11.06.2014 Views

Modelling waste heat recovery with a turbogenerator on a ... - Ricardo

Modelling waste heat recovery with a turbogenerator on a ... - Ricardo

Modelling waste heat recovery with a turbogenerator on a ... - Ricardo

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Modelling</str<strong>on</strong>g> <str<strong>on</strong>g>waste</str<strong>on</strong>g> <str<strong>on</strong>g>heat</str<strong>on</strong>g> <str<strong>on</strong>g>recovery</str<strong>on</strong>g> <str<strong>on</strong>g>with</str<strong>on</strong>g> a<br />

<str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g> <strong>on</strong> a diesel engine<br />

A presentati<strong>on</strong> to the <strong>Ricardo</strong> European User C<strong>on</strong>ference<br />

Ian Briggs<br />

Queen’s University Belfast<br />

Geoff McCullough<br />

Stephen Spence<br />

Roy Douglas<br />

Richard O’Shaughnessy Queen’s University Belfast<br />

27 th March 2012<br />

Alister Hanna<br />

Cedric Rouaud<br />

Rachel Seaman<br />

Wrightbus Ltd.<br />

<strong>Ricardo</strong> Ltd.<br />

Revolve Technologies Ltd.<br />

© 2012, The Queen’s University of Belfast


Acknowledgement<br />

• The authors would like to acknowledge the UK Technology Strategy<br />

Board and Invest Northern Ireland for the financial support in the<br />

Project ‘TERS – Thermal Energy Recovery Systems’<br />

• Also, Wrightbus, Revolve and <strong>Ricardo</strong> for their technical c<strong>on</strong>tributi<strong>on</strong>s<br />

© 2012, The Queen’s University of Belfast<br />

2


C<strong>on</strong>tents<br />

• Introducti<strong>on</strong><br />

– Project Background<br />

– Overview<br />

• Waste Heat Recovery Project<br />

– Engine <str<strong>on</strong>g>Modelling</str<strong>on</strong>g><br />

– Waste <str<strong>on</strong>g>heat</str<strong>on</strong>g> <str<strong>on</strong>g>recovery</str<strong>on</strong>g> modelling<br />

• Results<br />

• Optimisati<strong>on</strong><br />

• C<strong>on</strong>clusi<strong>on</strong>s<br />

• Future Work<br />

© 2012, The Queen’s University of Belfast<br />

3


Introducti<strong>on</strong><br />

• Background<br />

– Project funded by Technology Strategy Board / Invest Northern Ireland<br />

– Collaborati<strong>on</strong> between three commercial partners (Wrightbus Ltd, <strong>Ricardo</strong> Ltd<br />

and Revolve Technologies Ltd) and three post-graduate students at QUB<br />

– Researching thermal management of a Wrightbus hybrid bus<br />

• Project Aims & Objectives<br />

– Work in c<strong>on</strong>juncti<strong>on</strong> <str<strong>on</strong>g>with</str<strong>on</strong>g> the group members to reduce fuel c<strong>on</strong>sumpti<strong>on</strong> <strong>on</strong><br />

Wrightbus’ hybrid bus<br />

– Collectively, we aim to achieve 10% reducti<strong>on</strong> in fuel c<strong>on</strong>sumpti<strong>on</strong> using<br />

turbocompounding and Rankine cycles <strong>on</strong> exhaust line and cooling circuit<br />

– Apply turbocompounding to the hybrid bus engine to recover <str<strong>on</strong>g>waste</str<strong>on</strong>g>d energy<br />

and reduce fuel c<strong>on</strong>sumpti<strong>on</strong> (via the creati<strong>on</strong> of a computati<strong>on</strong>al model)<br />

© 2012, The Queen’s University of Belfast<br />

4


Waste Heat Recovery<br />

• These factors have driven the aims of this project<br />

• These problems may be addressed by recovering <str<strong>on</strong>g>waste</str<strong>on</strong>g>d <str<strong>on</strong>g>heat</str<strong>on</strong>g> from an<br />

Internal Combusti<strong>on</strong> Engine<br />

• Approx. 30% of fuel energy is <str<strong>on</strong>g>waste</str<strong>on</strong>g>d through the exhaust<br />

