14.06.2014 Views

Mathematical model of the human colon - Inria

Mathematical model of the human colon - Inria

Mathematical model of the human colon - Inria

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> <strong>of</strong> <strong>the</strong> <strong>human</strong> <strong>colon</strong><br />

Rafael Muñoz Tamayo and Béatrice Laroche<br />

UEPSD(UR910), MIA(UR341), L2S (UMR 8506)<br />

Seminar <strong>of</strong> SISYPHE-INRIA ROCQUENCOURT<br />

19th may 2008


The Context<br />

Thèse<br />

Director: Eric Walter (L2S)<br />

Supervisors:<br />

Béatrice Laroche (L2S)<br />

Marion Leclerc (UEPSD-INRA Jouy en Josas)<br />

Kiên Kiêu (MIA-INRA Jouy en Josas)<br />

Partner: Jean Philippe Steyer (LBE-INRA Narbonne)<br />

Project: AlimIntest ANR


Capital: Bogotá<br />

Population: 45 millions<br />

Language: Spanish<br />

Surface: 1 141 748 km 2<br />

My Background<br />

Chemical Engineer.<br />

Universidad Nacional de<br />

Colombia. 2004<br />

Master in Automatic<br />

Control.Universidad<br />

Nacional de Colombia. 2006<br />

Now: PhD student in Physics<br />

(2nd year. 27th november).<br />

Université Paris-Sud<br />

INRA Jouy en Josas<br />

L2S-Supélec


Plan<br />

1 The Human Colon<br />

2 Motivation<br />

3 <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong><br />

Phenomena<br />

Hydraulic Representation<br />

Transport Flux<br />

Biological Reactions<br />

State equations<br />

Model Characterization<br />

4 Validation framework<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

5 Perspectives and Conclusions


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Physiology<br />

Function target: get energy through<br />

Anaerobic Degradation <strong>of</strong> complex<br />

carbohydrates:<br />

Alimentary fibers<br />

Mucus: endogenous source,<br />

secreted by epi<strong>the</strong>lial cells<br />

Microbial community: + 800 species.<br />

Two diferents microhabitats: Lumen<br />

and Mucus


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Interactions host-bacterial: starting<br />

to be understood<br />

Microbiota: role on <strong>human</strong> health<br />

Limitations in <strong>the</strong> experimentation:<br />

Uncultured bacteria<br />

Samples in some cases can not<br />

be representative: Ethical<br />

considerations<br />

An in silico <strong>model</strong> would<br />

be useful to:<br />

Improve <strong>the</strong> understanding <strong>of</strong> :<br />

Carbohydrate fermentation<br />

Impact <strong>of</strong> <strong>the</strong> microbiota on<br />

<strong>the</strong> stability <strong>of</strong> <strong>the</strong> digestive<br />

system<br />

Role <strong>of</strong> <strong>the</strong> microbiota on<br />

IBD, Obesity<br />

Study <strong>the</strong> influence <strong>of</strong> dietary<br />

regimes on <strong>human</strong><br />

gastrointestinal microbiota<br />

Design experiments both in vivo<br />

and in vitro


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Interactions host-bacterial: starting<br />

to be understood<br />

Microbiota: role on <strong>human</strong> health<br />

Limitations in <strong>the</strong> experimentation:<br />

Uncultured bacteria<br />

Samples in some cases can not<br />

be representative: Ethical<br />

considerations<br />

An in silico <strong>model</strong> would<br />

be useful to:<br />

Improve <strong>the</strong> understanding <strong>of</strong> :<br />

Carbohydrate fermentation<br />

Impact <strong>of</strong> <strong>the</strong> microbiota on<br />

<strong>the</strong> stability <strong>of</strong> <strong>the</strong> digestive<br />

system<br />

Role <strong>of</strong> <strong>the</strong> microbiota on<br />

IBD, Obesity<br />

Study <strong>the</strong> influence <strong>of</strong> dietary<br />

regimes on <strong>human</strong><br />

gastrointestinal microbiota<br />

Design experiments both in vivo<br />

and in vitro


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Interactions host-bacterial: starting<br />

