21.06.2014 Views

An Overview, Challenges, and Future Directions - SAMSI

An Overview, Challenges, and Future Directions - SAMSI

An Overview, Challenges, and Future Directions - SAMSI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Experiments Models Connectivity Prediction Summary<br />

Statistical Modeling of Neuroimaging Data: <strong>An</strong><br />

<strong>Overview</strong>, <strong>Challenges</strong>, <strong>and</strong> <strong>Future</strong> <strong>Directions</strong><br />

F. DuBois Bowman<br />

Department of Biostatistics <strong>and</strong> Bioinformatics<br />

Center for Biomedical Imaging Statistics<br />

Emory University, Atlanta, GA, 30322<br />

Neuroimaging Data <strong>An</strong>alysis<br />

<strong>SAMSI</strong><br />

Research Triangle Park, NC<br />

June 6, 2013<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 1 / 77


Experiments Models Connectivity Prediction Summary<br />

Outline<br />

1 fMRI Experiments<br />

2 Modeling of fMRI Data: Neuroactivation Studies<br />

3 Connectivity<br />

4 Prediction<br />

5 Summary<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 2 / 77


Experiments Models Connectivity Prediction Summary<br />

Hemodynamic Response Function<br />

HRF<br />

Typical BOLD response to an impulse stimulation<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 3 / 77


Experiments Models Connectivity Prediction Summary<br />

fMRI Study Designs<br />

Block Designs<br />

Dominant in the early years of fMRI studies<br />

Multiple stimuli of the same condition are grouped together in blocks<br />

[f ∗ g] (t) = ∫ ∞<br />

−∞<br />

f (τ)g(t − τ)dτ<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 4 / 77


Experiments Models Connectivity Prediction Summary<br />

fMRI Study Designs<br />

Block Designs<br />

Advantages:<br />

Relatively simplified data analysis<br />

Increased statistical power<br />

More robust results<br />

Often yields relatively large BOLD signal changes.<br />

Disadvantage:<br />

Many potential confounds<br />

Habituation<br />

<strong>An</strong>ticipation<br />

Other strategy effects.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 5 / 77


Experiments Models Connectivity Prediction Summary<br />

fMRI Study Designs<br />

Event-related Designs<br />

Allow different stimuli to be presented in arbitrary sequences.<br />

Permits r<strong>and</strong>omization of conditions.<br />

Two types of event-related designs:<br />

Spaced event-related designs<br />

Rapid event-related designs<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 6 / 77


Experiments Models Connectivity Prediction Summary<br />

fMRI Study Designs<br />

Event-related Designs<br />

Advantages:<br />

Detect transient variations in hemodynamic responses.<br />

Allow the temporal characterization of BOLD signal changes: the HRF.<br />

Reduce potential confounds.<br />

Disadvantages:<br />

Reduced statistical power to detect BOLD differences between different<br />

conditions.<br />

Lower SNR.<br />

More complex design <strong>and</strong> analysis. (Dale, 1999)<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 7 / 77


Experiments Models Connectivity Prediction Summary<br />

fMRI Study Designs<br />

Resting-state fMRI Studies<br />

Rapid growth in resting-state studies<br />

Acquire scans while subjects are left to think for themselves.<br />

May reflect a natural <strong>and</strong> more common mode of neural processing.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 8 / 77


Experiments Models Connectivity Prediction Summary<br />

fMRI Study Designs<br />

Resting-state fMRI Studies<br />

Common analytic objectives:<br />

Resting-state connectivity<br />

Correlations (associations) in neural activity between distinct brain<br />

locations.<br />

Default mode network<br />

Raises numerous analytical challenges<br />

Lower SNR.<br />

More complex design <strong>and</strong> analysis.<br />

Mode of neural processing is inconsistent across subjects.<br />

Unable to make relative comparisons reflecting changes in localized<br />

neural processing.<br />

I.e., unable to determine average brain activity changes at each voxel.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 9 / 77