– Offers a large potential to recover energy<br />

• Even a small reducti<strong>on</strong> in <str<strong>on</strong>g>waste</str<strong>on</strong>g> <str<strong>on</strong>g>heat</str<strong>on</strong>g> can<br />

lead to significant improvements in<br />

fuel c<strong>on</strong>sumpti<strong>on</strong><br />

© 2012, The Queen’s University of Belfast<br />

5


Turbocompounding<br />

• Three main forms of turbocompounding:<br />

Mechanical Turbocompound<br />

• Uses a Power Turbine to<br />

extract energy from<br />

exhaust gas<br />

• Large, heavy system<br />

• Complex operati<strong>on</strong><br />

• Limited methods of using<br />

the generated power<br />

Figure adapted from: C. Vuk, "Turbo Compounding: A Technology Who's Time Has Come", Proc. 11th Diesel Engine Emissi<strong>on</strong>s Reducti<strong>on</strong><br />

(DEER) C<strong>on</strong>f., Chicago, USA, 2005.<br />

© 2012, The Queen’s University of Belfast<br />

6


Turbocompounding<br />

• Three main forms of turbocompounding:<br />

Electric Turbocharger<br />

• Small motor/generator<br />

mounted <strong>on</strong> the<br />

turbocharger shaft<br />

• Very small package<br />

• Can be used to generate<br />

power or to help spin the<br />

turbocharger<br />

• Requires a redesign of the<br />

existing turbocharger<br />

Figure adapted from: F. Gerke, “Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology”, Proc. 7th Diesel Engine<br />

Emissi<strong>on</strong>s Reducti<strong>on</strong> (DEER) Workshop, Portsmouth, USA, 2001.<br />

© 2012, The Queen’s University of Belfast<br />

7


Turbocompounding<br />

• Three main forms of turbocompounding:<br />

Turbogenerator<br />

• Power turbine c<strong>on</strong>nected<br />

to a small generator<br />

• Mounted downstream of<br />

the turbocharger turbine<br />

• Small package, light<br />

weight<br />

• Ideally suited to the hybrid<br />

bus applicati<strong>on</strong><br />

Figure adapted from: Green Car C<strong>on</strong>gress, CPT Brings TIGERS Technology to VIPER Project for Enhanced Energy Recovery. [Online]. Available:<br />

http://www.greencarc<strong>on</strong>gress.com/2010/09/cpt-20100923.html [Accessed: 2 Nov 2010]<br />

© 2012, The Queen’s University of Belfast<br />

8


Turbocompounding<br />

Fuel Energy<br />

Power Generated<br />

Turbogenerator<br />

Compressed Air<br />

Turbocharger<br />

Intake Air<br />

© 2012, The Queen’s University of Belfast<br />

9


<str<strong>on</strong>g>Modelling</str<strong>on</strong>g> Strategy<br />

Obtain Geometry<br />

Measurements from Engine<br />

Create baseline engine model<br />

using WAVE<br />

Validate baseline engine model<br />

against experimental data<br />

Activate <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g> in<br />

Engine Model<br />

Assess effect of <str<strong>on</strong>g>heat</str<strong>on</strong>g> <str<strong>on</strong>g>recovery</str<strong>on</strong>g><br />

<strong>on</strong> fuel c<strong>on</strong>sumpti<strong>on</strong><br />

Optimise the <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g><br />

Optimise the engine package<br />

© 2012, The Queen’s University of Belfast<br />

10


Engine Model C<strong>on</strong>structi<strong>on</strong><br />

EGR Valve<br />

• Engine Model (WAVE)<br />

PID 3<br />

EGR Cooler<br />

PID 1<br />

Turbogenerator<br />

Turbine<br />

Turbocharger<br />

Turbine<br />

Exhaust Aftertreatment<br />

Turbocharger<br />

Compressor<br />

Inlet Manifold<br />

Exhaust Ports &<br />

Intake Ports Manifold<br />

Fuel Injectors Engine<br />

Air Filter Block<br />

PID 2<br />

© 2012, The Queen’s University of Belfast<br />

11


Baseline Model Validati<strong>on</strong><br />

• Baseline model validati<strong>on</strong><br />

– The model has been validated<br />

across the full operating range of<br />

test data<br />

– Error is less than 2% over the<br />

majority of the operating range<br />

– Particularly at the four most<br />

frequently accessed points of<br />

drive cycle (Pts 1-4)<br />

• Thus, we have c<strong>on</strong>fidence in the<br />

model’s ability to predict the<br />

current engine performance<br />

© 2012, The Queen’s University of Belfast<br />

12


Turbogenerator Model<br />

• Initial runs simply ‘switched <strong>on</strong>’ the <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g><br />

