14.06.2014 Views

Patrick Simon Argelander-Institute for Astronomy, Bonn, Germany

Patrick Simon Argelander-Institute for Astronomy, Bonn, Germany

Patrick Simon Argelander-Institute for Astronomy, Bonn, Germany

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3-D mass mapping in<br />

STAGES<br />

using 3-D lensing<br />

<strong>Patrick</strong> <strong>Simon</strong><br />

<strong>Argelander</strong>-<strong>Institute</strong> <strong>for</strong> <strong>Astronomy</strong>, <strong>Bonn</strong>, <strong>Germany</strong><br />

Collaborators:<br />

C. Heymans, T. Schrabback, A. Taylor, M. Gray (PI STAGES), L. van<br />

Waerbeke, C. Wolf, D. Bacon, M. Balogh, F.D. Barazza, M. Barden, E.F.<br />

Bell, A. Boehm, J.A.R. Caldwell, B. Haeussler, K. Jahnke, S. Jogee, E. van<br />

Kampen K. Lane, D.H. McIntosh, K. Meisenheimer, C.Y. Peng, S.F.<br />

Sanchez, L. Wisotzki, X. Zheng


Outline<br />

Modified Wiener filtering of 3-D lensing data<br />

Radial debiasing and cleaning of map<br />

Data sample: STAGES<br />

A mass map vs. light map comparison<br />

Conclusions


Weak lensing on a grid<br />

Lensing convergence = projected matter fluctuations<br />

∫ ∞<br />

κ(θ) = 3H2 0 Ω m<br />

2c 2 dw W (w)f k(w)<br />

0 a(w)<br />

〈 〉<br />

fk (w s − w l )<br />

W (w l )=<br />

f k (w s )<br />

w s<br />

δ m (f k (w)θ, w)<br />

δ m<br />

(6)<br />

δ m<br />

(7)<br />

θ<br />

δ m<br />

(5)<br />

δ m<br />

(3)<br />

δ m<br />

(4)<br />

δ m<br />

(1)<br />

δ m<br />

(2)<br />

distance w<br />

us


Weak lensing on a grid<br />

Lensing convergence = projected matter fluctuations<br />

∫ ∞<br />

κ(θ) = 3H2 0 Ω m<br />

2c 2 dw W (w)f k(w)<br />

0 a(w)<br />

〈 〉<br />

fk (w s − w l )<br />

W (w l )=<br />

f k (w s )<br />

w s<br />

δ m (f k (w)θ, w)<br />

Chop 3-D volume into slices of constant matter density<br />

κ(θ) ≈<br />

N lp<br />

∑<br />

i=1<br />

Q i δ (i)<br />

m (θ) ,Q i = 3H2 0 Ω m<br />

2c 2<br />

∫ wi+1<br />

w i<br />

dw W (w)f k(w)<br />

a(w)


Weak lensing on a grid<br />

Lensing convergence = projected matter fluctuations<br />

∫ ∞<br />

κ(θ) = 3H2 0 Ω m<br />

2c 2 dw W (w)f k(w)<br />

0 a(w)<br />

〈 〉<br />

fk (w s − w l )<br />

W (w l )=<br />

f k (w s )<br />

w s<br />

δ m (f k (w)θ, w)<br />

Chop 3-D volume into slices of constant matter density<br />

κ(θ) ≈<br />

N lp<br />

∑<br />

i=1<br />

Q i δ (i)<br />

m (θ) ,Q i = 3H2 0 Ω m<br />

2c 2<br />

∫ wi+1<br />

w i<br />

dw W (w)f k(w)<br />

a(w)<br />

On a grid we may there<strong>for</strong>e write<br />

γ =P γκ κ =P γκ Q δ m


Wiener filter of 3-D lensing data<br />

Combine all “source redshift bins” into one vector<br />

(<br />

) (<br />

)<br />

γ ≡ γ (1) ,γ (2) , . . . =P γκ Q (1) , Q (2) , . . . δ m ≡ P γκ Qδ m<br />

different z-bins<br />

0.3 0.5 0.7 0.9 1.1 1.3 1.5


Wiener filter of 3-D lensing data<br />

Combine all “source redshift bins” into one vector<br />

(<br />

) (<br />

)<br />

γ ≡ γ (1) ,γ (2) , . . . =P γκ Q (1) , Q (2) , . . . δ m ≡ P γκ Qδ m<br />

Need to find solution <strong>for</strong> δ m <strong>for</strong> given cosmic shear:<br />

