02.06.2014 Views

Ebert - Psi-k

Ebert - Psi-k

Ebert - Psi-k

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

The Munich SPRKKR-program package<br />

A spin polarized relativistic<br />

Korringa-Kohn-Rostoker (SPR-KKR) code<br />

for Calculating Solid State Properties<br />

H. <strong>Ebert</strong>, M. Battocletti, D. Benea, S. Chadov, M. Deng, H. Freyer,<br />

T. Huhne, M. Kardinal, D. Ködderitzsch, M. Kosuth, S. Mankovskyy,<br />

J. Minar, A. Perlov, V. Popescu, Ch. Zecha and many others<br />

Hubert.<strong>Ebert</strong>@cup.uni-muenchen.de<br />

Universität München, Physikalische Chemie<br />

München, Germany<br />

KKR07 – p.1/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Outline<br />

Introduction<br />

Green’s functions<br />

Scattering theory<br />

Angular momentum representation<br />

Calculating the scattering path operator<br />

The impurity problem<br />

Substitutional disordered alloys<br />

Relativistic formulation<br />

Combination of KKR with the DMFT<br />

Applications<br />

KKR07 – p.2/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Standard Band Structure Problem<br />

Born-Oppenheimer Approximation<br />

reduction of many-particle problem<br />

to single-particle problem<br />

e.g. via density functional theory (DFT)<br />

[<br />

]<br />

−⃗∇ 2 + V (⃗r)<br />

ψ(⃗r, E) = Eψ(⃗r, E)<br />

periodic potential V (⃗r) = V (⃗r + ⃗R n )<br />

leads to the Bloch theorem<br />

T ⃗ R n<br />

ψ ⃗k (⃗r, E) = e −i⃗ k ⃗R n<br />

ψ ⃗k (⃗r, E)<br />

KKR07 – p.3/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Original KKR-method<br />

Replace differential Schrödinger equation<br />

[<br />

]<br />

−⃗∇ 2 + V (⃗r)<br />

ψ ⃗k (⃗r, E) = E ⃗k ψ ⃗k (⃗r, E)<br />

by integral Lippmann-Schwinger equation<br />

ψ ⃗ k (⃗r, E) = ei ⃗k⃗r +<br />

∫<br />

d 3 r ′ G 0 (⃗r, ⃗r ′ , E) V (⃗r ′ ) ψ ⃗ k (⃗r ′ , E)<br />

with free electron Green’s function G 0 (⃗r, ⃗r ′ , E)<br />

Korringa, Physica 13 392 (1947); Kohn, Rostoker, PRB 94 1111 (1954)<br />

KKR07 – p.4/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

KKR secular equation<br />

Ansatz: Ψ j ⃗ k<br />

(⃗r, E) = ∑ lm Aj ⃗k<br />

lm il R l (r, E) Y lm (ˆr)<br />

Application of variational principle ⇒ secular equation<br />

[t(E j ⃗k )−1 − G 0 ( ⃗ k, E j ⃗k ) ]<br />

A j⃗k = 0<br />

t(E)<br />

G 0 ( ⃗ k, E j ⃗ k<br />

)<br />

t-matrix<br />

structure constants matrix<br />

minimal numerical basis set used<br />

splitting into potential and geometrical part<br />

no standard algebraic eigenvalue problem<br />

KKR07 – p.5/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Lippmann-Schwinger equation<br />

H 0 : Hamiltonian for unperturbed reference system<br />

(E − H 0 ) Ψ 0 (⃗r, E) = 0<br />

(E − H 0 ) G 0 (⃗r, ⃗r ′ , E) = δ(⃗r − ⃗r ′ )<br />

G 0 (⃗r, ⃗r ′ , E) solving inhomogeneous equation<br />

Treatment of perturbed system H = H 0 + V (⃗r)<br />

(E − H) Ψ(⃗r, E) = 0<br />

(E − H 0 ) Ψ(⃗r, E) = V (⃗r)Ψ(⃗r, E)<br />

solution supplied by Lippmann-Schwinger equation<br />

∫<br />

Ψ(⃗r, E) = Ψ 0 (⃗r, E) + d 3 r ′ G 0 (⃗r, ⃗r ′ , E) V (⃗r) Ψ(⃗r, E)<br />

KKR07 – p.6/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Dyson Equation<br />

H 0 : Hamiltonian for unperturbed system<br />

(E − H 0 )G 0 (⃗r, ⃗r ′ , E) = δ(⃗r − ⃗r ′ )<br />

Treatment of perturbed system<br />

H = H 0 + V (⃗r)<br />

(E − H)G(⃗r, ⃗r ′ , E) = δ(⃗r − ⃗r ′ )<br />

solution supplied by Dyson equation<br />

G(⃗r, ⃗r ′ , E) = G 0 ∫<br />

(⃗r, ⃗r ′ , E)<br />

+ d 3 r ′′ G 0 (⃗r, ⃗r ′′ , E) V (⃗r ′′ ) G(⃗r ′′ , ⃗r ′ , E)<br />

KKR07 – p.7/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Spectral representation of G(⃗r, ⃗r ′ , E)<br />

ψ i (⃗r, E i ) complete and orthogonal set of eigenfuctions<br />

(E i − H) ψ i (⃗r, E i ) = 0<br />

(E − H) G(⃗r, ⃗r ′ , E) = δ(⃗r − ⃗r ′ )<br />

G(⃗r, ⃗r ′ , E) for fixed ⃗r ′ and E can be expanded into a<br />

series of ψ i (⃗r, E i ) (Mercer’s theorem)<br />

∑<br />

G + (⃗r, ⃗r ′ , E) = lim<br />

ɛ→0<br />

retarded Green’s function<br />

i<br />

ψ i (⃗r)ψ × i (⃗r ′ )<br />

E − E i + iɛ<br />

poles of G + (⃗r, ⃗r ′ , E) indicate eigenvalues<br />

lim ɛ→0 avoids divergencies<br />

NB: × is in general equivalent to †<br />

KKR07 – p.8/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Densities and expectation values<br />

The Dirac identity lim<br />

ɛ→0<br />

I 1<br />

x + iɛ<br />

= −π δ(x) leads to<br />

− 1 π IG+ (⃗r, ⃗r ′ , E) = ∑ i<br />

ψ i (⃗r)ψ × i (⃗r ′ )δ(E − E i )<br />

IG + (⃗r, ⃗r ′ , E) can be interpreted as density matrix<br />

Density of states<br />

n(E) = − 1 π I ∫<br />

V<br />

d 3 r G + (⃗r, ⃗r, E)<br />

Particle density n(⃗r) = − 1 π I ∫ EFdE<br />

G + (⃗r, ⃗r, E)<br />

Expectation value<br />

〈A〉 = − 1 π I ∫ EFdE ∫<br />

V<br />

d 3 r A G + (⃗r, ⃗r, E)<br />

KKR07 – p.9/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Analyticity of the Green’s function<br />

Extension of G + (⃗r, ⃗r ′ , E) to complex energies z<br />

with<br />

(z − H) G(⃗r, ⃗r ′ , z) = δ(⃗r − ⃗r ′ )<br />

ψ i (⃗r)ψ × i (⃗r ′ )<br />

G(⃗r, ⃗r ′ , z) = ∑ i<br />

z − E i<br />

implies G(⃗r, ⃗r ′ , E) to be analytical for Iz ≠ 0 and<br />

G(⃗r, ⃗r ′ , z) = G × (⃗r ′ , ⃗r, z ∗ )<br />

Accordingly one has e.g. for the particle density<br />

n(⃗r) = − 1 ∫ EF<br />

π I dE G + (⃗r, ⃗r, E) = − 1 ∫ EF<br />

π I dz G(⃗r, ⃗r, z)<br />

−<br />

∩<br />

KKR07 – p.10/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Path integrals in the complex energy plane<br />

particle density n(⃗r)<br />

n(⃗r) = − 1 ∫ EF<br />

π I dE G + (⃗r, ⃗r, E)<br />

−<br />

= − 1 ∫ EF<br />

π I dz G(⃗r, ⃗r, z)<br />

Iz<br />

∩<br />

density of states<br />

n(z) = − 1 π I ∫<br />

d 3 r G(⃗r, ⃗r, z)<br />

for fixed Iz ‖ real E-axis<br />

3<br />

2.5<br />

Im E=0.001 Ry<br />

Im E=0.05 Ry<br />

Im E=0.01 Ry<br />

Im E=0.1 Ry<br />

E 0<br />

E F<br />

Rz<br />

n Cu<br />

(z) (sts./eV)<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-10 -8 -6 -4 -2 0 2 4<br />

Re z (eV)<br />

NB: In the following: E stands for a complex energy z<br />

KKR07 – p.11/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Benefits of Green’s function based methods<br />

Straightforward application to<br />

any type of host/impurity system<br />

surfaces or arbitrary layered systems<br />

disordered systems using appropriate alloy theory<br />

response to an external perturbation<br />

response functions/susceptibilities<br />

transport (Kubo-Greenwood or<br />

Landauer-Büttiker-formalism)<br />

spectroscopy<br />

many-body problems<br />

etc.<br />

It’s worth to work with Green’s functions ...<br />

... but how to calculate them ??? KKR07 – p.12/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Born series<br />

Lippmann-Schwinger equation in operator notation<br />

with G 0 (⃗r, ⃗r ′ , E) = 〈⃗r|G 0 (E)|⃗r ′ 〉<br />

and the energy argument E omitted in the following<br />

|Ψ 1 〉 = |Ψ 0 〉 + G 0 V |Ψ 1 〉<br />

iteration leads to the Born series<br />

|Ψ 1 〉 = |Ψ 0 〉 + G 0 V |Ψ 0 〉 + G 0 V G 0 V |Ψ 0 〉<br />

+G 0 V G 0 V G 0 V |Ψ 0 〉 + ...<br />

solves Lippmann-Schwinger equation iteratively<br />

NB: sometimes used for FP single-site problem<br />

KKR07 – p.13/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Transition matrix T<br />

