong> (Table 2), provide a c<strong>on</strong>trast.<br />

The soil from Marian had been cropped for 90 'years <strong>and</strong> has a markedly lower<br />

CL, CNL <strong>and</strong> CT than <strong>the</strong> reference (uncropped) soil. By c<strong>on</strong>trast, <strong>the</strong> Victoria<br />

Plains soil which has been cropped for 15 years has a higher CL, CNL <strong>and</strong><br />

CT c<strong>on</strong>centrati<strong>on</strong> than <strong>the</strong> adjacent n<strong>on</strong>-cropped reference soil. Green trash<br />

management has been practiced in this area for some time, replacing <strong>the</strong> practice<br />

<strong>of</strong> trash burning. As such, although both sites have had similar periods <strong>of</strong> green


<str<strong>on</strong>g>Soil</str<strong>on</strong>g> <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Fracti<strong>on</strong>s</str<strong>on</strong>g> <strong>and</strong> a <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Management Index 1463<br />

trash management, <strong>the</strong> proporti<strong>on</strong> <strong>of</strong> green trash to burnt trash management is<br />

much lower for <strong>the</strong> Marian site.<br />

Table 2.<br />

Labile <strong>and</strong> n<strong>on</strong>-labile C <strong>and</strong> <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Management Index *om sugar cane cropped<br />

<strong>and</strong> adjacent n<strong>on</strong>-cropped areas <strong>of</strong> Mackay, Queensl<strong>and</strong><br />

Cropping Labile N<strong>on</strong>-labile Total <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Lability Lability <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g><br />

history (years) carb<strong>on</strong> carb<strong>on</strong> carb<strong>on</strong> pool <strong>of</strong> C index management<br />

index<br />

index<br />

(CL) (CNL)~ (CT) (CPI) (L) PI) (CW<br />

(mg g-<br />

Marian (Yellow Podzolic, Haplustalf)<br />

0 4.08~ 10.91 14.99 - 0.374 - -<br />

90 1.54 7.04 8.55 0.57 0.219 0.59 34<br />

Victoria Plains (Black Earth, Pelloxerept)<br />

A CL values are <strong>the</strong> means <strong>of</strong> duplicate samples. The mean CV <strong>of</strong> <strong>the</strong>se four values = 3.47%.<br />

In <strong>the</strong> data from Brazil (Table 3), similar trends in <strong>the</strong> C fracti<strong>on</strong>s are<br />

evident, with an increase <strong>of</strong> +39.7%, +2.4% <strong>and</strong> +8.5% in CL, CNL <strong>and</strong> CT<br />

respectively, over <strong>the</strong> 12 m<strong>on</strong>th period after mulch return. Ball-Coelho et al.<br />

(1993) reported no significant increase in CT in <strong>the</strong> mulched treatment reported<br />

here. As for <strong>the</strong> o<strong>the</strong>r sites, <strong>the</strong> CL data indicate a marked change in <strong>the</strong><br />

amount <strong>of</strong> labile or active C in <strong>the</strong> soil. The CL values in Table 3 are <strong>the</strong> means<br />

<strong>of</strong> duplicate analyses <strong>of</strong> six soil samples taken from each <strong>of</strong> three replicates at<br />

each time. This set <strong>of</strong> 18 samples, with 36 analyses, provides an opportunity to<br />

assess <strong>the</strong> spatial <strong>and</strong> analytical variability <strong>of</strong> CL. Analysis <strong>of</strong> variance <strong>of</strong> <strong>the</strong><br />

36 values shows no significant difference between duplicate analyses, a significant<br />

(P = 0.04) subsampling effect <strong>and</strong> a highly significant, replicate, or block effect<br />

(P < 0 e00). There was a highly significant block effect with CT values.<br />

Table 3. <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> data <strong>and</strong> <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Management Index for soil samples from a mulch return<br />

treatment <strong>of</strong> a sugarcane experiment c<strong>on</strong>ducted <strong>on</strong> a Red Yellow Lalosolic Podzol (Oxic<br />

Haplustult) soil by Ball-Coelho et al. (1993) in Brazil<br />

Time after Labile N<strong>on</strong>-labile Total <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Lability Lability <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g><br />

mulch return carb<strong>on</strong> carb<strong>on</strong> carb<strong>on</strong> pool <strong>of</strong> C index management<br />

(m<strong>on</strong>ths) index index<br />

(CL) (CNL)~ (CT) (CPI) (L) (LI) (CMI)<br />

(mg g-<br />

Derivati<strong>on</strong> <strong>of</strong> <strong>the</strong> <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Management Index<br />