to be understood<br />

Microbiota: role on <strong>human</strong> health<br />

Limitations in <strong>the</strong> experimentation:<br />

Uncultured bacteria<br />

Samples in some cases can not<br />

be representative: Ethical<br />

considerations<br />

An in silico <strong>model</strong> would<br />

be useful to:<br />

Improve <strong>the</strong> understanding <strong>of</strong> :<br />

Carbohydrate fermentation<br />

Impact <strong>of</strong> <strong>the</strong> microbiota on<br />

<strong>the</strong> stability <strong>of</strong> <strong>the</strong> digestive<br />

system<br />

Role <strong>of</strong> <strong>the</strong> microbiota on<br />

IBD, Obesity<br />

Study <strong>the</strong> influence <strong>of</strong> dietary<br />

regimes on <strong>human</strong><br />

gastrointestinal microbiota<br />

Design experiments both in vivo<br />

and in vitro


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Related works<br />

Microbial competition [Ballyk et al, 2001]<br />

VFA absorption [Minekus et al, 1999]<br />

Interaction Host vs Microbiota [Wilkinson, 2002]<br />

Fermentation in vivo and in vitro <strong>model</strong>s: [Leclerc et al,<br />

1997], [Macfarlane et al, 1998]<br />

Effect <strong>of</strong> transit time: [Child et al, 2006]<br />

None <strong>of</strong> <strong>the</strong>se <strong>model</strong>s integrate <strong>the</strong> physiology, <strong>the</strong><br />

bioreactions, <strong>the</strong> transport flux with <strong>the</strong> functional microbial<br />