ɛ =P γκ Q δ m + n<br />

shape noise<br />

Source ellipticities binned on grid


Wiener filter of 3-D lensing data<br />

Combine all “source redshift bins” into one vector<br />

(<br />

) (<br />

)<br />

γ ≡ γ (1) ,γ (2) , . . . =P γκ Q (1) , Q (2) , . . . δ m ≡ P γκ Qδ m<br />

Need to find solution <strong>for</strong> δ m <strong>for</strong> given cosmic shear:<br />

ɛ =P γκ Q δ m + n<br />

Minimum variance solution <strong>for</strong> δ<br />

δ mv<br />

m<br />

= SQ t P † γκ<br />

[<br />

N −1 P γκ QSQ t P † γκ + α1 ] −1<br />

N −1 ɛ<br />

S ≡〈δ m δ t m〉<br />

signal covariance<br />

N ≡〈nn † 〉 noise covariance<br />

<strong>Simon</strong>, P., Taylor, A.N., Hartlap, J., 2009, MNRAS, 399, 48


Wiener filter of 3-D lensing data<br />

Combine all “source redshift bins” into one vector<br />

(<br />

) (<br />

)<br />

γ ≡ γ (1) ,γ (2) , . . . =P γκ Q (1) , Q (2) , . . . δ m ≡ P γκ Qδ m<br />

Need to find solution <strong>for</strong> δ m <strong>for</strong> given cosmic shear:<br />

ɛ =P γκ Q δ m + n<br />

Minimum variance solution <strong>for</strong> δ<br />

δ mv<br />

m<br />

= SQ t P † γκ<br />

[<br />

N −1 P γκ QSQ t P † γκ + α1 ] −1<br />

N −1 ɛ<br />

S ≡〈δ m δ t m〉<br />

signal covariance<br />

N ≡〈nn † 〉 noise covariance<br />

α=1: full Wiener filtering (less noise, biased)<br />

α=0: no prior (plenty noise, unbiased)


Limitations of technique<br />

Mock data<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

on sky<br />

radially<br />

z


Limitations of technique<br />

STAGES<br />

Mock data<br />

re c o nstru c t e d re dshift<br />

0.3<br />

0.5<br />

0.2<br />

0.4<br />

0.1<br />

tru e re dshift<br />

on sky<br />

radially<br />

z


Data sample: STAGES<br />

A901a<br />

about 30 arcmin<br />

α<br />

A901b<br />

21 photo-z slices, z=0...1.3,<br />

with 13 sources/arcmin 2<br />

(matched with COMBO-17 survey)<br />

Three deep mag-bins, m R =[23,27.45]<br />

mag, with 52 sources/arcmin 2<br />

22 lens planes, z=0...1.2<br />

A902<br />

SW<br />

mag bins (GOODS-MUSIC)<br />

STAGES: Gray et al. (2009)<br />

photo-z’s<br />

COMBO-17: Wolf et al. (2004)


Significance of map<br />

about 30 arcmin<br />

3-D mass map (projected onto sky)<br />

A901a<br />

α<br />

A901b<br />

A902<br />

SW<br />

Heymans, C. et al. (2008)<br />

projected S/N surfaces: S/N=2.5,3,3.5...6.0<br />

based on 1000 noise realisations of data


Cleaned and debiased map<br />

A902/SW group region<br />

re dshift<br />

A901 a<br />

A901b<br />

On-sky projection<br />

!<br />

DE C<br />

R.A.<br />

A901a/A901b region<br />

re dshift<br />

C BI<br />

SW<br />

<strong>Simon</strong>, P., Heymans, C., Schrabback,T.,<br />

2010, submitted<br />

A902<br />

SW /1<br />

SW /2<br />

DE C<br />

R.A.