Since <strong>the</strong> c<strong>on</strong>tinuity <strong>of</strong> C supply depends <strong>on</strong> both <strong>the</strong> total pool size <strong>and</strong><br />

<strong>the</strong> lability (an estimate <strong>of</strong> turnover rate), both must be taken into account in<br />

deriving a carb<strong>on</strong> management index. This can be achieved as follows.<br />

(a) Change in total C pool size


1464 Graenle J. Blair et al.<br />

The loss <strong>of</strong> C from a soil with a large carb<strong>on</strong> pool is <strong>of</strong> less c<strong>on</strong>sequence than<br />

<strong>the</strong> loss <strong>of</strong> <strong>the</strong> same amount <strong>of</strong> C from a soil already depleted <strong>of</strong> C or which<br />

started with a smaller total C pool. Similarly, <strong>the</strong> more a soil has been depleted<br />

<strong>of</strong> carb<strong>on</strong> <strong>the</strong> more difficult it is to rehabilitate. To account for this a C Pool<br />

size Index is calculated as:<br />

sample total C (mg g-l)<br />

CT sample<br />

C Pool Index (CPI) = -<br />

reference total C (mg g-l) CT reference'<br />

(b) The loss <strong>of</strong> labile C is <strong>of</strong> greater c<strong>on</strong>sequence than <strong>the</strong> loss <strong>of</strong> n<strong>on</strong>labile<br />

C. To account for this a carb<strong>on</strong> Lability Index is calculated as:<br />

Lability <strong>of</strong> C (L) =<br />

C in fracti<strong>on</strong> oxidized by KMn04<br />

C remaining unoxidized by KMn04<br />

- &.<br />

CNL<br />

'<br />

Lability <strong>of</strong> C in sample soil<br />

Lability Index (LI) = Lability <strong>of</strong> C in reference soil '<br />

(c) The <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Management Index (CMI) can <strong>the</strong>n be calculated as:<br />

CMI = C Pool Index x Lability Index = CPI x LI x 100<br />

Measurements Required to Establish <strong>the</strong> <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Management Index<br />

Calculati<strong>on</strong>s <strong>of</strong> <strong>the</strong> CMI require samples <strong>of</strong> <strong>the</strong> soil <strong>of</strong> interest <strong>and</strong> a sample<br />

collected from a reference area. The choice <strong>of</strong> <strong>the</strong> reference area depends <strong>on</strong><br />

<strong>the</strong> circumstances. In experiments <strong>the</strong> c<strong>on</strong>trol treatment represents a useful<br />

reference point. In studying <strong>the</strong> impact <strong>of</strong> agricultural practices, an undisturbed<br />

or relatively undisturbed site <strong>on</strong> <strong>the</strong> same soil type <strong>and</strong> near to <strong>the</strong> study unit<br />

should be selected. Such a site represents an area where change in soil C<br />

dynamics is likely to be slow relative to <strong>the</strong> disturbed area, <strong>and</strong> this can serve<br />

as a reference sample.<br />

The following measurements are required <strong>on</strong> both soils to be able to calculate<br />

<strong>the</strong> CMI:<br />

(a) total C (CT) by direct measurement not by Walkley-Black (1934) which<br />

underestimates total C in those soils with a high proporti<strong>on</strong> <strong>of</strong> recalcitrant C.<br />

(b) determinati<strong>on</strong> <strong>of</strong> <strong>the</strong> proporti<strong>on</strong> <strong>of</strong> C oxidized by 333 mM Kh!ho4 (CL) by<br />

<strong>the</strong> procedure outlined above,<br />

(c) determinati<strong>on</strong> <strong>of</strong> <strong>the</strong> proporti<strong>on</strong> <strong>of</strong> C not oxidized by 333 mM KMn04 (CNL)<br />

by difference.<br />

The above calculati<strong>on</strong>s have been made <strong>on</strong> <strong>the</strong> soils reported above (Tables 1, 2<br />

<strong>and</strong> 3).<br />

At each <strong>of</strong> <strong>the</strong> sites examined in Table 1, cropping has resulted in a marked<br />

decline in both labile <strong>and</strong> n<strong>on</strong>-labile C <strong>and</strong> hence <strong>the</strong> CMI has declined. By<br />

taking both pools <strong>of</strong> C into account, as is d<strong>on</strong>e in calculating <strong>the</strong> CMI, a more<br />

definitive picture <strong>of</strong> <strong>the</strong> soil C is obtained than when <strong>on</strong>ly total C or labile C is<br />

measured.