Power Turbine<br />

Bypass Valve<br />

• Bypass Valve open = Baseline C<strong>on</strong>figurati<strong>on</strong><br />

• Bypass Valve Closed = Turbogenerator Activated<br />

© 2012, The Queen’s University of Belfast<br />

13


Turbogenerator Model<br />

• Using a generic scaled turbine performance<br />

map for values of:<br />

– Pressure Ratio<br />

– Mass Flow<br />

– Shaft Speed<br />

– Efficiency<br />

• Using the four comm<strong>on</strong>ly accessed<br />

points (Pts 1-4) plus <strong>on</strong>e other midload<br />

point (Pt 5)<br />

• Matched AFR and torque<br />

– Manual process for each case by adjusting gain <strong>on</strong> PID c<strong>on</strong>trollers<br />

• Initial turbine map created a peak power output of 4.6kW <strong>on</strong> the<br />

<str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g> at full engine load<br />

© 2012, The Queen’s University of Belfast<br />

14


Turbogenerator Model Results<br />

• 4.6kW Power turbine results:<br />

Operating Point P TG (kW) Δ BSFC<br />

Pt 1 0.01 -0.12%<br />

Pt 2 0.31 -1.03%<br />

Pt 3 1.66 -1.55%<br />

Pt 4 4.57 -2.37%<br />

Pt 5 3.46 -1.24%<br />

• Peak reducti<strong>on</strong> in BSFC of almost 2.4%<br />

• Represents a modest improvement in fuel c<strong>on</strong>sumpti<strong>on</strong><br />

• Turbine map was then scaled to investigate the effects of a more powerful<br />

device:<br />

• Four other devices created (up to 11.5kW)<br />

• Shaft speed limited to 80,000rpm<br />

© 2012, The Queen’s University of Belfast<br />

15


Turbogenerator Model Results<br />

• 9.2kW device represents a peak BSFC improvement of 4.4%<br />

• A larger device c<strong>on</strong>tinues to improve BSFC performance at other load<br />

points<br />

• Highlights the difficulty in choosing a device for off-design c<strong>on</strong>diti<strong>on</strong>s<br />

• These results involve no turbocharger matching (due to cost reas<strong>on</strong>s)<br />

© 2012, The Queen’s University of Belfast<br />

16


Energy Audit<br />

• To understand the results, an energy audit was performed for the engine<br />

• This looks at the main losses in the engine, via the distributi<strong>on</strong> of fuel<br />

energy supplied:<br />

– Brake Work;<br />

– Pumping Work;<br />

– Heat Transfer through the cylinder walls;<br />

– Wasted <str<strong>on</strong>g>heat</str<strong>on</strong>g> in the exhaust gas;<br />

– Energy lost to fricti<strong>on</strong>;<br />

– Energy lost due to combusti<strong>on</strong> inefficiency.<br />

• Results are presented for <strong>on</strong>e operating point (Pt 5):<br />

© 2012, The Queen’s University of Belfast<br />

17


Energy Audit<br />

• Brake Work, Fricti<strong>on</strong> Work and<br />

Combusti<strong>on</strong> Efficiency are all<br />

approximately c<strong>on</strong>stant<br />

– Same torque demand<br />

– Fricti<strong>on</strong> is largely governed by<br />

speed and load<br />

• Slightly less <str<strong>on</strong>g>heat</str<strong>on</strong>g> transfer in the<br />

<str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g> models<br />

– Differences in peak cylinder<br />

temperature between models<br />

• Increased <str<strong>on</strong>g>heat</str<strong>on</strong>g> in exhaust gas<br />