The transition or T-matrix T relates by definition<br />

the unperturbed and perturbed systems via<br />

V |Ψ 1 〉 = T |Ψ 0 〉<br />

inserting repeatedly |Ψ 1 〉 = |Ψ 0 〉 + G 0 V |Ψ 1 〉 gives<br />

T = V + V G 0 V + V G 0 V G o V + · · ·<br />

Iterating the Dyson equation the same way one is led to<br />

V G = T G 0<br />

Lippmann-Schwinger equation |Ψ 1 〉 = |Ψ 0 〉 + G 0 T |Ψ 0 〉<br />

Dyson equation G = G 0 + G 0 T G 0<br />

KKR07 – p.14/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Single-site t-matrix t n<br />

Decomposition of the potential V into<br />

non-overlapping potentials V n centered at sites n<br />

V = ∑ n<br />

V n<br />

T-matrix for an isolated potential V n<br />

t n = V n + V n G 0 t n<br />

= ( 1 − V n G 0<br />

) −1 V<br />

n<br />

= V n ( 1 − G 0 V n) −1<br />

single-site t-matrix t n<br />

KKR07 – p.15/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Expanding the T -matrix T<br />

Introducing the auxilary quantity Q n<br />

T = V + V G 0 V + V G 0 V G o V + · · ·<br />

= ∑ V n + ∑ V n G 0 V m +<br />

∑<br />

n n, m<br />

= ∑ n<br />

Q n<br />

n, m, k<br />

V n G 0 V m G 0 V k + · · ·<br />

one has<br />

and finally<br />

T = ∑ n<br />

t n +<br />

Q n = t n + t n G 0<br />

∑<br />

∑<br />

n, m<br />

(n≠m)<br />

t n G 0 t m +<br />

m<br />

(m≠n)<br />

∑<br />

Q m<br />

n, m, k<br />

(n≠m, m≠k)<br />

t n G 0 t m G 0 t k + · · ·<br />

KKR07 – p.16/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

T<br />

= ∑ n<br />

= ∑ n,m<br />

Scattering path operator τ<br />

t n +<br />

∑ n, m<br />

(n≠m)<br />

t n G 0 t m +<br />

∑<br />

n, m, k<br />

(n≠m, m≠k)<br />

[<br />

t n δ nm + t n G 0 t m (1 − δ nm ) +<br />

t n G 0 t m G 0 t k + · · ·<br />

∑<br />

k<br />

(k≠n, k≠m)<br />

t n G 0 t k G 0 t m + · · ·<br />

]<br />

= ∑ n,m<br />

τ nm<br />

scattering path operator τ nm<br />

τ nm = t n δ nm + ∑ k≠n<br />

= t n δ nm + ∑ k≠n<br />

t n G 0 τ km<br />

τ nk G 0 t m<br />

Gyorffy (1971)<br />

KKR07 – p.17/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Standard scattering experiment<br />

ψ(⃗r, E) =<br />

e i ⃗k·⃗r<br />

} {{ }<br />

incoming<br />

plane wave<br />

+ f(θ, φ) eikr<br />

}{{} r<br />

outgoing<br />

spherical wave<br />

scattering amplitude f(θ, φ)<br />

KKR07 – p.18/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Single-site scattering problem<br />

Standard problem in a scattering experiment<br />

scattering of a plane wave at a target<br />

Lippmann-Schwinger equation<br />

∫<br />

ψ(⃗r, E) = e i⃗k⃗r + d 3 r ′ G 0 (⃗r, ⃗r ′ , E) V n (⃗r) ψ(⃗r, E)<br />

Ω n<br />

∫<br />

= e i⃗k⃗r + d<br />

∫Ω 3 r ′ d 3 r ′′ G 0 (⃗r, ⃗r ′ , E) t n (⃗r ′ , ⃗r ′′ , E) e i⃗ k⃗r ′′<br />

n Ω n<br />

with |⃗k| = √ E<br />

KKR07 – p.19/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Single site potential V n (⃗r)<br />

single site potential: V n (⃗r) = f n (⃗r) V (⃗r)<br />

theta or shape function f n (⃗r) for cell n<br />

f n (⃗r) =<br />

{<br />

1 for ⃗r ∈ Ω n<br />

0 for ⃗r /∈ Ω n<br />

expansion into (real) spherical harmonics Y L (ˆr)<br />

V n (⃗r) = ∑ L<br />

V n L (r) Y L(ˆr)<br />

f n (⃗r) = ∑ L<br />

f n L (r) Y L(ˆr)<br />

with cell centered coordinates ⃗r and L = (l, m)<br />

muffin-tin approximation (assumed in the following)<br />

V n (⃗r) =<br />

{<br />

V n (r) for r < r mt<br />

0 else<br />

KKR07 – p.20/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Expansion of plane waves<br />

Bauer’s identity<br />

e i⃗ k⃗r = 4π ∑ L<br />

i l j l (kr) Y L (ˆr) Y L (ˆk)<br />

j l (kr) spherical Bessel function with k = √ E<br />

spherical functions: linearly independent solutions to the<br />

free electron problem in spherical coordinates<br />

(Helmholtz equation)<br />

j l (kr)<br />

n l (kr)<br />

h + l (kr)<br />

spherical Bessel function<br />

von Neumann function<br />

Hankel function (1st kind)<br />

with h + l (kr)= j l(kr)+in l (kr)<br />

KKR07 – p.21/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Spherical functions j l (kr) and n l (kr)<br />

spherical Bessel functions<br />

j l (kr)<br />

von Neumann functions<br />

n l (kr)<br />

0.4<br />

0.2<br />

l=0<br />

l=1<br />

l=2<br />

0.4<br />

0.2<br />

l=0<br />

l=1<br />

l=2<br />

j l<br />

(kr)<br />

0<br />

n l<br />

(kr)<br />

0<br />

-0.2<br />

-0.2<br />

-0.4<br />

0 5 10 15 20<br />

regular<br />

irregular<br />

kr<br />

(kr) l<br />

(2l+1)!!<br />

asymptotic behavior<br />

0←r<br />

←−<br />

-0.4<br />

0 5 10 15 20<br />

j l (kr)<br />

r→∞<br />

−→<br />

kr<br />

1<br />

kr sin(kr − l π 2 )<br />

− (2l−1)!!<br />

(kr) l+1 n l (kr) − 1<br />

kr cos(kr − l π 2 )<br />

KKR07 – p.22/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Free electron Green’s function<br />

G 0 (⃗r, ⃗r ′ , E) =<br />

∫<br />

1<br />

(2π) 3<br />

d 3 k ei⃗ k⃗r e −i⃗ k⃗r ′<br />

E − k 2<br />

= − 1<br />

4π<br />

e −i√ E|⃗r−⃗r ′ |<br />

|⃗r − ⃗r ′ |<br />

using Bauer’s identity<br />

G 0 (⃗r, ⃗r ′ , E) =<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

−ik ∑ L<br />

−ik ∑ L<br />

j L (⃗r, E)h +×<br />

L (⃗r ′ , E) for r < r ′<br />

h + L (⃗r, E)j× L (⃗r ′ , E) for r > r ′<br />

with j L (⃗r, E) = j l ( √ E r)Y L (ˆr) and L = (l, m)<br />

KKR07 – p.23/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Angular momentum expansion of ψ(⃗r, E)<br />

Solving the Schrödinger equation<br />

using the ansatz<br />

[<br />

]<br />

−⃗∇ 2 + V (r)<br />

ψ(⃗r, E) = Eψ(⃗r, E)<br />

ψ(⃗r, E) = ∑ L<br />

R l (r, E)Y L (ˆr)<br />

leads to the radial Schrödinger equation<br />

[<br />

− ∂2 l(l + 1)<br />

+<br />

∂r2 r 2<br />

+ V (r)<br />

for the radial wave function R l (r, E)<br />

]<br />

R l (r, E) = 0<br />

KKR07 – p.24/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Partial wave decomposition<br />

Lippmann-Schwinger equation<br />

∫<br />

ψ(⃗r, E) = e i⃗k⃗r + d 3 r ′ G 0 (⃗r, ⃗r ′ , E) V n (⃗r) ψ(⃗r, E)<br />

Ω n<br />

∫<br />

= e i⃗k⃗r + d<br />

∫Ω 3 r ′ d 3 r ′′ G 0 (⃗r, ⃗r ′ , E) t n (⃗r ′ , ⃗r ′′ , E) e i⃗ k⃗r ′′<br />

n Ω n<br />

angular momentum expansion<br />

R L (⃗r, E)=j L (⃗r, E)<br />

∫<br />

−ik d 3 r ′ h + L (⃗r >, E)j × L (⃗r , E)j × L (⃗r


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Asymptotic limit for r > r mt<br />

For r > r mt one has<br />

R L (⃗r, E) = j L (⃗r, E)<br />

−ikh + L (⃗r, E) ∫Ω n<br />

d 3 r ′ j × L (⃗r ′ , E)V (r ′ )R L (⃗r ′ , E)<br />

} {{ }<br />

t LL ′=t l δ LL ′<br />

= j L (⃗r, E)<br />

∫ ∫<br />

−ikh + L (⃗r, E) d 3 r ′ d 3 r ′′ j × L (⃗r ′ , E)t(⃗r ′ , ⃗r ′′ , E)j L (⃗r ′′ , E)<br />

Ω n Ω<br />

} n<br />

{{ }<br />

t LL ′=t l δ LL ′<br />

R L (⃗r, E) = j L (⃗r, E) − ikh + L (⃗r, E)t l(E)<br />

KKR07 – p.26/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Expression for the single-site t-matrix<br />

Matching at the muffin-tin radius<br />

˜R l (r, E) · N l (E) = R l (r, E) → j l (kr) − ikh + l (kr)t l(E)<br />

d<br />

dr R l(r, E) → d [<br />

]<br />

j l (kr) − ikh + l<br />

dr<br />

(kr)t l(E)<br />

˜R l : unnormalised solution of radial Schrödinger equation<br />

2<br />

R d<br />

(r,E)<br />

0<br />

-2<br />

-4<br />

matching radius r mt<br />

t l (E) = − 1<br />

ik<br />

[j l , ˜R l ] r=rmt<br />

h<br />

h + l , ˜R l<br />

i<br />

r=r mt<br />

-6<br />

-8<br />

R d<br />

(r,E)<br />

j d<br />

(kr) - ik h d<br />

+<br />

(kr) td (E)<br />

Wronskian<br />

[u, v] = u(r) d dr v(r) − v(r) d dr u(r)<br />

0 1 2 3 4<br />

radius (a 0<br />

)<br />

KKR07 – p.27/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Phase shift δ l (E)<br />