<str<strong>on</strong>g>Soil</str<strong>on</strong>g> <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Fracti<strong>on</strong>s</str<strong>on</strong>g> <strong>and</strong> a <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Management Index<br />

In <strong>the</strong> sugarcane soil from Marian, which had been cropped for 90 years,<br />

<strong>the</strong> CMI was 34, whereas at Victoria Plains <strong>the</strong> CMI was 110 as a result <strong>of</strong> a<br />

shorter cropping period <strong>and</strong> a higher proporti<strong>on</strong> <strong>of</strong> c<strong>on</strong>servati<strong>on</strong> oriented residue<br />

management.<br />

Where cane tops <strong>and</strong> trash mulch had been returned at <strong>the</strong> Brazilian site<br />

(Table 3) <strong>the</strong>re was <strong>on</strong>ly a small increase in CPI but a large increase in LI,<br />

resulting in a 48% increase in CMI.<br />

There is no 'ideal' value <strong>of</strong> CMI. The index provides a sensitive measure <strong>of</strong> <strong>the</strong><br />

rate <strong>of</strong> change in soil C dynamics <strong>of</strong> systems relative to a more stable reference<br />

soil. When m<strong>on</strong>itored over time or when a new practice is introduced, as in <strong>the</strong><br />

case <strong>of</strong> <strong>the</strong> data from Warialda in Table 1, <strong>the</strong> CMI indicates if <strong>the</strong> system is<br />

in decline or being rehabilitated. In experimental situati<strong>on</strong>s, CMI can be used<br />

to m<strong>on</strong>itor differences in soil C dynamics between treatments <strong>and</strong> over time.<br />

In <strong>the</strong> studies reported here, total C has been measured by ANCA-MS<br />

combusti<strong>on</strong> analysis. The changes in <strong>the</strong> lability <strong>of</strong> organic C that result<br />

from cropping indicate that <strong>the</strong> c<strong>on</strong>stant multiplier factor <strong>of</strong> 1.3 used in <strong>the</strong><br />

Walkley-Black (1934) method will result in an incorrect estimate <strong>of</strong> total C in<br />

many soils. In soils with a small proporti<strong>on</strong> <strong>of</strong> labile C, such as <strong>the</strong> Warialda<br />

cropped soil (Table I), it will underestimate total C, whereas in <strong>the</strong> Warialda<br />

uncropped soil it will overestimate total C.<br />

The labile C comp<strong>on</strong>ent <strong>of</strong> total C determined by KMn04 represents a larger<br />

pool than that comm<strong>on</strong>ly measured as soil microbial biomass. This relatively<br />

large pool <strong>of</strong> easily oxidizable C has been measured in soil samples deep in <strong>the</strong><br />

pr<strong>of</strong>ile, which indicates that it is mobile. As such it could represent <strong>the</strong> C source<br />

required to drive denitrificati<strong>on</strong> <strong>and</strong> methanogenesis processes.<br />

Acknowledgements<br />

The project was supported by ACIAR PN9102, <strong>the</strong> Grains Research <strong>and</strong><br />

Development Corporati<strong>on</strong>, <strong>the</strong> Cott<strong>on</strong> Research <strong>and</strong> Development Corporati<strong>on</strong><br />

<strong>and</strong> <strong>the</strong> Cooperative Research Centre (CRC) for Sustainable Cott<strong>on</strong> Producti<strong>on</strong>.<br />

Mr L. Chapman, Bureau <strong>of</strong> Sugar Experiment Stati<strong>on</strong>s, Mackay, <strong>and</strong> Dr B.<br />

Ball-Coelho, Agriculture Canada, kindly provided soil sampIes.<br />

The technical input <strong>of</strong> Vanessa Hunter <strong>and</strong> Judith Kenny is greatly appreciated.<br />

References<br />

Balesdent, J., Mariotti, A., <strong>and</strong> Boisg<strong>on</strong>tier, D. (1990). Effect <strong>of</strong> tillage <strong>on</strong> soil organic carb<strong>on</strong><br />

mineralizati<strong>on</strong> estimated from 13c abundance in maize fields. Journal <strong>of</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Science 41,<br />

587-96.<br />

Ball-Coelho, B., Tiessen, H., Stewart, J. W. B., Salcedo, I. H., <strong>and</strong> Sampio, E. S. B. (1993).<br />

Residue management effects <strong>on</strong> sugarcane yield <strong>and</strong> soil properties in nor<strong>the</strong>astern Brazil.<br />