– Higher exhaust temperature<br />

caused by presence of<br />

<str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g><br />

• Pumping work increases from<br />

125J/cyc to 562J/cyc<br />

© 2012, The Queen’s University of Belfast<br />

18


Energy Audit<br />

Pumping Work<br />

Pexh ≈ 4.4 bar<br />

Pexh ≈ 2.3 bar<br />

• Higher peak cylinder pressure<br />

– To maintain same BMEP despite<br />

higher exhaust pressure<br />

• Higher pressure <strong>on</strong> the exhaust<br />

stroke of <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g> model<br />

– Clearly highlights the backpressure<br />

caused by the <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g><br />

• Larger area enclosed <str<strong>on</strong>g>with</str<strong>on</strong>g>in the<br />

pumping loop of the <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g><br />

model<br />

– Integrates to give higher pumping<br />

work<br />

• These plots c<strong>on</strong>firm our<br />

understanding of the <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g><br />

operati<strong>on</strong><br />

© 2012, The Queen’s University of Belfast<br />

19


C<strong>on</strong>clusi<strong>on</strong>s<br />

• Turbogenerator has been selected to model <str<strong>on</strong>g>waste</str<strong>on</strong>g> <str<strong>on</strong>g>heat</str<strong>on</strong>g> <str<strong>on</strong>g>recovery</str<strong>on</strong>g> <strong>on</strong> a<br />

diesel-electric hybrid bus<br />

– Small packaging requirements<br />

– Low weight<br />

– Ease of integrati<strong>on</strong> into existing <strong>on</strong>-board batteries<br />

• The 2.4-litre diesel engine used in the hybrid bus has been modelled<br />

using WAVE<br />

– The engine model has been validated across its full operating range<br />

– Error between simulated and measured results is generally less than 2%<br />

• A scaled generic turbine map was used to install a <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g> in the<br />

engine model<br />

© 2012, The Queen’s University of Belfast<br />

20


C<strong>on</strong>clusi<strong>on</strong>s<br />

• Results for the <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g> have been produced at five key operating<br />

points<br />

– An initial 4.5kW device produces a 2.4% improvement in BSFC at full engine<br />

load <str<strong>on</strong>g>with</str<strong>on</strong>g> no turbocharger matching<br />

– A higher-power (9kW) device produces 4.3% improvement in BSFC <str<strong>on</strong>g>with</str<strong>on</strong>g> no<br />

turbocharger matching<br />

• Increasing the power output of the <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g> reduces this peak<br />

BSFC improvement<br />

– Effect of backpressure is a critical c<strong>on</strong>siderati<strong>on</strong> to the success of the system<br />

• This theoretical study has shown the <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g> can provide a<br />

reducti<strong>on</strong> in fuel c<strong>on</strong>sumpti<strong>on</strong> <strong>on</strong> the engine used in this project<br />

© 2012, The Queen’s University of Belfast<br />

21


Future Work<br />

• Begin detailed optimisati<strong>on</strong> of the <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g> model<br />

– Suggest the optimum c<strong>on</strong>figurati<strong>on</strong> required for our applicati<strong>on</strong><br />

– Examine off-design performance<br />

– Examine engine parameters such as valve timing<br />

• Examine and validate the <str<strong>on</strong>g>turbogenerator</str<strong>on</strong>g> turbine maps used in this work<br />

• Begin re-sizing the existing turbomachinery to optimise the total system<br />

• Examine the effects of <str<strong>on</strong>g>heat</str<strong>on</strong>g> <str<strong>on</strong>g>recovery</str<strong>on</strong>g> <strong>on</strong> a hybrid bus drive cycle<br />

– QUB-developed model that includes data of road gradient, vehicle speed and<br />

accelerati<strong>on</strong> and auxiliary loads<br />

– Engine model output can be used to analyse <str<strong>on</strong>g>heat</str<strong>on</strong>g> <str<strong>on</strong>g>recovery</str<strong>on</strong>g> <strong>on</strong> a virtual bus drive<br />

cycle<br />

• Investigate effects of combined results <str<strong>on</strong>g>with</str<strong>on</strong>g> Rankine systems<br />

© 2012, The Queen’s University of Belfast<br />

22


Thank you…any questi<strong>on</strong>s?<br />

© 2012, The Queen’s University of Belfast<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!