2<br />

0<br />

2<br />

0<br />

R d<br />

(r,E)<br />

-2<br />

-4<br />

R d<br />

(r,E)<br />

-2<br />

-4<br />

phase shift ∆r = δ d<br />

(E) / k<br />

matching radius r mt<br />

-6<br />

-8<br />

matching radius r mt<br />

0 2 4 6 8 10<br />

R d<br />

(r,E)<br />

A j d<br />

(kr) + B n d<br />

(kr)<br />

-6<br />

-8<br />

R d<br />

(r,E)<br />

j d<br />

(kr) x 5<br />

A j d<br />

(kr) + B n d<br />

(kr)<br />

0 1 2 3 4<br />

radius (a 0<br />

)<br />

radius (a 0<br />

)<br />

R l (r, E)<br />

r=r mt<br />

= A j l (kr) + B n l (kr)<br />

r→∞<br />

−→ A (<br />

kr sin kr − lπ 2<br />

√<br />

A 2 + B 2<br />

r→∞<br />

−→<br />

kr<br />

sin<br />

)<br />

− B kr cos (<br />

kr − lπ 2<br />

(<br />

kr − lπ )<br />

2 + δ l(E)<br />

)<br />

phase shift δ l (E)<br />

KKR07 – p.28/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Phase shift δ l (E) and single site t-matrix t l (E)<br />

t l (E) = − 1 k sin ( δ l (E) ) e iδ l(E)<br />

δ l Au<br />

(E)<br />

3.2<br />

2.8<br />

2.4<br />

2<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0<br />

phase shift δ l (E)<br />

-0.4<br />

0 2 4 6 8 10<br />

energy (eV)<br />

s<br />

p<br />

d<br />

- t l Au<br />

(E)<br />

single site t-matrix t l (E)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

0 2 4 6 8 10<br />

energy (eV)<br />

Im s<br />

Im p<br />

Im d<br />

Re s<br />

Re p<br />

Re d<br />

scalar-relativistic results for Au<br />

KKR07 – p.29/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Single site Green’s function G ss (⃗r, ⃗r ′ , E)<br />

free electrons<br />

[E − H 0 ] G 0 (⃗r, ⃗r ′ , E) = δ(⃗r − ⃗r ′ )<br />

single site potential<br />

[E − H] G ss (⃗r, ⃗r ′ , E) = δ(⃗r − ⃗r ′ )<br />

j l (r) ↔ j l (r)<br />

h + l (r) ↔ h+ l (r)<br />

R l (r) ↔ j l (r) − ikh + l (r)t l<br />

H l (r) ↔ h + l (r)<br />

G 0 (⃗r, ⃗r ′ , E) =<br />

−ik ∑ j L (⃗r, E)h +×<br />

L (⃗r ′ , E)<br />

L<br />

G ss (⃗r, ⃗r ′ , E) =<br />

−ik ∑ R L (⃗r, E)H × L (⃗r ′ , E)<br />

L<br />

KKR07 – p.30/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Alternative Convention for G ss (⃗r, ⃗r ′ , E)<br />

boundary conditions<br />

at muffin-tin radius r mt<br />

G ss (⃗r, ⃗r ′ , E) = −ik ∑ L<br />

R L (⃗r, E)H × L<br />

(⃗r, E)<br />

r→r mt<br />

R l −→<br />

Z l = R l t −1<br />

l<br />

jl − ikh + l t l<br />

replace R L and H L by Z L and J L<br />

r→r<br />

H<br />

mt<br />

l −→ h<br />

+<br />

l<br />

G ss (⃗r, ⃗r ′ , E) = ∑ L<br />

Z L (⃗r, E)t l (E)Z × L<br />

(⃗r, E)<br />

− ∑ L<br />

Z L (⃗r, E)J × L<br />

(⃗r, E)<br />

r→r<br />

J<br />

mt<br />

l −→<br />

jl<br />

H l = i k<br />

(<br />

Zl − J l t −1 )<br />

l<br />

r→r<br />

Z<br />

mt<br />

l −→<br />

r→r<br />

J<br />

mt<br />

l −→<br />

jl t −1<br />

l<br />

jl<br />

− ikh + l<br />

Bristol-Oak Ridge convention<br />

KKR07 – p.31/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Single site density of states n ss (E)<br />

Density of states DOS<br />

n ss (E) = − 1 π I ∫<br />

d 3 r G ss (⃗r, ⃗r ′ , E)<br />

= − 1 ∑<br />

I<br />

5<br />

π<br />

L<br />

⎡<br />

4<br />

∫<br />

⎣t L (E) d 3 r Z × L (⃗r, E)Z 3<br />

L(⃗r, E)<br />

Ω n 2<br />

⎤<br />

∫<br />

− d 3 r J × 1<br />

L (⃗r, E)Z L(⃗r, E) ⎦<br />

0<br />

Ω n<br />

for real energies<br />

= − 1 ∑<br />

∫<br />

I t l (E) d 3 rZ × L<br />

π<br />

(⃗r, E)Z L(⃗r, E)<br />

L<br />

Ω n<br />

= n ss<br />

l<br />

(E)<br />

l-resolved single site<br />

DOS n ss<br />

l<br />

(E)<br />

n Au<br />

(E) (sts./eV)<br />

6<br />

-10 -8 -6 -4 -2 0<br />

energy (eV)<br />

scalar-relativistic results for Au<br />

tot<br />

s<br />

p<br />

d<br />

KKR07 – p.32/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Multiple scattering<br />

a<br />

b<br />

c<br />

Solve Dyson equation<br />

for<br />

G = G 0 + G 0 T G 0<br />

T = ∑ n,m<br />

τ nm<br />

τ nm = t n δ nm + ∑ k≠n<br />

t n G 0 τ km<br />

KKR07 – p.33/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Reexpansion of the spherical Bessel functions<br />

Starting from e i ⃗k( ⃗R+⃗r) = e i ⃗k ⃗R e i⃗k⃗r and Bauer’s<br />

identity e i⃗k⃗r = 4π ∑ i l j L (r, k 2 ) Y L (ˆk) one finds:<br />

L<br />

j L ( ⃗R + ⃗r, E) = 4π ∑ L ′ L ′′ i l−l′ −l ′′ C LL ′ L ′′ j L ′( ⃗R, E) j L ′′(⃗r, E)<br />

with the Gaunt coefficients<br />

C LL ′ L ′′ = ∫<br />

dˆr Y L (ˆr) Y L ′(ˆr) Y L ′′(ˆr)<br />

KKR07 – p.34/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Reexpansion of the Hankel functions<br />

From − 1<br />

4π<br />

e ik |⃗r− ⃗R|<br />

∣<br />

∣⃗r − ⃗R ∣<br />

= −ik ∑ L<br />

the expansion for j l ( ⃗R + ⃗r) one finds<br />

j L ( ⃗R, k 2 ) h +×<br />

L<br />

(⃗r, k2 ) and<br />

h + L ( ⃗R + ⃗r, E) = ∑ L ′ G 0LL ′( ⃗R, E) j L (⃗r, E)<br />

real-space structural Green’s function matrix<br />

or<br />

G 0LL ′( ⃗R, E) = 4π ∑ L ′′ i l−l′ −l ′′ C LL ′ L ′′ h+ L ′′ ( ⃗R, E)<br />

G nm<br />

0LL ′ (E) = 4π ∑ L ′′ i l−l′ −l ′′ C LL ′ L ′′ h+ L ′′ ( ⃗R m − ⃗R n , E)<br />

for ⃗R = ⃗R m − ⃗R n<br />

KKR07 – p.35/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Multicenter expansion of G 0 (⃗r, ⃗r ′ , E)<br />

Using the reexpansion of h + L ( ⃗R + ⃗r, E) and<br />

cell-centered coordinates ⃗r n = ⃗r − ⃗R n one gets<br />

⃗r n ⃗R m − ⃗R n<br />

site m ⃗r m<br />

site n<br />

G 0 (⃗r n , ⃗r m ′ , E) =<br />

⎧<br />

⎪⎨ −ik ∑ j L (⃗r n , E) h + L (⃗r n ′ , E) n = m<br />

L<br />

∑<br />

⎪⎩ j L (⃗r n , E) G nm<br />

0 LL<br />

(E) j ′ L ′(⃗r ′ m , E) n ≠ m<br />

LL ′<br />

KKR07 – p.36/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Green’s function for many sites<br />

Combining G = G 0 + G 0<br />

∑n,m τ nm G 0<br />

G ss (⃗r, ⃗r ′ , E) = 〈⃗r|G 0 + G 0 t G 0 |⃗r ′ 〉<br />

= ∑ Z L (⃗r, E)t l (E)Z × L<br />

(⃗r ′ , E)<br />

′<br />

L<br />

− ∑ L<br />

Z L (⃗r, E)J × L (⃗r ′ , E)<br />

G 0 (⃗r n , ⃗r m ′ , E) = ∑ LL ′ j L (⃗r n , E)G nm<br />

0 LL ′ (E)j × L ′ (⃗r m ′ , E) (n ≠ m)<br />

leads to<br />

G(⃗r n , ⃗r ′ m , E) = ∑ Z L (⃗r n , E) τ nm<br />

LL<br />

(E) Z × ′ L<br />

(⃗r ′ ′ m , E)<br />

LL ′ ∑<br />

−δ nm Z L (⃗r n , E) J × L (⃗r n ′ , E)<br />

L<br />

KKR07 – p.37/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Angular momentum representation for τ nm (E)<br />