Experiments Models Connectivity Prediction Summary<br />

Data Example<br />

Working Memory in Schizophrenia Patients<br />

N=28 subjects: 15 schizophrenia patients <strong>and</strong> 13 healthy controls<br />

fMRI Tasks: Serial Item Recognition Paradigm (SIRP)<br />

Encoding set: Subjects asked to memorize 1, 3, or 5 target digits.<br />

Probing set: Subjects sequentially shown single digit probes <strong>and</strong> asked<br />

to press a button:<br />

with their index finger, if the probe matched<br />

with their middle finger, if not.<br />

6 runs per subject: (177 scans per run for each subject)<br />

3 runs of working memory tasks on each of 2 days<br />

Objective: Compare working memory-related brain activity between<br />

patients <strong>and</strong> controls<br />

Data from the Biomedical Informatics Research Network (BIRN) [1]: Potkin et al. (2002), Proc. 41st <strong>An</strong>nu. Meeting Am.<br />

College Neuropsychopharm.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 10 / 77


Experiments Models Connectivity Prediction Summary<br />

Notable fMRI Data Characteristics<br />

Massive Data Sets<br />

Roughly 300,000 brain voxels for each scan at time of analysis<br />

S = 177 scans per run<br />

6 runs (sessions) per subject<br />

T=1062 scans total per subject<br />

Over 300 million spatio-temporal data points per subject! Over 5<br />

billion for all subjects!!<br />

Temporal correlations<br />

Scan to scan correlations<br />

Between session correlations<br />

Complex spatial correlations<br />

Correlations between neighboring voxels<br />

Long-range correlations between different brain regions<br />

Roughly 45 billion voxel pairs<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 11 / 77


Experiments Models Connectivity Prediction Summary<br />

Common <strong>An</strong>alysis Framework<br />

Two-stage Model<br />

First, fit a linear model separately for each subject (at each voxel)<br />

Temporal correlations between scans: AR models (+ white noise)<br />

Pre-coloring/temporal smoothing [Worsley <strong>and</strong> Friston, 1995]<br />

Pre-whitening [Bullmore et al, 1996; Purdon <strong>and</strong> Weisskoff, 1998]<br />

Linear covariance structure<br />

Alternative structures available for PET [Bowman <strong>and</strong> Kilts, 2003]<br />

Second, fit linear model that combines subject-specific estimates<br />

A two-stage (r<strong>and</strong>om effects) model<br />

Simplifies computations*<br />

Sacrifices efficiency<br />

For Inference: Compute t-statistics at each voxel <strong>and</strong> threshold<br />

Consider a multiple testing adjustment (Bonferonni-type, FDR, RFT)<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 12 / 77


Experiments Models Connectivity Prediction Summary<br />

Common <strong>An</strong>alysis Framework<br />

Properties<br />

Two-stage (r<strong>and</strong>om effects) model<br />

Simplifies computations<br />

Sacrifices efficiency<br />

Assumes independence between different brain locations<br />

Targets activation analyses, disregarding functional connectivity<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 13 / 77


Experiments Models Connectivity Prediction Summary<br />

Statistical Modeling<br />

General Linear Model: Stage I<br />

Y ig (v) = X igv β ig (v) + H iv γ ig (v) + ε ig (v)<br />

Y ig (v) S × 1 serial brain (BOLD) activity at voxel v.<br />

X igv S × q design matrix containing independent variables.<br />

β ig (v) q × 1 parameter vector linking experimental tasks.<br />

ε ig (v) S × 1 r<strong>and</strong>om error about ith subject’s mean.<br />

H iv S × m contains other covariates, e.g. high-pass filtering.<br />

ε ig (v) ∼ Normal(0, τgv 2 V).<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 14 / 77


Experiments Models Connectivity Prediction Summary<br />

Statistical Modeling<br />

General Linear Model: Stage II<br />

β ig (v) = µ g (v) + d ig (v)<br />

β ig (v) regression coefficients from stage I.<br />

µ g (v) group-level mean for all effects.<br />

d ig (v)<br />

r<strong>and</strong>om error.<br />

d ig (v) ∼ Normal(0, ω 2 (v)R).<br />

*Examine contrasts, e.g. A = [PostTx − PreTx] patients − [FU − BL] controls<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 15 / 77


