03.06.2014 Views

Nanoparticles in Lithium-Ion Batteries - PTL

Nanoparticles in Lithium-Ion Batteries - PTL

Nanoparticles in Lithium-Ion Batteries - PTL

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nanoparticles</strong> <strong>in</strong> <strong>Lithium</strong>-<strong>Ion</strong> <strong>Batteries</strong> –<br />

Opportunities and Challenges<br />

Timothy Patey<br />

R. Büchel, , S.H. Ng, F. Krumeich, , S.E. Prats<strong>in</strong>is,<br />

P. Novák<br />

Paul Scherrer Institute<br />

Electrochemistry Laboratory<br />

Villigen, Switzerland<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Outl<strong>in</strong>e<br />

• Electrochemical energy storage and the Li-ion batteries<br />

• <strong>Nanoparticles</strong> for Li-ion <strong>Batteries</strong><br />

• Co-synthesis of LiMn 2 O 4 and carbon black<br />

nanocomposites<br />

• Outlook of research<br />

2/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Electrochemical energy storage <strong>in</strong> the energy economy<br />

1. Static load levell<strong>in</strong>g of renewable energy<br />

Shanghai, Ch<strong>in</strong>a<br />

3/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Electrochemical energy storage <strong>in</strong> the energy economy<br />

1. Static load<strong>in</strong>g levell<strong>in</strong>g of renewable energy<br />

2. Transportation<br />

Both Toyota and Mercedes will release HEVs with Li-ion batteries <strong>in</strong> 2009<br />

4/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Ragone-plot<br />

1’000’000<br />

Specific Power [W/kg]<br />

100’000<br />

10’000<br />

1’000<br />

100<br />

Pb/PbO 2<br />

Electrochemical<br />

Capacitors<br />

10<br />

<strong>Lithium</strong>-<strong>Ion</strong><br />

1<br />

1 10 100 1’000<br />

Specific Energy [Wh/kg]<br />

5/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Electrochemistry<br />

4 V<br />

LiCoO 2 ,<br />

LiNiO 2 ,<br />

mixed<br />

LiMn 2 O 4<br />

Graphite<br />

Hard Carbons<br />

LiFePO 4<br />

6/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Why nanoscale?<br />

more surface area = <strong>in</strong>crease <strong>in</strong> power<br />

><br />

Why not nanoscale?<br />

more surface area = <strong>in</strong>crease <strong>in</strong> side reactions<br />

><br />

7/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Co-synthesis of LiMn 2 O 4 and carbon black<br />

8/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Preparation of electrodes<br />

Mix contents <strong>in</strong><br />

polar solution<br />

[7:2:1]<br />

Flame-made<br />

powder<br />

+<br />

Carbon black<br />

+<br />

1<br />

B<strong>in</strong>der<br />

Composite<br />

electrode<br />

Assemble <strong>in</strong>to cell<br />

Li anode (-)<br />

Separator<br />

Electrolyte:<br />

LiPF 6 <strong>in</strong> EC/DMC<br />

Composite<br />

electrode (+)<br />

1 - 10% polyv<strong>in</strong>ylidenfluoride (PVDF) 1015 dissolved <strong>in</strong> n-methyl-2-pyrrolidon (NMP)<br />

9/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Cyclic voltammograms – reaction k<strong>in</strong>etics<br />

Specific Current, jm (mA g -1 )<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

Charge<br />

56 % flame-made CB<br />

32 % flame-made CB<br />

0 % flame-made CB<br />

(Li + extraction)<br />

LiMn 2 O Li 1-x Mn 2 O 4 ,<br />

4<br />

Discharge<br />

x 0.7<br />

(Li + <strong>in</strong>sertion)<br />

-600<br />

3 3.2 3.4 3.6 3.8 4 4.2 4.4<br />

Voltage, U (V)<br />

10/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Discharge capacity per unit mass LiMn 2 O 4<br />

Discharge Capacity (Ah kg -1 )<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.5C<br />

1C 2C 5C 10C 20C 50C<br />

56 % flame-made CB<br />

32 % flame-made CB<br />

0 % flame-made CB<br />

0 10 20 30 40 50 60 70<br />

Cycle Number<br />

11/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Discharge capacity per unit mass electrode<br />

120<br />

Discharge Capacity (Ah kg -1 )<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0.5C<br />

1C 2C 5C 10C 20C 50C<br />

56 % flame-made CB<br />

32 % flame-made CB<br />

0 % flame-made CB<br />

0<br />

0 10 20 30 40 50 60 70<br />

Cycle Number<br />

12/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Layout of a lithium-ion ion battery – consideration of<br />

nanocomposite (32wt.% carbon black) <strong>in</strong> a battery<br />

LiMn 2 O 4 Electrode / Al Electrolyte C 6 Electrode / Cu<br />

20 m 20 m 10 m 20 m<br />

658 m<br />

159 m<br />

13/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Ragone-Plot<br />

–<br />

LiMn 2 O 4 / CB nanocomposites as hybrid material<br />

1’000’000<br />

Specific Power [W/kg]<br />

100’000<br />

10’000<br />

1’000<br />

100<br />

Pb/PbO 2<br />

Electrochemical<br />

Capacitors<br />

10<br />

<strong>Lithium</strong>-<strong>Ion</strong><br />

1<br />

1 10 100 1’000<br />

Specific Energy [Wh/kg]<br />

14/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Conclusions<br />

• Battery with LiMn 2 O 4 / carbon black nanocomposites<br />

could have a specific energy one order of magnitude<br />

greater than supercapacitators, but…<br />

• Coat<strong>in</strong>g of nanoparticles required to reduce capacity<br />

fad<strong>in</strong>g over the lifetime of the battery (>1000 cycles).<br />

15/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Other activities – past and present<br />

• Synthesis of LiV 3 O 8 cathode material by FSP.<br />

• Electrode optimization of TiO 2 us<strong>in</strong>g surfactants.<br />

• Optimization of LiMn 2 O 4 nanoparticles by FSP.<br />

16/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Other activities – past and present<br />

• Synthesis of LiV 3 O 8 cathode material by FSP.<br />

• Electrode optimization of TiO 2 us<strong>in</strong>g surfactants.<br />

• Optimization of LiMn 2 O 4 nanoparticles by FSP.<br />

Other activities - future<br />

• Advanced electrochemical characterization at the Tokyo<br />

Institute of Technology, Prof. M. Nakayama<br />

• Electrochemical impedance spectroscopy<br />

• Electrochemical calorimetric measurements<br />

17/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>


Acknowledgments<br />

THANK YOU FOR<br />

YOUR ATTENTION!<br />

18/32<br />

Electrochemistry Laboratory – <strong>Batteries</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!