diversity


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Premises<br />

The microbiota can be<br />

functionally represented<br />

The <strong>colon</strong> can be defined as a<br />

high-rate system:<br />

High biomass concentration:<br />

formation <strong>of</strong> aggregates in<br />

<strong>the</strong> mucus<br />

Resistance to hydrodynamic<br />

forces<br />

In spite <strong>of</strong> its geometry, <strong>the</strong>re<br />

are some factors that produce<br />

mixing:<br />

Peristaltic movement<br />

Shed <strong>of</strong> epi<strong>the</strong>lial cells<br />

Gas production<br />

The <strong>colon</strong> can be represented<br />

by a series <strong>of</strong> chemostats


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Premises<br />

The microbiota can be<br />

functionally represented<br />

The <strong>colon</strong> can be defined as a<br />

high-rate system:<br />

High biomass concentration:<br />

formation <strong>of</strong> aggregates in<br />

<strong>the</strong> mucus<br />

Resistance to hydrodynamic<br />

forces<br />

In spite <strong>of</strong> its geometry, <strong>the</strong>re<br />

are some factors that produce<br />

mixing:<br />

Peristaltic movement<br />

Shed <strong>of</strong> epi<strong>the</strong>lial cells<br />

Gas production<br />

The <strong>colon</strong> can be represented<br />

by a series <strong>of</strong> chemostats


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Premises<br />

The microbiota can be<br />

functionally represented<br />

The <strong>colon</strong> can be defined as a<br />

high-rate system:<br />

High biomass concentration:<br />

formation <strong>of</strong> aggregates in<br />

<strong>the</strong> mucus<br />

Resistance to hydrodynamic<br />

forces<br />

In spite <strong>of</strong> its geometry, <strong>the</strong>re<br />

are some factors that produce<br />

mixing:<br />

Peristaltic movement<br />

Shed <strong>of</strong> epi<strong>the</strong>lial cells<br />

Gas production<br />

The <strong>colon</strong> can be represented<br />

by a series <strong>of</strong> chemostats


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Premises<br />

The microbiota can be<br />

functionally represented<br />

The <strong>colon</strong> can be defined as a<br />

high-rate system:<br />

High biomass concentration:<br />

formation <strong>of</strong> aggregates in<br />

<strong>the</strong> mucus<br />

Resistance to hydrodynamic<br />

forces<br />

In spite <strong>of</strong> its geometry, <strong>the</strong>re<br />

are some factors that produce<br />

mixing:<br />

Peristaltic movement<br />

Shed <strong>of</strong> epi<strong>the</strong>lial cells<br />

Gas production<br />

The <strong>colon</strong> can be represented<br />

by a series <strong>of</strong> chemostats


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Phenomena


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Phenomena<br />

Hydraulic Representation


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Phenomena<br />

Transport Flux


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Phenomena<br />

Transport Flux


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Phenomena<br />

Biological Reactions


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Phenomena<br />

Biological Reactions


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

State equations<br />

Liquid phase<br />

For <strong>the</strong> Lumen<br />

( ) ( ) ( )<br />

ẋi l qin<br />

= x l<br />

V i,in − qout<br />

x l Vm<br />

l V i + b i x m<br />

13<br />

l V i +<br />

l<br />

∑ νi,j l ρl j (1)<br />

j=2<br />

( ) ( )<br />

ṡi l qin<br />

= s l V i,in − qout<br />

s l 7<br />

l V i − γl i sl i + l<br />

∑ νi,j l ρl j − Ql i (2)<br />

j=1<br />

For <strong>the</strong> mucus<br />

ṡ m i<br />

ẋ m<br />

i<br />

= −b i xi m<br />

13<br />

+ ∑ νi,j m ρm j (3)<br />

j=2<br />

( )<br />

= γi l Vl<br />

sl i − γ<br />

V i m s m 7<br />

i + Γ i +<br />

m<br />

∑ νi,j m ρm j − Qi m (4)<br />

j=1


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

State equations<br />

Gas phase<br />

( ) ( ) ( )<br />

ṡ g qgin<br />

i = s g qgout<br />

V i,in − s g Vl/m<br />

g V i + Q i g V g<br />

(5)<br />

Q i = k L a(S L,i − M i K H,i p gas,i ) (6)


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

State equations<br />

Kinetic rates<br />

Process ↓ j<br />

Kinetic rate<br />

1 Hydrolysis ρ 1 = k hyd s 1<br />

2 Uptake sugars ρ 2 = µ max2<br />

s 2<br />

Ks 2 +s 2<br />

x 2<br />

3 Uptake pyruvate ρ 3 = µ max3<br />

s 3<br />

Ks 3 +s 3<br />

x 3<br />

4 Uptake succinate ρ 4 = µ max4<br />

s 4<br />

Ks 4 +s 4<br />

x 4<br />

5 Uptake lactate ρ 5 = µ max5<br />

s 5<br />

Ks 5 +s 5<br />

x 5<br />

6 Uptake hydrogen: Ac ρ 6 = µ max6<br />

s 6<br />

Ks 6 +s 6<br />

x 6<br />

7 Uptake hydrogen: CH 4<br />

s<br />

ρ 7 = µ 7 max7 Ks 7 +s 7<br />

x 7<br />

8 Decay <strong>of</strong> x su ρ 8 = k d8 x 2<br />

9 Decay <strong>of</strong> x py ρ 9 = k d9 x 3<br />

10 Decay <strong>of</strong> x sc ρ 10 = k d10 x 4<br />

11 Decay <strong>of</strong> x la ρ 11 = k d11 x 5<br />

12 Decay <strong>of</strong> x h2−ac ρ 12 = k d12 x 6<br />

13 Decay <strong>of</strong> x h2c h 4<br />

ρ 13 = k d13 x 7


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Model Characterization<br />

Number <strong>of</strong> state variables for each subsystem (Lumen / Mucus): 20 (17<br />

liquid phase + 3 gas phase)<br />

Number <strong>of</strong> state variables for each partition: 40 (2x20)<br />

Number <strong>of</strong> states variables for <strong>the</strong> whole system: 120 (40x3)<br />

Measuring variables<br />

Measures: related with <strong>the</strong> last section<br />

All <strong>the</strong> variables can not be measured at <strong>the</strong> same time<br />

Some variables: measured once<br />

Parameters: 321<br />

Reduction: 94. (Knowledge)<br />

Prior information<br />

Estimation


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Obstacles and Alternatives<br />