Experiments Models Connectivity Prediction Summary<br />

Statistical Modeling<br />

General Linear Model: Test Statistic<br />

t(v) =<br />

Cˆµ g (v)<br />

ŝe(Cˆµ g (v))<br />

C is a user-specified contrast matrix (or vector).<br />

A threshold is applied to the test statistic t(v) for every voxel,<br />

v = 1, . . . , V .<br />

Adjustments are made for multiplicity<br />

Bonferroni-type corrections: divide significance level by the number of<br />

tests performed.<br />

R<strong>and</strong>om field theory: account for spatial dependence, as captured by<br />

the maximum distribution.<br />

False discovery rate: expected proportion of erroneous rejections,<br />

among all rejections.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 16 / 77


Experiments Models Connectivity Prediction Summary<br />

Statistical Modeling<br />

Mixed Model Equivalent<br />

Y ig (v) = X igv β ig (v) + H iv γ ig (v) + ε ig (v)<br />

β ig (v) = µ g (v) + d ig (v)<br />

=⇒ Y ig (v) = X igv µ g (v) + X igv d ig (v) + H iv γ ig (v) + ε ig (v)<br />

X igv µ g (v)<br />

X igv d ig (v)<br />

fixed effects (group-level).<br />

r<strong>and</strong>om effects (subject-specific effects).<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 17 / 77


Experiments Models Connectivity Prediction Summary<br />

Statistical Modeling<br />

Assumptions<br />

BOLD signals follow a Gaussian<br />

distribution.<br />

The same effects are present for each<br />

voxel.<br />

Relationship between independent<br />

variables <strong>and</strong> the BOLD response are<br />

captured by the general linear model.<br />

Estimation at one voxel is unrelated to<br />

estimation at other voxels, i.e. no<br />

spatial correlations.<br />

Stage II model does not always<br />

address correlations between multiple<br />

effects estimated for each individual.<br />

Quadratic Linear<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 18 / 77


Experiments Models Connectivity Prediction Summary<br />

Statistical Modeling<br />

Other Considerations<br />

How well does my model fit? For which voxel?<br />

Do I have sufficient power? For which voxel?<br />

Multiplicity: Are you really conducting hundreds of thous<strong>and</strong>s of<br />

tests?<br />

Largely addressed by r<strong>and</strong>om field theory.<br />

How do I best portray the uncertainty in my images of estimates?<br />

Confidence intervals for images.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 19 / 77


Experiments Models Connectivity Prediction Summary<br />

Spatial Correlations<br />

Distances<br />

Functional<br />

Physical (Geometric)<br />

<strong>An</strong>atomical<br />

(a) Functional<br />

(b) Geometric<br />

The complex<br />

neuroanatomy <strong>and</strong><br />

neurophysiology make<br />

basic assumptions of<br />

many spatial methods<br />

questionable for<br />

neuroimaging<br />

Figure: Alternative measures of<br />

distance.<br />

Bowman (2007), JASA.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 20 / 77


Experiments Models Connectivity Prediction Summary<br />

Spatial Modeling Framework<br />

Bayesian Spatial Model for Activation <strong>and</strong> Connectivity (BSMac):<br />

Stage I: Individual level - addresses temporal correlations.<br />

Stage II: Group level<br />

Define brain regions using<br />

neuroanatomic parcellation (e.g.<br />

Brodmann or AAL)<br />

Spatial correlations<br />

Within regions<br />

Between regions<br />

Inferences<br />

Voxel-level<br />

Regional<br />

Bowman et al. (2008), NeuroImage<br />

Zhang et al. (2011), Journal of Neuroscience Methods<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 21 / 77


Experiments Models Connectivity Prediction Summary<br />

BSMac<br />

Stage II: Bayesian Spatial Model for Activation <strong>and</strong> Connectivity (BSMac):<br />