τ nm<br />

LL ′ (E) =<br />

∫Ω n<br />

d 3 r n<br />

∫<br />

Ω m<br />

d 3 r ′ m j× L (⃗r n, E)〈⃗r n |τ nm |⃗r ′ m 〉j L ′(⃗r m ′ , E)<br />

corresponding equation of motion<br />

τ nm (E) = t n (E)δ nm + t n (E) ∑ k≠n<br />

G nk<br />

0 (E)τ km (E)<br />

and<br />

[τ nm ] LL ′ = τLL nm<br />

[ ]<br />

′<br />

G<br />

nm<br />

0<br />

= G nm<br />

LL ′ 0 LL ′ (1 − δ nm )<br />

[t n ] LL ′ = t n l δ LL ′<br />

matrix dimension:<br />

∑ lmax<br />

l=0<br />

∑ +l<br />

m=−l 1 = (l max + 1) 2<br />

KKR07 – p.38/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Calculating τ nm for finite array of scatterers<br />

τ (E) = t(E) + t(E) G 0<br />

(E) τ (E)<br />

with<br />

[<br />

τ<br />

] nm = τ<br />

nm<br />

[<br />

[ t ] nm = t n δ nm<br />

G 0<br />

] nm<br />

= G<br />

nm<br />

0<br />

(1 − δ nm )<br />

τ (E) =<br />

[<br />

t(E) −1 − G 0<br />

(E)<br />

] −1<br />

matrix dimension: N scatterers × (l max + 1) 2<br />

KKR07 – p.39/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Application of real space approach<br />

cluster approximation<br />

cut a finite cluster out of the infinite system<br />

centred on the atom of interest<br />

applied e.g. for EXAFS calculations<br />

free clusters and molecules<br />

KKR07 – p.40/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Cluster approximation for τ nn (E)<br />

τ (E) =<br />

Convergence of cluster approximation<br />

[<br />

t(E) −1 − G 0<br />

(E)<br />

] −1<br />

with cluster size<br />

DOS for central atom of bcc-Fe clusters<br />

(E) (sts./eV)<br />

3.2<br />

2.4<br />

1.6<br />

1 / 0 atoms / shells<br />

9 / 1<br />

15 / 2<br />

(E) (sts./eV)<br />

3.2<br />

2.4<br />

1.6<br />

15 / 2<br />

27 / 3<br />

51 / 4<br />

(E) (sts./eV)<br />

3.2<br />

2.4<br />

1.6<br />

51 / 4<br />

59 / 5<br />

k-space<br />

n ↓ Fe<br />

0.8<br />

n ↓ Fe<br />

0.8<br />

n ↓ Fe<br />

0.8<br />

0<br />

3.2<br />

0<br />

3.2<br />

0<br />

3.2<br />

(E) (sts./eV)<br />

2.4<br />

1.6<br />

(E) (sts./eV)<br />

2.4<br />

1.6<br />

(E) (sts./eV)<br />

2.4<br />

1.6<br />

n ↑ Fe<br />

0.8<br />

n ↑ Fe<br />

0.8<br />

n ↑ Fe<br />

0.8<br />

0<br />

-8 -6 -4 -2 0 2<br />

0<br />

-8 -6 -4 -2 0 2<br />

0<br />

-8 -6 -4 -2 0 2<br />

energy (eV)<br />

energy (eV)<br />

energy (eV)<br />

KKR07 – p.41/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Calculating τ nm for periodic array of scatterers<br />

Fourier transformation<br />

τ ( ⃗ k, E) = ∑ ⃗R n<br />

τ n0 (E) e i ⃗k ⃗R n<br />

G 0 ( ⃗ k, E) = ∑ ⃗R n<br />

G n0<br />

0 (E) ei ⃗k ⃗R n<br />

τ nm (E) = 1<br />

Ω BZ<br />

∫<br />

= 1<br />

Ω BZ<br />

∫<br />

d 3 k τ (⃗k, E)<br />

Ω BZ<br />

[<br />

Ω BZ<br />

d 3 k<br />

t(E) −1 − G 0 (⃗k, E)<br />

} {{ }<br />

KKR matrix M( ⃗ k,E)<br />

] −1<br />

e −i⃗ k( ⃗R n − ⃗R m )<br />

G 0 (⃗k, E): KKR structure constants matrix<br />

KKR07 – p.42/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Brillouin zone integration<br />

τ nm (E) = 1<br />

Ω BZ<br />

∫<br />

Ω BZ<br />

d 3 k<br />

[<br />

t(E) −1 − G 0 (⃗k, E)<br />

} {{ }<br />

KKR matrix M( ⃗ k,E)<br />

] −1<br />

e −i⃗ k( ⃗R n − ⃗R m )<br />

Symmetry allows to reduce the integration regime Ω BZ<br />

to an irreducible wedge<br />

KKR07 – p.43/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Special point sampling method<br />

τ nn (E) =<br />

h∑<br />

j=1<br />

U j τ nn j −1<br />

IBZ<br />

(E) U<br />

with<br />

τ nn<br />

IBZ (E) = ∑ ⃗ k<br />

w ⃗k τ (⃗k, E)<br />

U: h symmetry operations<br />

Special point mesh<br />

IBZ: irreducible part of the Brillouin zone<br />

KKR07 – p.44/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Substitutional impurities<br />

Single site approximation<br />

ignore the distortion of the surrounding host atoms<br />

Assuming the impurity on site n = 0 one has<br />

t n =<br />

{<br />

t imp for n = 0<br />

t host for n ≠ 0<br />

KKR07 – p.45/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Solving the impurity problem<br />

pure host<br />

τ host<br />

=<br />

⎡⎛<br />

⎢⎜<br />

⎣⎝<br />

t host<br />

t host<br />

...<br />

⎞−1 ⎤<br />

− G 0<br />

⎟<br />

⎠<br />

⎥<br />

⎦<br />

−1<br />

impurity system<br />

⎡⎛<br />

τ imp<br />

= ⎢⎜<br />

⎣⎝<br />

t imp<br />

t host<br />

...<br />

⎞−1 ⎤<br />

− G 0<br />

⎟<br />

⎠<br />

⎥<br />

⎦<br />

−1<br />

partition of matrices leads to<br />

τ 00<br />

imp = [<br />

(t imp ) −1 − (t host ) −1 + (τ 00<br />

host )−1] −1<br />

KKR07 – p.46/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Substitutional Rh impurity in Au<br />

DOS of bulk fcc-Rh<br />

1<br />

0.8<br />

s<br />

p<br />

d<br />

2.4<br />

2<br />

DOS of Rh in Au<br />

Au<br />

Rh<br />

Rh single site<br />

n(E) (sts./eV)<br />

0.6<br />

0.4<br />

n(E) (sts./eV)<br />

1.6<br />

1.2<br />

0.8<br />

0.2<br />

0.4<br />

0<br />

-10 -8 -6 -4 -2 0 2<br />

energy (eV)<br />

0<br />

-10 -8 -6 -4 -2 0 2<br />

energy (eV)<br />

KKR07 – p.47/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Treating substitutional disordered alloys<br />

Electronic structure of a disorderd alloy A x B 1−x<br />

represented by configurational average<br />

for given concentration and eventually short range order<br />

Super cell technique<br />

Single site approximation: ignore short range order<br />

VCA: Virtual Crystal Approximation<br />

ATA: Average t-matrix Approximation<br />

CPA: Coherent Potential Approximation<br />

Cluster approximation: allow short range order<br />

NL-CPA: non-local Coherent Potential Approx.<br />

KKR07 – p.48/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Coherent Potential Approximation – CPA<br />

effective CPA medium represents the electronic<br />

structure of an configurationally averaged<br />

substitutionally random alloy A x B 1−x<br />

=<br />

use mean field description<br />

find best possible single-site scheme<br />

Soven, Physical Review 156 809 (1967)<br />

KKR07 – p.49/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

CPA condition<br />

Embedding of an A- or B-atom into the CPA-medium – in<br />

the average – should not give rise to additional<br />

scattering<br />

x A + x B =<br />

x A τ nn<br />

A<br />

+ x Bτ nn<br />

B<br />

= τ nn<br />

CP A<br />

with the projected scattering path operator τ nn<br />

α<br />

τ nn<br />

α<br />

= τ nn<br />

CP A<br />

[<br />

1 +<br />

(<br />

t −1<br />

α<br />

)<br />

− t−1 CP A<br />

] −1<br />

τ nn<br />

CP A<br />

KKR07 – p.50/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

DOS for disordered systems<br />

comparison of results for ordered and disordered case<br />

Fe in Fe 3 Pt<br />

Pt in Fe 3 Pt<br />

(E) (sts./eV)<br />

2<br />

1<br />

disordered<br />

ordered<br />

(E) (sts./eV)<br />

2<br />

disordered<br />

ordered<br />

0<br />

2<br />

1<br />

n ↑ Fe<br />

n ↓ Fe<br />

0<br />

2<br />

(E) (sts./eV)<br />

(E) (sts./eV)<br />

1<br />

n ↑ Pt<br />

n ↓ Pt<br />

0<br />

-10 -5 0<br />

energy (eV)<br />

0<br />

-10 -5 0<br />

energy (eV)<br />

KKR07 – p.51/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Bloch spectral function A B ( ⃗ k, E)<br />

Bloch spectral function A B ( ⃗ k, E)<br />

Fourier transformed of real-space Green’s function<br />

A B ( ⃗ k, E) = − 1<br />

πN<br />

I<br />

N∑<br />

∫<br />

n,m<br />

Ω<br />

e ı⃗ k( ⃗R n − ⃗R m )<br />

d 3 r<br />

〈<br />

G<br />

interpretation as a ⃗ k-resolved DOS function<br />

n(E) = 1<br />

Ω BZ<br />

∫<br />

(<br />

)〉<br />

⃗r + ⃗R n , ⃗r + ⃗R m , E<br />

Ω BZ<br />

d 3 k A B ( ⃗ k, E)<br />

limit for ordered systems<br />

A B ( ⃗ k, E) = ∑ j<br />

δ(E − E j ⃗ k<br />

)<br />

KKR07 – p.52/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Bloch spectral function A B ( ⃗ k, E) within CPA<br />