Phenonema not well defined, e.g<br />

transport <strong>of</strong> components between<br />

<strong>the</strong> subsystems, rheology<br />

Difficulty <strong>of</strong> measurements<br />

Availability <strong>of</strong> data is limited<br />

Limitations for in vitro<br />

experiments: most <strong>of</strong> <strong>the</strong> bacteria<br />

are uncultured<br />

Many studies are based on <strong>the</strong><br />

microbiota in fecal matter<br />

Microsensors and FISH in<br />

mucus: spatial distribution<br />

Studies on artificial systems<br />

Study <strong>of</strong> state observers<br />

Bayesian approach for parameter<br />

estimation<br />

16SrRNA and FISH techniques<br />

in vivo <strong>model</strong>s: inoculated axenic<br />

rodents, biopsy in mucus


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Obstacles and Alternatives<br />

Phenonema not well defined, e.g<br />

transport <strong>of</strong> components between<br />

<strong>the</strong> subsystems, rheology<br />

Difficulty <strong>of</strong> measurements<br />

Availability <strong>of</strong> data is limited<br />

Limitations for in vitro<br />

experiments: most <strong>of</strong> <strong>the</strong> bacteria<br />

are uncultured<br />

Many studies are based on <strong>the</strong><br />

microbiota in fecal matter<br />

Microsensors and FISH in<br />

mucus: spatial distribution<br />

Studies on artificial systems<br />

Study <strong>of</strong> state observers<br />

Bayesian approach for parameter<br />

estimation<br />

16SrRNA and FISH techniques<br />

in vivo <strong>model</strong>s: inoculated axenic<br />

rodents, biopsy in mucus


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Obstacles and Alternatives<br />

Phenonema not well defined, e.g<br />

transport <strong>of</strong> components between<br />

<strong>the</strong> subsystems, rheology<br />

Difficulty <strong>of</strong> measurements<br />

Availability <strong>of</strong> data is limited<br />

Limitations for in vitro<br />

experiments: most <strong>of</strong> <strong>the</strong> bacteria<br />

are uncultured<br />

Many studies are based on <strong>the</strong><br />

microbiota in fecal matter<br />

Microsensors and FISH in<br />

mucus: spatial distribution<br />

Studies on artificial systems<br />

Study <strong>of</strong> state observers<br />

Bayesian approach for parameter<br />

estimation<br />

16SrRNA and FISH techniques<br />

in vivo <strong>model</strong>s: inoculated axenic<br />

rodents, biopsy in mucus


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Obstacles and Alternatives<br />

Phenonema not well defined, e.g<br />

transport <strong>of</strong> components between<br />

<strong>the</strong> subsystems, rheology<br />

Difficulty <strong>of</strong> measurements<br />

Availability <strong>of</strong> data is limited<br />

Limitations for in vitro<br />

experiments: most <strong>of</strong> <strong>the</strong> bacteria<br />

are uncultured<br />

Many studies are based on <strong>the</strong><br />

microbiota in fecal matter<br />

Microsensors and FISH in<br />

mucus: spatial distribution<br />

Studies on artificial systems<br />

Study <strong>of</strong> state observers<br />

Bayesian approach for parameter<br />

estimation<br />

16SrRNA and FISH techniques<br />

in vivo <strong>model</strong>s: inoculated axenic<br />

rodents, biopsy in mucus


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Strategy


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Strategy<br />

Microbiology<br />

Bioprocess<br />

engineering<br />

Ma<strong>the</strong>matics<br />

Control <strong>the</strong>ory<br />

Statistics


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Strategy<br />

Experimental data<br />

Prior information:<br />

Bayesian estimation


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Strategy<br />

Experimental data<br />

Parameter estimation


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Strategy<br />

Axenic rats:<br />

inoculated with<br />

minimal microbiota<br />

Fed with different fiber<br />

diets, similar to <strong>human</strong>


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

invitro <strong>model</strong><br />

Homoacetogenesis reaction<br />

4H 2 + 2CO 2 ⇒ CH 3 COOH + 2H 2 O (7)<br />

A. Bernalier, A. Willems, M. Leclerc, V. Rochet V. and M.D. Collins, Ruminococcus<br />

hydrogenotrophicus sp. nov., a new H 2 /CO 2 - utilizing bacterium isolated from <strong>human</strong><br />

feces, Arch Microbial, vol. 166, 1996, pp 176-183.