Y igj | µ gj , α igj , σ 2 gj ∼ Normal(µ gj + 1α igj , σ 2 gjI)<br />

µ gj | λ 2 gj ∼ Normal(1µ 0gj , λ 2 gjI)<br />

σ −2<br />

gj<br />

∼ Gamma(a 0 , b 0 )<br />

α ij | Γ j ∼ Normal(0, Γ j )<br />

λ −2<br />

gj<br />

∼ Gamma(c 0 , d 0 )<br />

Γ −1<br />

j<br />

∼ Wishart { (h 0 H 0j ) −1 }<br />

, h 0<br />

Y igj = (Y igj1 , . . . , Y igjVg ) ′ , µ gj = (µ gj1 , . . . , µ gjVg ) ′ , <strong>and</strong><br />

α ij = (α i1j , . . . , α iGj ) ′<br />

Bowman et al. (2008), NeuroImage<br />

Zhang et al. (2011), Journal of Neuroscience Methods<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 22 / 77


Experiments Models Connectivity Prediction Summary<br />

BSMac MATLAB Toolbox<br />

GUI Interface: Available at www.sph.emory.edu/bios/CBIS/<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 23 / 77


Experiments Models Connectivity Prediction Summary<br />

BSMac MATLAB Toolbox<br />

Interactive Activation Maps<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 24 / 77


Experiments Models Connectivity Prediction Summary<br />

BSMac MATLAB Toolbox<br />

Task-Related Connectivity Maps: Schizophrenia Patients, WM Load 5<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 25 / 77


Experiments Models Connectivity Prediction Summary<br />

BSMac MATLAB Toolbox<br />

Task-Related Connectivity Maps: Healthy Controls, WM Load 5<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 26 / 77


Experiments Models Connectivity Prediction Summary<br />

BSMac Properties<br />

BSMac framework<br />

Considers activation objectives <strong>and</strong> task-related FC<br />

Models spatial correlations in brain activity<br />

Within <strong>and</strong> between defined neuroanatomic regions<br />

Yields easily interpretable posterior probabilities of activation<br />

Permits voxel-level <strong>and</strong> region-level inferences<br />

Can apply FDR-like concepts<br />

Limitations<br />

Does not account for temporal dependence between multiple sessions<br />

Fairly simple intra-regional correlation model<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 27 / 77


Experiments Models Connectivity Prediction Summary<br />

Extensions: Spatial Modeling<br />

Between session correlations: (a) captures correlations between<br />

multiple scanning sessions (e.g. days or treatment periods), (b) does<br />

NOT model between-region spatial correlations<br />

[Derado et al. (2010), Biometrics]<br />

Model correlations between scanning sessions, between-regions, <strong>and</strong><br />

locally within regions*<br />

Use imaging data to predict future neural responses<br />

[Derado et al. (2012), Statistical Methods in Medical Research]<br />

Model spatial correlations: Between AAL regions (unstructured<br />

covariance matrix), borrow strength between subregions within each<br />

AAL region (CAR model), between voxels within each subregion<br />

(exchangeable structure)<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 28 / 77


Experiments Models Connectivity Prediction Summary<br />

Other Extensions<br />

Unspecified onsets of stimuli: meditation or pain tolerance.<br />

[Robinson et al. (2010), NeuroImage]<br />

Spectral modeling: Fourier coefficients are approximately uncorrelated<br />

across frequencies; wavelets have decorrelating properties.<br />

[Kang et al. (2012), JASA; Ombao et al. (2008), Statistica Sinica]<br />

Rician regression model to characterize noise contributions in fMRI<br />

along with associated estimation <strong>and</strong> diagnostic procedures.<br />

[Zhu et al. (2009), JASA]<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 29 / 77


Experiments Models Connectivity Prediction Summary<br />

Brain Connectivity<br />

Determine functional <strong>and</strong> anatomical<br />

organization of the brain<br />

<strong>An</strong>atomical<br />

Structural links between regions (axonal<br />

fiber tracts)<br />

Millions of axonal connections<br />

Functional<br />

Functional Connectivity: Correlations in<br />

brain activity between regions<br />

Task-induced<br />

Resting state<br />

Effective Connectivity: Influence that one<br />

region exerts on another<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 30 / 77