Bloch spectral function A B ( ⃗ k, E)<br />

]<br />

A B ( ⃗ k, E) = − 1 π<br />

[F I Trace c τ CP A ( ⃗ k, E)<br />

with averaged overlap integrals<br />

[ ]<br />

− 1 π I Trace (F c − F cc ) τ nn<br />

CP A<br />

F c = ∑ α<br />

F cc = ∑ α,β<br />

x α F α D α<br />

x α x β F α ˜D α F β D β<br />

F αβ<br />

LL ′ =<br />

∫<br />

Ω<br />

d 3 r Z α×<br />

L (⃗r, E) Zβ L ′ (⃗r, E)<br />

KKR07 – p.53/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Bloch spectral function A B ( ⃗ k, E) of Fe 0.2 Ni 0.8<br />

Bloch spectral function A B ( ⃗ k, E) of Fe 0.2 Ni 0.8<br />

for ⃗k along Γ – X<br />

minority spin<br />

majority spin<br />

0.9<br />

B<br />

0.9<br />

B<br />

0.7<br />

0.7<br />

Ε (Ry)<br />

0.5<br />

C<br />

A<br />

Ε (Ry)<br />

0.5<br />

A<br />

0.3<br />

0.3<br />

0.1<br />

0.1<br />

−0.1<br />

−0.1<br />

Γ<br />

k<br />

X<br />

Γ<br />

k<br />

X<br />

KKR07 – p.54/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Bloch spectral function A B ( ⃗ k, E) of Fe 0.2 Ni 0.8<br />

Bloch spectral function A B ( ⃗ k, E) of Fe 0.2 Ni 0.8<br />

Fermi surface for ⃗k in Γ-X-W plane<br />

minority spin<br />

majority spin<br />

X<br />

W<br />

X<br />

W<br />

W<br />

W<br />

Γ<br />

X<br />

Γ<br />

X<br />

KKR07 – p.55/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

The Dirac Equation<br />

[ ]<br />

<br />

i c⃗α·⃗∇+βmc 2 + ¯V (⃗r)+β⃗σ · ⃗B eff (⃗r) Ψ(⃗r, E) = E Ψ(⃗r, E)<br />

} {{ }<br />

V spin (⃗r)<br />

with an effective magnetic field<br />

⃗B eff (⃗r) = ∂E xc[n, ⃗m]<br />

∂ ⃗m(⃗r)<br />

that is determined by the spin magnetisation ⃗m(⃗r)<br />

within spin density functional theory (SDFT)<br />

Within an atomic cell one can always choose ẑ ′ to have:<br />

V spin (⃗r) = βσ z ′ B eff (r)<br />

KKR07 – p.56/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Ansatz to solve the single site Dirac equation<br />

ψ ν (⃗r, E) = ∑ Λ<br />

ψ Λν (⃗r, E)<br />

with<br />

ψ Λν (⃗r, E) =<br />

(<br />

g Λν (r, E) χ Λ (ˆ⃗r)<br />

if Λν (r, E) χ −Λ (ˆ⃗r)<br />

)<br />

spin-angular functions<br />

χ Λ (ˆr) =<br />

∑<br />

m s =±1/2<br />

C(l 1 2 j; µ − m s, m s ) Y µ−m s<br />

l<br />

(ˆr) χ ms<br />

short hand notation Λ = (κ, µ) and −Λ = (−κ, µ)<br />

KKR07 – p.57/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Relativistic quantum numbers<br />

total angular momentum operator ⃗ j = ⃗ l + 1 2 ⃗σ<br />

⃗j 2 χ Λ (ˆr) = j(j + 1)χ Λ (ˆr)<br />

j z χ Λ (ˆr) = µχ Λ (ˆr)<br />

total angular momentum quantum number j<br />

j = l ± 1/2<br />

magnetic quantum number µ<br />

µ = −j ... + j<br />

KKR07 – p.58/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Relativistic quantum numbers<br />

Spin-orbit operator ˆK<br />

ˆKχ Λ (ˆr) = (1 + ⃗σ · ⃗l )χ Λ (ˆr) = −κχ Λ (ˆr)<br />

Spin-obit quantum number κ<br />

{<br />

κ =<br />

l = j + 1 2<br />

if j = l − 1 2<br />

−l − 1 = −j − 1 if j = l + 1 2 2<br />

κ −1 +1 −2 +2 −3 +3 −4<br />

j 1/2 1/2 3/2 3/2 5/2 5/2 7/2<br />

l 0 1 1 2 2 3 3<br />

symbol s 1/2 p 1/2 p 3/2 d 3/2 d 5/2 f 5/2 f 7/2<br />

KKR07 – p.59/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Radial Differential Equations<br />

P ′ Λν<br />

= − κ r P Λν +<br />

[ ]<br />

E − V<br />

c 2 + 1<br />

+ B c 2 ∑<br />

Q Λν<br />

Λ ′ 〈χ −Λ |σ z |χ −Λ ′〉Q Λ ′ ν<br />

Q ′ Λν<br />

= κ r Q Λν − [E − V ] P Λν + B ∑ Λ ′ 〈χ Λ |σ z |χ Λ ′〉P Λ ′ ν<br />

with P Λν (r, E) = r g Λν (r, E)<br />

and Q Λν (r, E) = cr f Λν (r, E)<br />

The coupling is restricted to µ − µ ′ = 0 and l − l ′ = 0<br />

−→ 4 coupled functions for |µ| < j; e.g. d 3/2,µ — d 5/2,µ<br />

−→ 2 coupled functions for |µ| = j; e.g. d 5/2,µ=±5/2<br />

KKR07 – p.60/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Single site t-matrix<br />

single site t-matrix t ΛΛ ′(E)<br />

t(E) = i<br />

2p<br />

[a(E) − b(E)] b(E)−1<br />

a ΛΛ ′(E) = −ipr 2 [h − Λ , φ ΛΛ ′] r<br />

b ΛΛ ′(E) = −ipr 2 [h + Λ , φ ΛΛ ′] r<br />

relativistic Wronskian<br />

[h + Λ , φ ΛΛ ′] r = h + l cf ΛΛ ′ − p<br />

1 + E/c 2 S κh +¯l g ΛΛ ′<br />

KKR07 – p.61/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Single site t-matrix<br />

spherical spin-dependent potential ( ⃗M‖ẑ)<br />

s 1/2<br />

s 1/2 p 1/2 p 3/2 d 3/2 d 5/2<br />

p 1/2<br />

p 3/2<br />

d 3/2<br />

d 5/2<br />

KKR07 – p.62/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Single site t-matrix – phase shift δ κ<br />

for a spherical potential<br />

Fe in Fe 3 Pt<br />

t κ = − 1 p sin(δ κ) e iδ κ<br />

Pt in Fe 3 Pt<br />

δ κ<br />

(E) (j=l+1/2;|µ|=j)<br />

δ κ<br />

(E) (B xc<br />

=0)<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

2<br />

1<br />

0<br />

s<br />

p<br />

d<br />

s 1/2<br />

p 1/2<br />

p 3/2<br />

d 3/2<br />

d 5/2<br />

-1<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

δ κ<br />

(E) (j=l+1/2;|µ|=j)<br />

δ κ<br />

(E) (B xc<br />

=0)<br />

3<br />

2<br />

1<br />

0<br />

2<br />

1<br />

0<br />

s<br />

p<br />

d<br />

s 1/2<br />

p 1/2<br />

p 3/2<br />

d 3/2<br />

d 5/2<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

energy (Ry)<br />

energy (Ry)<br />

KKR07 – p.63/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

KKR+DMFT scheme I<br />

KKR<br />

Σ<br />

G<br />

E<br />

F<br />

DMFT<br />

(FLEX)<br />

V LSDA (⃗r), Σ DMFT<br />

⇓<br />

single-site problem: t LL ′(z)<br />

⇓<br />

multiple scattering: τ LL ′(z)<br />

⇓<br />

KKR-Green’s function: G(⃗r, ⃗r ′ , z)<br />

⇓<br />

charge ρ(⃗r)<br />

⇓<br />

V LSDA (⃗r)<br />

⇓<br />

G-matrix G LL ′<br />

⇓<br />

DMFT-solver<br />

⇓<br />

Σ DMFT<br />

KKR07 – p.64/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

KKR+DMFT single-site problem<br />

[−∇ 2 + V σ (r) − E]Ψ(⃗r) +<br />

Z<br />

Σ σ (⃗r, ⃗r ′ , E)Ψ(⃗r ′ )d 3 r = 0<br />

For the solution Ψ(⃗r) one starts from the ansatz:<br />

Ψ(⃗r) = X L<br />

Ψ L (⃗r)<br />

» d<br />

2<br />

l(l + 1)<br />

−<br />

dr2 r 2<br />

–<br />

− V (r) + E Ψ L (r, E) =<br />

X<br />

L ′′<br />

Approximation for the self-energy:<br />

X<br />

Z<br />

L<br />

d 3 r ′ φ † L ′ (⃗r)Σ L ′ L(E)φ L (⃗r ′ )Ψ L (⃗r ′ , E) ≈ X L<br />

Z<br />

r ′2 dr ′ Σ LL ′′(E) φ l (r)φ l ′′(r ′ )Ψ L (r ′ , E)<br />

Thus one solves pure differential equation:<br />

» d<br />

2<br />

l(l + 1)<br />

−<br />

dr2 r 2<br />

Σ L ′ L(E)Ψ L (⃗r, E)<br />

–<br />

− V (r) + E Ψ L (r, E) = X Σ LL ′(E) Ψ L ′(r, E)<br />

L ′<br />

KKR07 – p.65/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Comparison of schemes I-III for fcc Ni<br />