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

invitro <strong>model</strong><br />

Measured variables:<br />

Concentration <strong>of</strong> H 2 in gas phase. Manometric sensor and<br />

gas cromatography. mM<br />

Concentration <strong>of</strong> Acetate. Enzymatic assay. mM<br />

Optical density at 600nm. OD 600


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

<strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> equations<br />

ẋ = µ max<br />

s l H 2<br />

K + s l H 2<br />

x − k d x, (8)<br />

ż = k d x − k i z, (9)<br />

ṡ g H 2<br />

= k L a(s l H 2<br />

− K H RTs g H 2<br />

) V l<br />

V g<br />

, (10)<br />

ṡ ac = 1 − Y H<br />

Y H<br />

µ max<br />

s l H 2<br />

K + s l H 2<br />

x, (11)<br />

ṡ l H 2<br />

= − µ max<br />

Y H<br />

s l H 2<br />

K + s l H 2<br />

x − k L a(s l H 2<br />

− K H RTs g H 2<br />

). (12)<br />

− µ max<br />

Y H<br />

s l H 2<br />

K + s l H 2<br />

x − k L a(s l H 2<br />

− K H RTs g H 2<br />

) = 0. (13)<br />

y = (α(x + z), s g H 2<br />

, s ac ) T (14)


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

Parameters<br />

Known Parameters:<br />

kLa = 8.33 h −1<br />

K H = 0.00078<br />

M lig<br />

bar gas<br />

α = 5.9472 kgCOD/m3<br />

OD 600<br />

Unknown Parameters:<br />

µ max<br />

K<br />

Y h<br />

k d<br />

k i


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

Identifiability<br />

Global identifiability<br />

A <strong>model</strong> is said to be globally identifiable if all <strong>of</strong> its unknown parameters<br />

could be estimated uniquely from idealized (noise-free) observations.


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

Identifiability<br />

Denis Vidal and Joly-Blanchard (2004).<br />

Sufficient condition for uncontrolled non linear<br />

<strong>model</strong>s<br />

The <strong>model</strong> is <strong>the</strong>orically identifiable


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

Identification<br />

Vector <strong>of</strong> data collected:<br />

y(t i ) = y m (t i ,θ ∗ ) + ε i , i = 1,...,n t , (15)<br />

ε i ∼ N(0,Σ). (16)<br />

Maximum likelihood:<br />

π y (y s |θ) (17)<br />

Criterion 1: Least Squares on<br />

normalized errors (C1)<br />

Criterion 2: Σ from <strong>the</strong> experimenetal<br />

data (C2)<br />

Criterion 3: Σ unknown for synchronous<br />

data (C3)<br />

Criterion 4: Σ unknown for<br />

non-synchronous data (C4)


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

Identification<br />

Vector <strong>of</strong> data collected:<br />

y(t i ) = y m (t i ,θ ∗ ) + ε i , i = 1,...,n t , (15)<br />

ε i ∼ N(0,Σ). (16)<br />

Maximum likelihood:<br />

π y (y s |θ) (17)<br />

Criterion 1: Least Squares on<br />

normalized errors (C1)<br />

Criterion 2: Σ from <strong>the</strong> experimenetal<br />

data (C2)<br />

Criterion 3: Σ unknown for synchronous<br />

data (C3)<br />

Criterion 4: Σ unknown for<br />

non-synchronous data (C4)


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

Analysis<br />

n t<br />

[ ] ∂ym (t<br />

F(̂θ) = ∑<br />

i ,θ) T [ ]<br />

Σ −1 ∂ym (t i ,θ)<br />

∂θ<br />

i=1<br />

t i ,̂θ ∂θ t i ,̂θ<br />

(18)<br />

P ≥ F(̂θ) −1 (19)<br />

For a ma<strong>the</strong>matical <strong>model</strong> in its state space representation:<br />