Mass vs. light comparison<br />

Bin galaxy M star -masses (mass in stars) on grid and crosscorrelate<br />

with lensing mass map:<br />

∑<br />

δ (i)<br />

lum (θ) = j∈M i (θ) M ∗,j<br />

M ∗<br />

− 1 ; CCM(θ) = δ lum(θ)δ m (θ)<br />

σ lum σ m<br />

M star light map<br />

Correlation map<br />

A901a<br />

A901b<br />

A902<br />

SW group<br />

z=0.0-0.36


Mass vs. light comparison<br />

Bin galaxy Mass S/N M star -masses (mass in stars) on grid and crosscorrelate<br />

cleaned with lensing mass map:<br />

map redshift<br />

δ (i)<br />

lum (θ) = ∑<br />

j∈M i (θ) M ∗,j<br />

M ∗<br />

M star light map<br />

− 1 ; CCM(θ) = δ lum(θ)δ m (θ)<br />

σ lum σ m<br />

A901a<br />

red galaxies<br />

A901b<br />

CCM<br />

A902<br />

M star mass<br />

SW group<br />

blue galaxies<br />

z=0.0-0.36


Mass vs. light comparison by eye<br />

A901a<br />

A901b<br />

A902<br />

SW group<br />

Radial spread of A901a noise artefact?


Mass vs. light comparison by eye<br />

A901a<br />

A901b<br />

A902<br />

SW group<br />

Radial spread of A901a noise artefact?<br />

Light confirms structure behind A901b (z=0.70-0.80)


Mass vs. light comparison by eye<br />

A901a<br />

A901b<br />

A902<br />

SW group<br />

Radial spread of A901a noise artefact?<br />

Light confirms structure behind A901b (z=0.70-0.80)<br />

Light confirms structure behind SW group (z=0.43?,0.80)


Mass vs. light comparison by eye<br />

A901a<br />

CB1<br />

A901b<br />

A902<br />

A902<br />

SW group<br />

Radial spread of A901a noise artefact?<br />

Light confirms structure behind A901b (z=0.70-0.80)<br />

Light confirms structure behind SW group (z=0.43?,0.80)<br />

CB1 reconfirmed (COMBO-17; Taylor et al. 2004: z=0.46)


Light-mass cross-correlation coefficient<br />

10//<br />

:;


Conclusions<br />

This work is an application of a new lensing 3-D mass mapping<br />

algorithm to real data<br />

The modified Wiener filter produces a biased image of the<br />

true distribution; z-shift bias can be corrected <strong>for</strong><br />

Annoyance of radial cigar-effect inside maps can be partly<br />

removed with heuristic cleaning algorithm presented<br />

3-D map reveals structure behind A901b and SW-group;<br />

may be important <strong>for</strong> lensing mass modelling<br />

Good light-mass match at z


Quality control


Quality control<br />

Frequency statistics of noise peaks<br />

noise<br />

B-mode<br />

E-mode<br />

Peaks: pixel larger than all neighbour<br />

pixels in transverse&radial direction<br />

Troughs: negative peaks<br />

Noise realisations vs. E/B-mode maps


Quality control<br />

Frequency statistics of noise peaks<br />

noise<br />

B-mode<br />

E-mode<br />

Peaks: pixel larger than all neighbour<br />

pixels in transverse&radial direction<br />

Troughs: negative peaks<br />

Noise realisations vs. E/B-mode maps<br />

tan. shear<br />

Z-scaling of tan. shear inside<br />

apertures (≈1-2 arcmin radius)<br />

mag<br />

rad. shear<br />

γ t (θ c ,z s )=− ∑<br />

i∈M s (z s )<br />

θi ∗ − θ∗ c<br />

ɛ i<br />

θ i − θ c<br />

ε i<br />

θ i<br />

θ c<br />

targets: A901a/b/α, SW and A902


A902 region/less smoothing<br />

CBI<br />

A902<br />

re dshift<br />

C BI<br />

SW<br />

A902<br />

SW /1<br />

SW /2<br />

R.A.


Degradation of correlations<br />

Cross-correlation coefficient between maps:<br />

r = 〈CCM(θ)〉 = 〈δ (θ)δ (θ)〉<br />

σ σ <br />

; − 1 ≤ r ≤ +1


Degradation of correlations<br />

Cross-correlation coefficient between maps:<br />

r = 〈CCM(θ)〉 = 〈δ (θ)δ (θ)〉<br />

σ σ <br />

; − 1 ≤ r ≤ +1<br />

Noise degrades the correlation but can be corrected if<br />

signal and noise power are known:<br />

r true = r ×<br />

√ (<br />

1+ 〈noise2 lum〉<br />

〈signal 2 lum〉<br />

)(<br />

)<br />

1+ 〈noise2 m〉<br />

〈signal 2 m〉<br />

Noise and signal variances are estimated from noise<br />

realisations of mass and light maps;<br />

Map pixel variance = noise variance + signal variance!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!