n ↓ (sts./eV)<br />

2<br />

1.5<br />

1<br />

0.5<br />

Density of states<br />

LSDA<br />

LSDA+DMFT I<br />

LSDA+DMFT II<br />

LSDA+DMFT III<br />

Im Σ ↓ t 2g<br />

(eV)<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

Self-energy<br />

0<br />

-5<br />

n ↑ (sts./eV)<br />

1.5<br />

1<br />

0.5<br />

Im Σ ↑ t 2g<br />

(eV)<br />

-1<br />

-2<br />

-3<br />

-4<br />

0<br />

-10 -5 0<br />

energy (eV)<br />

-5<br />

-12 -8 -4 0 4<br />

energy (eV)<br />

2<br />

µ spin<br />

LSDA 0.563<br />

LSDA+DMFT I 0.569<br />

LSDA+DMFT II 0.631<br />

LSDA+DMFT III 0.622<br />

Re Σ ↓ t 2g<br />

(eV)<br />

Re Σ ↑ t 2g<br />

(eV)<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-12 -8 -4 0 4<br />

energy (eV) KKR07 – p.66/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

CPA calculations for Fe x Ni 1−x alloy<br />

Spin magnetic moments<br />

real part of Σ<br />

Fe<br />

Fe 10<br />

Ni 90<br />

Fe 40<br />

Ni 60<br />

µ spin<br />

(µ B<br />

)<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Fe LDA<br />

Ni LDA<br />

total LDA<br />

Fe LDA+DMFT<br />

Ni LDA+DMFT<br />

total LDA+DMFT<br />

0<br />

0 20 40 60 80<br />

Fe content (at. %)<br />

Σ t2g<br />

↓<br />

(eV)<br />

Σ t2g<br />

↑<br />

(eV)<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

0<br />

-1<br />

-2<br />

-3<br />

Fe<br />

-10 -5 0<br />

Fe<br />

-10 -5 0<br />

energy (eV)<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

2<br />

0<br />

-2<br />

Ni<br />

-10 -5 0<br />

Ni<br />

-10 -5 0<br />

energy (eV)<br />

Fe 75<br />

Ni 25<br />

KKR07 – p.67/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Kubo-Greenwood Equation<br />

σ µµ =<br />

NΩ〈 π<br />

〉<br />

∑<br />

〈m|j µ |n〉〈n|j µ |m〉δ(ɛ F − ɛ m )δ(ɛ F − ɛ n )<br />

m,n<br />

〈 〉<br />

...<br />

µ ∈ {x, y, z}<br />

= average over configurations, j µ = −i e m<br />

∂<br />

∂r µ<br />

,<br />

using : ∑ m |m〉〈m|δ(ɛ − ɛ m) = − 1 π lim η→0 IG + (ɛ + iη)<br />

Kubo-Greenwood Equation<br />

〉<br />

σ µµ = −<br />

〈j Tr πNΩ µ IG + (ɛ F + iη) j µ IG + (ɛ F + iη)<br />

KKR07 – p.68/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Kubo-Greenwood Equation within KKR<br />

⇒ σ µµ = − 1 (˜σµµ [G + , G + ] + ˜σ µµ [G − , G − ]<br />

4<br />

− ˜σ µµ [G + , G − ] − ˜σ µµ [G − , G + ] )<br />

with ˜σ µµ [G ± , G ± ] = − <br />

πNΩ Tr 〈 j µ G ± j µ G ± 〉<br />

after a lot of mathematics<br />

˜σ µµ = − 4m2<br />

π 3 Ω<br />

⎛<br />

∑<br />

⎜<br />

⎝<br />

α,β<br />

+ ∑ α<br />

∑<br />

(with z 1 , z 2 = lim η→0 (ɛ F ± η))<br />

c α c β ˜J αµ<br />

L 4 ,L 1<br />

(z 2 , z 1 )<br />

L 1 ,L 2<br />

L 3 ,L 4<br />

[<br />

{1 − χω} −1<br />

} {{ }<br />

Vertex correction<br />

〈GjGj〉→〈Gj〉〈Gj〉<br />

]<br />

χ ˜J βµ<br />

L 2 ,L 3<br />

(z 1 , z 2 )<br />

L 1 ,L 2<br />

L 3 ,L 4<br />

⎞<br />

∑<br />

c α ˜J αµ<br />

L 4 ,L 1<br />

(z 2 , z 1 )τ CPA,00<br />

L 1 ,L 2<br />

(z 1 )J αµ<br />

L 2 ,L 3<br />

(z 1 , z 2 )τ CPA,00 ⎟<br />

L 3 ,L 4<br />

(z 2 ) ⎠<br />

L 1 ,L 2<br />

L 3 ,L 4<br />

→ for more details see W. Butler, PRB 31 3260 (1985)<br />

KKR07 – p.69/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Residual resistivity of Co x Pt 1−x<br />

40<br />

30<br />

present work<br />

S. U. Jen et al., Phys. Rev. 48 12789 (1993)<br />

ρ (10 -6 Ohm cm)<br />

20<br />

10<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

x<br />

KKR07 – p.70/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Ruderman-Kittel nuclear spin-spin coupling<br />

coupling of nuclear spins<br />

due to spin-dependent scattering<br />

oscillating spin density<br />

Indirect nuclear spin-spin coupling parameter A mn<br />

A mn ∝ cos(2k F R mn )/R 3 mn<br />

free electron gas (FEG) Ruderman and Kittel (1954)<br />

KKR07 – p.71/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Probing of distorted electronic structure<br />

Expectation value for hyperfine interaction<br />

〈H mn<br />

hf<br />

〉 = − 1 ∫ EF<br />

π I Trace dE d<br />

∫Ω 3 r H m hf<br />

(⃗r) G(⃗r, ⃗r, E)<br />

m<br />

− 1 ∫ EF<br />

∫<br />

π I Trace dE d<br />

∫Ω 3 r d 3 r ′<br />

m Ω n<br />

H m hf (⃗r) G(⃗r, ⃗r ′ , E) H n hf (⃗r ′ ) G(⃗r ′ , ⃗r, E)<br />

Probe: nuclear spin ⃗µ m in atomic cell m<br />

expressed by hyperfine operator H m hf (⃗r)<br />

H m hf<br />

(⃗r) short ranged – restricted to atomic cell m<br />

second term: indirect nuclear spin-spin coupling<br />

KKR07 – p.72/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Indirect nuclear spin-spin coupling tensor<br />

nuclear spin-spin coupling Hamiltonian<br />

H nuc = − 1 2<br />

∑<br />

n≠m<br />

⃗I n A mn<br />

⃗I m<br />

Indirect nuclear spin-spin coupling tensor<br />

A mn = 1<br />

2π C m C n I<br />

( ∑<br />

Λ<br />

∫ EF<br />

dE<br />

∑<br />

Λ ′<br />

⃗¯M<br />

Λ hf m mn<br />

′′′ Λ<br />

(E)τΛΛ ′ (E)<br />

⊗<br />

∑<br />

Λ ′′′<br />

)<br />

( ∑<br />

Λ ′′ ⃗¯M hf n<br />

Λ ′ Λ ′′ (E) τ nm<br />

Λ ′′ Λ ′′′ (E)<br />

)<br />

KKR07 – p.73/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Ruderman-Kittel coupling parameter A RK<br />

mn<br />

Results for Cu<br />

A mn<br />

/ (µ n<br />

/I) 2 (nK)<br />

2.5<br />

0<br />

-2.5<br />

-5<br />

-7.5<br />

FEG<br />

Oja et al.<br />

present<br />

Cu<br />

-10<br />

0.5 1 1.5 2 2.5<br />

R mn<br />

(a)<br />

relativistic<br />

small anisotropy<br />

scalar-relativistic<br />

no anisotropy<br />

Oja et al (1989)<br />

free electron gas<br />

1<br />

R 3 cos(2k F R)<br />

slower decay<br />

out of phase<br />

KKR07 – p.74/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

R- and Q-parameters for Cu<br />

R-parameter<br />

Q-parameter<br />

[ ∑<br />

m<br />

R =<br />

∑<br />

m<br />

A RK<br />

mn<br />

µ 0 2 γ n ρ<br />

Q =<br />

(<br />

A RK<br />

mn<br />

µ 0 2 γ n ρ<br />

) 2<br />

] 1/2<br />

Theory Expt<br />

Oja Present<br />

−0.37 −0.38 −0.42<br />

±0.05<br />

Theory Expt<br />

Oja Present<br />

+0.101 +0.099 +0.095<br />

±0.003<br />

sign indicates<br />

nuclear antiferromagnet<br />

deduced from<br />

NMR line width<br />

KKR07 – p.75/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

XMCD Experiment<br />

I 0 I = I<br />

0<br />

exp(− d)<br />

circularly polarised<br />

d<br />

Magnetisation<br />

Magnetic circular dichroism<br />

µ λ q<br />

M<br />

L<br />

3p<br />

3p<br />

3s<br />

2p<br />

2p<br />

2s<br />

3/2<br />

1/2<br />

1/2<br />

3/2<br />

1/2<br />

1/2<br />

λ<br />

Absorption coefficient<br />

depends on relative orientation of<br />

magnetisation and polarisation λ<br />

K<br />

1s<br />

1/2<br />

First XMCD experiments:<br />

G. Schütz et al. (1987), K-edge of Fe<br />

KKR07 – p.76/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Calculation of XMCD spectra<br />

Fermi’s golden rule<br />

µ ⃗qλ (ω) ∝<br />

∑<br />

|〈Φ f |X ⃗qλ |Φ i 〉| 2 δ(ω − E f + E i )<br />

i occ<br />

f unocc<br />

∝<br />

∑<br />

i occ<br />

〈Φ i |X × ⃗qλ IG+ (E f ) X ⃗qλ |Φ i 〉θ(E f − E F )<br />

relativistic treatment — X ⃗qλ = − 1 c ⃗ j el · ˆ⃗a λ Ae i⃗q⃗r<br />

X-ray circular magnetic dichroism (XMCD)<br />

∆µ ⃗qλ (ω) = µ ⃗q+ (ω) − µ ⃗q− (ω)<br />

<strong>Ebert</strong>, RPP 59 1665 (’96)<br />

KKR07 – p.77/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Magnetic EXAFS<br />