Agr<strong>on</strong>omy Journal 85, 1004-8.<br />

Buol, S. W., Sanchez, P. A., Kimble, J. M., <strong>and</strong> Weed, S. B. (1990). Predicted impact <strong>of</strong><br />

climate warming <strong>on</strong> soil properties <strong>and</strong> use. In 'Impact <strong>of</strong> <str<strong>on</strong>g>Carb<strong>on</strong></str<strong>on</strong>g> Dioxide Trace Gases,<br />

<strong>and</strong> Climate Change in Global Agriculture7. ASA Special Publicati<strong>on</strong> No. 53. (Eds B. A.<br />

Kimball et al.) pp. 71-82. (ASA, CSSA, SSSA: Madis<strong>on</strong>, Wisc<strong>on</strong>sin, USA.)<br />

Christensen, B. T. (1986). Straw incorporati<strong>on</strong> <strong>and</strong> soil organic matter in macro-aggregates<br />

<strong>and</strong> particle size separates. Journal <strong>of</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Science 37, 125-35.<br />

Cook, B. D., <strong>and</strong> Allan, D. L. (1992). Dissolved organic carb<strong>on</strong> in old field soils: compositi<strong>on</strong>al<br />

changes during <strong>the</strong> biodegradati<strong>on</strong> <strong>of</strong> soil organic matter. <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Biology <strong>and</strong> Biochemistry<br />

24, 595-600.


Graenle J. Blair et al.<br />

Coughenour, M. B., Part<strong>on</strong>, W. J., Lauenroth, W. K., Dodd, J. L., <strong>and</strong> Woodmansee, R. G.<br />

(1980). Simulati<strong>on</strong> <strong>of</strong> a grassl<strong>and</strong> sulfur-cycle. Ecological Modelling 9, 179-213.<br />

Duxbury, J. M., Smith, M. S., <strong>and</strong> Doran, J. W. (1989). <str<strong>on</strong>g>Soil</str<strong>on</strong>g> organic matter as a source<br />

<strong>and</strong> sink <strong>of</strong> plant nutrients. In 'Dynamics <strong>of</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Organic Matter in Tropical Ecosystems'.<br />

(Eds D. C. Coleman, .J. M. Oades <strong>and</strong> G. Uehara.) pp. 33-67. (University <strong>of</strong> Hawaii Press:<br />

H<strong>on</strong>olulu, Hawaii.)<br />

Greenl<strong>and</strong>, D. J., <strong>and</strong> Nye, P. H. (1959). Increases in carb<strong>on</strong> <strong>and</strong> nitrogen c<strong>on</strong>tents <strong>of</strong> tropical<br />

soils under natural fallows. Journal <strong>of</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Science 9, 284-99.<br />

Hunt, H. W. (1977). A model simulati<strong>on</strong> for decompositi<strong>on</strong> in grassl<strong>and</strong>s. Ecology 58, 469-84.<br />

Jenkins<strong>on</strong>, D. S., <strong>and</strong> Rayner, .J. H. (1977). The turnover <strong>of</strong> soil organic matter in some <strong>of</strong><br />

<strong>the</strong> Rothamsted classical experiments. <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Science 123, 298-305.<br />

Lefroy, R. D. B., Blair, G. J., <strong>and</strong> Str<strong>on</strong>g, W. M. (1993). Changes in soil organic matter with<br />

cropping as measured by organic carb<strong>on</strong> fracti<strong>on</strong>s <strong>and</strong> natural isotope abundance.<br />

Plant <strong>and</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> 1551156, 399-402.<br />

Loginow, W., Wisniewski, W., G<strong>on</strong>et, S. S., <strong>and</strong> Ciescinska, B. (1987). Fracti<strong>on</strong>ati<strong>on</strong> <strong>of</strong> organic<br />

carb<strong>on</strong> based <strong>on</strong> susceptibility to oxidati<strong>on</strong>. Polish Journal <strong>of</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Science 20, 47-52.<br />

Mazzarino, M. J., Oliva, L., Abil, A., <strong>and</strong> Acosta, M. (1987). Factors affecting nitrogen<br />

dynamics in a semiarid woodl<strong>and</strong> (Dry Chaco, Argentina). Plant <strong>and</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> 138, 85-98.<br />

McCaskill, M. R. (1987). Modelling S, P <strong>and</strong> N cycling. Ph.D. Thesis, The University <strong>of</strong> New<br />