ẋ = f(x,θ), x(0) = x 0 (θ), (20)<br />

y m = Cx (21)<br />

<strong>the</strong> sensitivity <strong>of</strong> y m with respect to <strong>the</strong> parameter θ i<br />

( ∂ym<br />

∂θ i<br />

), is given by:<br />

∂y m<br />

∂θ i<br />

with ∂x<br />

∂θ i<br />

<strong>the</strong> sensitivity <strong>of</strong> x with respect to θ i , named s i .<br />

ṡ i = ∂f(x,θ)<br />

∂x<br />

= C ∂x<br />

∂θ i<br />

(22)<br />

s i + ∂f(x,θ) , s<br />

∂θ i (0) = ∂x(0) , i = 1,...,n p (23)<br />

i<br />

∂θ i


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

Analysis<br />

Problem <strong>of</strong> practical identifiability<br />

K and µ max are strongly correlated<br />

Standard deviations are very high<br />

Solution<br />

Modification on <strong>the</strong> kinetics:<br />

µ max<br />

s l H 2<br />

K + s l H 2<br />

x ⇒ k r s l H 2<br />

x, (24)<br />

k r = µ max<br />

K . (25)


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

Results<br />

Optical density. •: experimental data, dash: C1, solid: C2, dash-dot: C3, dot:<br />

C4.


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

Results<br />

Acetate concentration. •: experimental data, dash: C1, solid: C2, dash-dot:<br />

C3, dot: C4.


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

Results<br />

Hydrogen concentration. •: experimental data, dash: C1, solid: C2, dash-dot:<br />

C3, dot: C4.


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Modelling <strong>of</strong> invitro homoacetogenesis<br />

Results<br />

Table: Estimated parameters<br />

Crit. C1 C2 C3 C4<br />

k r 5.50 5.71 5.10 5.41<br />

(s.d.) (1.34) (1.40) (1.12 10 −1 ) (2.13 10 −1 )<br />

Y H 3.04 10 −2 2.79 10 −2 3.55 10 −2 3.75 10 −2<br />

(s.d.) (1.05 10 −2 ) (7.67 10 −3 ) (5.66 10 −3 ) (6.02 10 −3 )<br />

k d 2.93 10 −2 3.16 10 −2 2.77 10 −2 2.71 10 −2<br />

(s.d.) (1.78 10 −2 ) (1.33 10 −2 ) (3.74 10 −3 ) (2.76 10 −3 )<br />

k i 3.42 10 −2 2.63 10 −2 4.80 10 −2 6.37 10 −2<br />

(s.d.) (5.08 10 −2 ) (2.33 10 −2 ) (3.34 10 −2 ) (4.73 10 −2 )


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Conclusions<br />

A <strong>model</strong> structure <strong>of</strong> carbohydrate degradation in <strong>human</strong> <strong>colon</strong> has<br />

been proposed, including:<br />

Transport phenomena<br />

Reaction mechanisms: functional diversity<br />

Hydraulic representation<br />

Physiology<br />

Identification <strong>of</strong> an invitro <strong>model</strong> for <strong>the</strong> homoacetogenesis<br />

The ma<strong>the</strong>matical <strong>model</strong> was satisfactory<br />

The best results were obtained when Σ was assumed<br />

unknown<br />

The estimates are consistent with <strong>the</strong> literature and<br />

biological knowledge<br />

The practical identifiability problem found led to a<br />

modification on <strong>the</strong> kinetics<br />

This work can be extended to <strong>the</strong> complete <strong>model</strong> structure


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

Future work<br />

Definition <strong>of</strong> <strong>the</strong> minimal functional microbiota<br />

Animal experiments<br />

Bayesian estimation


The Human Colon Motivation <strong>Ma<strong>the</strong>matical</strong> <strong>model</strong> Validation framework Perspectives and Conclusions<br />

MERCI<br />

rafael.munoztamayo@jouy.inra.fr

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!