K-edge of Fe in bcc-Fe<br />

L 3 -edge of Pt in Fe 3 Pt<br />

influence of disorder<br />

µ(E) (arb. units)<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

µ(E) (arb.units)<br />

75.00<br />

65.00<br />

55.00<br />

45.00<br />

35.00<br />

0.04<br />

0 200 400 600<br />

energy (eV)<br />

∆µ(E) (arb. units)<br />

0.02<br />

0.00<br />

−0.02<br />

−0.04<br />

0.0 100.0 200.0 300.0 400.0 500.0<br />

energy (eV)<br />

∆µ(E) (arb.units)<br />

0.20<br />

0.10<br />

0.00<br />

−0.10<br />

−0.20<br />

0 200 400 600<br />

energy (eV)<br />

KKR07 – p.78/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

XMCD at L 2,3 -edges of Gd, Tb, Dy<br />

1.0<br />

Gd(L 3<br />

)<br />

1.0 Gd(L 2<br />

)<br />

1.0 Tb(L 3<br />

)<br />

1.0 Tb(L 2<br />

)<br />

1.0 Dy (L 3<br />

)<br />

1.0 Dy(L 2<br />

)<br />

µ(Mb)<br />

0.5<br />

Experiment<br />

dipole<br />

quadrupole<br />

dip.+quad.<br />

0.5<br />

0.5<br />

0.5<br />

0.5<br />

0.5<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

∆µ(Mb)<br />

0.02<br />

0.01<br />

0.00<br />

-0.02<br />

0.02<br />

0.00<br />

0.02<br />

0.00<br />

0.02<br />

0.00<br />

0.00<br />

-0.04<br />

0.00<br />

-0.02<br />

-0.02<br />

-0.02<br />

7240 7260<br />

7920 7940<br />

7510 7520 7530<br />

8240 8260 8280<br />

7785 7800<br />

8580 8600<br />

energy (eV)<br />

energy (eV)<br />

energy (eV)<br />

energy (eV)<br />

energy (eV)<br />

energy (eV)<br />

Experiment: H. Wende et al, (PRB, submitted, 2006)<br />

KKR07 – p.79/100


∆µ = δµ + − δµ −<br />

KKR07 – p.80/100<br />

Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Field-induced XMCD<br />

X-ray absorption coefficient:<br />

µ λ (ω) ∝ ∑ i<br />

〈Φ i |X † ⃗qλ G0 (E)X ⃗qλ |Φ i 〉 Θ(E − E F ) .<br />

E = E i + ω<br />

The correction to the absorption coefficient δµ λ due<br />

to the term δG B<br />

µ B λ (ω) = µ λ (ω) + δµ λ (ω) ,<br />

δµ λ (ω) ∝ ∑ i<br />

〈Φ i |X † ⃗qλ δGB (E)X ⃗qλ |Φ i 〉 Θ(E − E F ) .<br />

MCXD signal linear with respect to external field:


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Comparison with experiment<br />

Absorption coefficient µ L2,3 for the L 2,3 -edges of Pd<br />

L 2 -edge<br />

L 3 -edge<br />

µ Pd<br />

(a.u.)<br />

L 2<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

theor.<br />

experim. *<br />

µ Pd<br />

(a.u.)<br />

L 3<br />

0.8<br />

0.6<br />

0.4<br />

theor.<br />

experim. *<br />

0.05<br />

0.2<br />

0<br />

0.0006<br />

0<br />

0<br />

∆µ Pd<br />

(a.u.)<br />

L 2<br />

0.0004<br />

0.0002<br />

∆µ Pd<br />

(a.u.)<br />

L 3<br />

-0.0005<br />

-0.001<br />

0<br />

3310 3320 3330 3340 3350 3360 -0.0015<br />

energy (eV)<br />

External magnetic field H = 10 T<br />

3160 3180 3200<br />

energy (eV)<br />

Experiment: A. Rogalev et al.<br />

KKR07 – p.81/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Application of the modified sum rules<br />

Spin and orbital Pt susceptibilities in Ag x Pt 1−x<br />

200<br />

spin<br />

60<br />

orbital<br />

χ spin<br />

(10 -6 emu/mol)<br />

150<br />

100<br />

50<br />

direct calc.<br />

sum rule<br />

direct calc., NO enhancement<br />

sum rule, NO enhancement<br />

χ orb<br />

(10 -6 emu/mol)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

direct calc.<br />

sum rule<br />

0<br />

0 20 40 60 80<br />

x Ag<br />

(%)<br />

0<br />

0 20 40 60 80<br />

x Ag<br />

(%)<br />

unique tool to separate spin and orbital<br />

susceptibilities<br />

concentration dependence well described<br />

Stoner enhancement accounted for<br />

KKR07 – p.82/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Theory of X-ray magneto-optics<br />

Two possible approaches:<br />

- Atomic scattering amplitude f<br />

- Conductivity tensor σ<br />

Extension of Fresnel’s equations<br />

Complex refractive index n(ω):<br />

n ± (ω) = √ ɛ(ω) = 1 − δ 0 ± δ(ω) + i(β 0 ± β(ω))<br />

ɛ(ω) dielectric tensor<br />

ɛ(ω) = 1 + 4πi<br />

ω σ(ω)<br />

σ(ω) Conductivity tensor – microscopical properties of a medium<br />

Circular dichroism<br />

∆n =<br />

1<br />

2 (n + − n − )<br />

= −∆δ + i∆β<br />

Faraday rotation<br />

Θ F = φ F + iɛ F<br />

= 2πid<br />

c<br />

σ xy<br />

√<br />

1−<br />

4π<br />

ω σ xx<br />

Kerr rotation<br />

Θ K =<br />

σ xy<br />

σ xx<br />

√<br />

1−<br />

4π<br />

ω σ xx<br />

KKR07 – p.83/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Calculation of the conductivity tensor<br />

Linear response theory (Kubo formula)<br />

written in the terms of Green‘s function:<br />

σ αβ (ω) = i<br />

π 2 V<br />

∑<br />

i<br />

∫<br />

E F<br />

dE<br />

∫<br />

V<br />

d 3 r<br />

∫<br />

V<br />

d 3 r ′<br />

Trace { 〈φ i | j α (⃗r) ImG + (E)j β (⃗r ′ ) |φ i 〉 }<br />

(E − E i + i0 + )(ω + E i − E + iΓ i )<br />

+ Trace { 〈φ i | j β (⃗r ′ ) ImG + (E)j α (⃗r) |φ i 〉 }<br />

(E − E i + i0 + )(ω + E − E i + iΓ i )<br />

G + : Green’s function representing VB-states<br />

φ i : tightly bounded core states<br />

⃗j = ec⃗α: relativistic current density operator<br />

KKR07 – p.84/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Results of calculations<br />

Faraday rotation at the K-edge of fcc-Co<br />

θ F<br />

(10 -3 rad)<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

Rotation<br />

θ F<br />

(d=2.5µm)<br />

Experiment<br />

0 10 20 30 40 50<br />

µ K<br />

(arb. units)<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

Absorption<br />

Experiment<br />

Theory<br />

0 10 20 30 40 50<br />

energy (eV)<br />

energy (eV)<br />

Exp: Siddons et al. PRL 64,1967 (1990)<br />

KKR07 – p.85/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

L 2,3 -edges of disordered fcc Fe 50 Ni 50<br />

Circular dichroic parts ∆δ and ∆β of the n<br />

∆β<br />

∆δ<br />

8×10 -4<br />

0<br />

-8×10 -4<br />

-2×10 -3<br />

1×10 -3<br />

5×10 -4<br />

0<br />

-5×10 -4<br />

-1×10 -3<br />

∆β<br />

∆δ<br />

2×10 -4<br />

-2×10 -4 0<br />

-4×10 -4<br />

2×10 -4<br />

1×10 -4<br />

0<br />

-1×10 -4<br />

-2×10 -4<br />

-10 0 10 20 30<br />

-10 0 10 20 30<br />

L 2,3 -edges of Fe in Fe 50 Ni 50<br />

Energy [eV]<br />

Energy [eV]<br />

L 2,3 -edges of Ni in Fe 50 Ni 50<br />

Exp: Mertins et al., Nucl. Inst. Methods A (2001)<br />

KKR07 – p.86/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Fano effect in VB-photoemission<br />

Spin polarisation of photo electrons<br />

due to spin-orbit coupling<br />

spin resolved angle integrated<br />

photoemission experiment<br />

paramagnetic systems<br />

circularly<br />

polarized<br />

ESRF<br />

spin polarized<br />

photoelectrons<br />

detector<br />

semisphere<br />

spin<br />

e −<br />

KKR07 – p.87/100


¤<br />

© ¥¤ §¥<br />

<br />

¥<br />

¨© <br />

¦§¥ ¥<br />

¨ §©<br />

©<br />

¤ <br />

§© ¨<br />

¤<br />

¡<br />

¡<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

¥<br />

¨© <br />

<br />

¢£ £ £ £ ¢ ¢<br />

¢<br />

<br />

!<br />

§<br />

¨¥ <br />

¦ ¨ ¨©<br />

¤<br />

¨<br />

¤<br />

Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

One-step model of photoemission<br />

photo current<br />

j(ˆk, E fin ) ∝ √ E fin<br />

∫<br />

d 3 r ∫ d 3 r ′<br />

φ fin (⃗r, ˆk, E fin ) † X ⃗qλ (⃗r)IG(⃗r, ⃗r ′ , E)X † ⃗qλ (⃗r ′ )φ fin (⃗r ′ , ˆk, E fin )<br />

φ fin (⃗r, ˆk, E) = TR φ LEED (⃗r, ˆk, E)<br />

∫<br />

φ LEED (⃗r, ˆk, E) = e i⃗k⃗r + d 3 r ′ G(⃗r, ⃗r ′ , E) V (⃗r ′ ) φ LEED (⃗r ′ , ˆk, E)<br />

KKR07 – p.88/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Photo current intensity within KKR<br />