Engl<strong>and</strong>, Armidale, Australia.<br />

Ocio, J. A., Brooks, P. C., <strong>and</strong> Jenkins<strong>on</strong>, D. C. (1991). Field incorporati<strong>on</strong> <strong>of</strong> straw <strong>and</strong> its<br />

effect <strong>on</strong> microbial biomass <strong>and</strong> soil organic N. <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Biology <strong>and</strong> Biochemistry 23, 171-6.<br />

Part<strong>on</strong>, W. J., Sanford, R. L., Sanchez, P. A., <strong>and</strong> Stewart, K. W. B. (1989). Modeling soil<br />

organic matter dynamics in tropical soils. In 'Dynamics <strong>of</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Organic Matter in Tropical<br />

Ecosystems'. (Eds D. C. Coleman, J. C. Oades <strong>and</strong> G. Uehara.) pp. 153-71. (University<br />

<strong>of</strong> Hawaii Press: H<strong>on</strong>olulu.)<br />

Paul, E. A., <strong>and</strong> van Veen, J. A. (1978). The use <strong>of</strong> tracers to determine <strong>the</strong> dynamic nature <strong>of</strong><br />

organic matter. Transacti<strong>on</strong>s <strong>of</strong> <strong>the</strong> 11th Internati<strong>on</strong>al C<strong>on</strong>gress <strong>of</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Science, Edm<strong>on</strong>t<strong>on</strong>,<br />

Canada, .June 1978. pp. 61-102.<br />

Salter, R. M., <strong>and</strong> Green, T. C. (1933). Factors affecting <strong>the</strong> accumulati<strong>on</strong> <strong>and</strong> loss <strong>of</strong> nitrogen<br />

<strong>and</strong> organic carb<strong>on</strong> in cropped soils. Journal <strong>of</strong> American Society <strong>of</strong> Agr<strong>on</strong>omy 25, 622-30.<br />

Sanchez, P. A., <strong>and</strong> Logan, T. J. (1992). Myths <strong>and</strong> science about <strong>the</strong> chemistry <strong>and</strong> fertility <strong>of</strong><br />

soils in <strong>the</strong> tropics. In 'Myths <strong>and</strong> Science <strong>of</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g>s in <strong>the</strong> Tropics'. SSSA Special Publicati<strong>on</strong>.<br />

(Eds R. La1 <strong>and</strong> P. A. Sanchez.) pp. 35-46. (SSSA <strong>and</strong> ASA: Madis<strong>on</strong>, Wisc<strong>on</strong>sin, USA.)<br />

Sanchez, P. A., Gichuru, M. P., <strong>and</strong> Katz, L. B. (1982). Organic matter in major soils <strong>of</strong> <strong>the</strong><br />

tropical <strong>and</strong> temperate regi<strong>on</strong>. 12th Internati<strong>on</strong>al C<strong>on</strong>gress <strong>of</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Science 1. New Dehli,<br />

1982. pp. 99-114.<br />

Schnitzer, M. (1982). Organic matter characterizati<strong>on</strong>. In 'Methods <strong>of</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Analysis Part 2,<br />

Chemical <strong>and</strong> Microbiological Properties'. Agr<strong>on</strong>omy No. 9. 2nd Edn. (Eds A. L. Page, R.<br />

H. Miller <strong>and</strong> D. R. Keeney.) pp. 581-94. (ASA, SSSA.: Madis<strong>on</strong>, Wisc<strong>on</strong>sin, USA.)<br />

Smith, 0 . L. (1979). An analytical model <strong>of</strong> <strong>the</strong> decompositi<strong>on</strong> <strong>of</strong> soil organic matter. <str<strong>on</strong>g>Soil</str<strong>on</strong>g><br />

Biology <strong>and</strong> Biochemistry 11, 585-606.<br />

Sparling, G. P. (1992). Ratio <strong>of</strong> microbial biomass carb<strong>on</strong> to soil organic carb<strong>on</strong> as a sensitive<br />

indicator <strong>of</strong> changes in soil organic matter. Australzan Journal <strong>of</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Research 30, 195-207.<br />

Walkley, A., <strong>and</strong> Black, I. A. (1934). An examinati<strong>on</strong> <strong>of</strong> <strong>the</strong> Degtareff method for determining<br />

soil organic matter <strong>and</strong> a proposed modificati<strong>on</strong> <strong>of</strong> <strong>the</strong> chromic acid titrati<strong>on</strong> method. <str<strong>on</strong>g>Soil</str<strong>on</strong>g><br />

Sczence 37, 29-38.<br />

Manuscript received 15 March 1995, accepted 13 June 1995

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!