I ms m ′ s (E, ⃗ k; ω, ⃗q, λ)∝ ∑ Λ Λ ′′ i l−l′′ C −m s<br />

Λ<br />

∑<br />

with the matrix elements<br />

M ⃗qλ<br />

ΛΛ ′ =<br />

C −m′ s<br />

Λ ′′<br />

Y µ+m s∗<br />

l<br />

e i⃗ k( ⃗R m − ⃗R ∑ m ′)<br />

e i⃗q( ⃗R n − ⃗R n ′)<br />

m m ′ n n<br />

∑<br />

′ τΛ nm<br />

′ Λ (E′ )τ n′ m ′ ∗<br />

Λ ′′′ Λ ′′ (E ′ )<br />

Λ ′ Λ<br />

[ ′′′ ∑<br />

M ⃗qλ<br />

Λ ′ Λ 1<br />

τΛ nn′<br />

1 Λ 2<br />

(E) ¯M ⃗qλ<br />

Λ 2 Λ ′′′<br />

Λ 1 Λ 2<br />

∫<br />

− δ n n ′<br />

(−ˆk)Y µ′′ +m ′ s<br />

l ′′ (−ˆk)<br />

∑<br />

]<br />

I n ⃗qλ<br />

Λ ′ Λ 1 Λ ′′′<br />

Λ 1<br />

d 3 r[T Z Λ (⃗r, E ′ )] † X ⃗qλ (⃗r)Z Λ ′(⃗r, E)<br />

KKR07 – p.89/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Spin-resolved VB-XPS of Cu, Ag and Au<br />

Cu (600 eV)<br />

Ag (600 eV)<br />

Au (600 eV)<br />

I +<br />

Intensity (arb.u.)<br />

100<br />

50<br />

exp.<br />

theory<br />

100<br />

50<br />

100<br />

50<br />

∆I +<br />

Intensity (arb.u.)<br />

0<br />

5<br />

0<br />

-5<br />

exp.<br />

theory<br />

0<br />

10<br />

0<br />

-10<br />

0<br />

20<br />

10<br />

0<br />

-10<br />

10 8 6 4 2 0<br />

10 8 6 4 2 0<br />

-20<br />

10 8 6 4 2 0<br />

Binding energy (eV)<br />

Binding energy (eV)<br />

Binding energy (eV)<br />

KKR07 – p.90/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Perturbational treatment of spin-orbit coupling<br />

non-relativistic spin-resolved photo-current<br />

I(E, ⃗k, m s ; ω, ⃗q, λ) =<br />

∫<br />

d 3 r<br />

• final states (time reversed LEED state)<br />

∫<br />

d 3 r ′ φ ∗ final<br />

(⃗r, E + ω)<br />

× X ⃗q,λ Im G(⃗r, ⃗r ′ , E)X ∗ ⃗q,λ φ final(⃗r, E + ω)<br />

φ final (⃗r, E) = 4π ∑ L<br />

i l Y ∗ L (̂k)t l Z l (⃗r)Y L (̂r)χ ms<br />

• initial states<br />

Im G(⃗r, ⃗r ′ , E) = ∑<br />

Z L1 (⃗r, E)Im τL nn<br />

1 ,L 2<br />

Z † L 2<br />

(⃗r, E)<br />

L 1 ,L 2<br />

Include spin-orbit coupling (1st order):<br />

G = G 0 + G 0 Ĥ SOC G 0<br />

KKR07 – p.91/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Spin-resolved Photo current<br />

I m s<br />

λ<br />

∝ ∑ L<br />

[t l (E)] 2 ∑ L 1 L 2<br />

[M λ Lm s L 1 m s<br />

M λ∗<br />

Lm s L 2 m s<br />

Iτ L1 L 2<br />

(E)<br />

+ ∑ L 3 L 4<br />

ξ lms M λ Lm s L 1 m s<br />

M SOC<br />

L 2 m s L 3 m s<br />

M λ∗<br />

LL 4<br />

I(τ L1 L 2<br />

(E)τ L3 L 4<br />

(E))]<br />

Spin Difference ∆I λ = I ↑ λ − I↓ λ<br />

S lλ =<br />

(for l = 2 d- electrons)<br />

∆I λ ∝<br />

∑<br />

ξ d S lλ Im [ ( )]<br />

τ t2g 4 τeg + τ t2g<br />

⎧<br />

l<br />

⎪⎨<br />

⎪⎩<br />

+1 d → p λ = +1 (LCP)<br />

−1 d → f λ = +1 (LCP)<br />

−1 d → p λ = −1 (RCP)<br />

+1 d → f λ = −1 (RCP)<br />

KKR07 – p.92/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Fano effect in VB-photoemission<br />

Spin polarisation of photo electrons<br />

due to spin-orbit coupling<br />

spin resolved angle integrated<br />

photoemission experiment<br />

ferromagnetic systems<br />

circularly<br />

polarized<br />

ESRF<br />

spin polarized<br />

photoelectrons<br />

Detector<br />

semisphere<br />

spin<br />

e −<br />

magnetization in plane<br />

KKR07 – p.93/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Fano effect in VB-XPS of ferromagnets<br />

Photocurrent and spin-difference<br />

Minár et al., PRL , 95, 166401 (2005)<br />

Intensity (arb.units)<br />

100<br />

50<br />

E phot = 600 eV<br />

Fe Co Ni<br />

exp.<br />

LDA<br />

LDA+DMFT<br />

Intensity (arb. units)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

exp.<br />

LDA<br />

LDA+DMFT<br />

Intensity (arb. units)<br />

100<br />

50<br />

exp.<br />

LDA<br />

LDA+DMFT<br />

Spin-difference (arb. units.)<br />

0<br />

0<br />

Fe (600eV)<br />

-2<br />

-10 -8 -6 -4 -2 0 2<br />

Binding energy (eV)<br />

Spin-difference (arb. units)<br />

0<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

Co (600eV)<br />

-10 -8 -6 -4 -2 0 2<br />

Binding energy (eV)<br />

Spin-difference (arb. units)<br />

0<br />

2<br />

0<br />

-2<br />

Ni (600eV)<br />

-4<br />

-10 -8 -6 -4 -2 0 2<br />

Binding energy (eV)<br />

KKR07 – p.94/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Magnetic Compton Scattering<br />

Standard expression for magnetic Compton scattering:<br />

( )<br />

∂ 2 σ<br />

∂Ω∂p z<br />

↑<br />

−<br />

( )<br />

∂ 2 σ<br />

∂Ω∂p z<br />

↓<br />

= P c r 2 o Ψ 2(⃗S)J − (p z )<br />

Geometry factor:<br />

Ψ 2 = ±σ ( k o cos α cos φ − k ′ cos(α − φ) ) (cosφ − 1) c<br />

m o c 2<br />

Magnetic Compton profile:<br />

J − (p z ) = ∫ ∫ ( n ↑ (⃗p) − n ↓ (⃗p) ) dp x dp y<br />

KKR07 – p.95/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Multiple Scattering Formulation<br />

Green’s function in momentum representation<br />

G ms m ′ (⃗p, ⃗p ′ , E) = 1<br />

s<br />

NΩ<br />

∫<br />

∫<br />

d 3 r d 3 r ′ ×<br />

Density of spin-projected momentum<br />

×Φ × ⃗pm s<br />

(⃗r)G + (⃗r, ⃗r ′ , E)Φ ⃗p ′ m ′ (⃗r ′ )<br />

s<br />

= G ms (⃗p, ⃗p ′ , E)δ ms m ′ δ s ⃗p⃗p ′<br />

n m s<br />

(⃗p) = − 1 π<br />

∫ EF<br />

0<br />

ImG ms (E, ⃗p, ⃗p)dE<br />

Magnetic Compton profile<br />

J − (p z ) =<br />

∫ ∫ (<br />

n ↑ − n ↓) dp x dp y<br />

KKR07 – p.96/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Application to transition metals<br />

MCP (arbitrary units)<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Magnetic Compton<br />

profile for Ni[001]:<br />

experimental<br />

FLAPW 0.43 broad<br />

KKR 0.43 broad<br />

Anisotropic profiles:<br />

disordered alloy Ni 75 Co 25<br />

∆J 110-001<br />

(arb. units)<br />

0.05<br />

0<br />

-0.05<br />

KKR Bansil et.al<br />

experimental<br />

KKR 0.4 broad<br />

0<br />

0 1 2 3 4 5<br />

momentum p z<br />

(a.u)<br />

Experiment: Dixon et. al (1991)<br />

Measurements on the high-energy X-Ray<br />

beam line(ID15) at the ESRF.<br />

The experimental profile normalised to a<br />

spin moment µ spin =0.58µ B . Momentum<br />

resolution of 0.43 a.u.<br />

0 1 2 3 4 5<br />

momentum p z<br />

(a.u)<br />

Experiment: Bansil et. al (1998)<br />

Momentum resolution of 0.40 a.u.<br />

KKR07 – p.97/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

Application to UFe 2<br />

Comparison<br />

with experiment<br />

Decomposition<br />

MCP (arbitrary units)<br />

0.2<br />

0.1<br />

0<br />

U (KKR)<br />

Fe (KKR)<br />

experiment<br />

interf (KKR)<br />

total (KKR)<br />

MCP (arbitrary units)<br />

0.2<br />

0.1<br />

0<br />

U (KKR)<br />

U 5f (Lawson)<br />

Fe (KKR)<br />

Fe 3d (Lawson)<br />

interf (KKR)<br />

spd (Lawson)<br />

-0.1<br />

0 1 2 3 4 5<br />

momentum p z<br />

(atomic units)<br />

-0.1<br />

0 1 2 3 4 5<br />

momentum p z<br />

(atomic units)<br />

appreciable interference term<br />

component-resolved contributions do not scale with partial moments<br />

KKR07 – p.98/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

I didn’t talk about<br />

Friedel’s sum rule<br />

Lloyd’s formula<br />

full potential calculations<br />

calculation of forces<br />

tight-binding (TB) formulation<br />

layer KKR/LEED formalism<br />

non-local CPA<br />

non-collinear magnetism<br />

treatment of interstitials<br />

...<br />

KKR07 – p.99/100


Ludwig<br />

Maximilians-<br />

Universität<br />

München<br />

The story goes on ....<br />

Seattle<br />

Champaign<br />

OakRidge<br />

Warwick<br />

Daresbury<br />

Bristol<br />

München<br />

Wien<br />

Jülich<br />

Halle<br />

Budapest<br />

Messina<br />

Osaka<br />

... KKR forges all over the world<br />

KKR07 – p.100/100

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!