Experiments Models Connectivity Prediction Summary<br />

Structural Connectivity<br />

Structural linkages through white-matter.<br />

Humans have estimated 86 billion neurons.<br />

Axons are neuron fibers that form bundles<br />

<strong>and</strong> serve as lines of transmission in the CNS<br />

Millions of fiber bundles in the white-matter<br />

These bundles directly link some brain<br />

structures<br />

Association bundles joining cortical areas<br />

within the same hemisphere<br />

Commissural bundles linking cortical areas<br />

in separate hemispheres<br />

Projection fibers uniting areas in the<br />

cerebral cortex to various subcortical<br />

structures<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 31 / 77


Experiments Models Connectivity Prediction Summary<br />

Structural Connectivity<br />

Diffusion Tensor Imaging<br />

Identifies major white matter (axonal)<br />

fiber tracts in the brain<br />

Reflects white matter integrity by<br />

measuring restricted water diffusion in<br />

tissue<br />

Diffuse more quickly in the direction of<br />

fibers than in a perpendicular direction<br />

White matter fiber bundles (axons) are<br />

tracked from tensor field information<br />

combined across voxels.<br />

Reconstruct 3-D fibers (colors indicate<br />

direction): Red: Left-Right, Green:<br />

<strong>An</strong>t.-Post., Blue: Inferior-Superior.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 32 / 77


Experiments Models Connectivity Prediction Summary<br />

Structural Connectivity<br />

Diffusion Tensor Imaging<br />

The tensor<br />

Represented by matrix D<br />

D xx , D yy , D zz reflect molecular<br />

mobility along x, y, z axes.<br />

D xy , D xz , D yz reflect correlations<br />

between molecular displacements in<br />

perpendicular directions.<br />

Eigenvalues λ 1 , λ 2 , λ 3 indicate<br />

main diffusion direction<br />

⎡<br />

D = ⎣<br />

D xx D xy D xz<br />

⎤<br />

D xy D yy D yz<br />

⎦<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 33 / 77


Experiments Models Connectivity Prediction Summary<br />

Functional Connectivity<br />

Functional Specialization (Localization):<br />

Specific mental processes link to particular<br />

brain regions [Gall, 1796; Broca, 1861;<br />

Brodmann, 1909]<br />

Functional Integration:<br />

Interactions between specialised neuronal<br />

populations<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 34 / 77


Experiments Models Connectivity Prediction Summary<br />

Functional Connectivity<br />

Functional Specialization (Localization):<br />

Specific mental processes link to particular<br />

brain regions [Gall, 1796; Broca, 1861;<br />

Brodmann, 1909]<br />

Functional Integration:<br />

Interactions between specialised neuronal<br />

populations<br />

=⇒ Functional connectivity<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 34 / 77


Experiments Models Connectivity Prediction Summary<br />

Functional Connectivity<br />

Seed Voxel (or Region) Approaches<br />

Calculate the correlation (or partial<br />

correlation) between a selected voxel<br />

(region) <strong>and</strong> all other voxels (regions).<br />

ρ ij = min<br />

u∈U ρ ij(u)<br />

∑ T −u<br />

= min { t=1 [y i(t + u) − ȳ i ][y j (t) − ȳ j ]<br />

}<br />

u∈U ˆσ i ˆσ j<br />

Should be strongly hypothesis driven<br />

May miss important associations due to<br />

limited number of voxels (regions) assessed<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 35 / 77


Experiments Models Connectivity Prediction Summary<br />

Functional Connectivity<br />

Whole-Brain Region to Region Approaches<br />

Calculate the correlation (or partial<br />

correlation) between a all pairs of regions).<br />

∑ T −u<br />

ρ ij = min { t=1 [y i(t + u) − ȳ i ][y j (t) − ȳ j ]<br />

}<br />

u∈U ˆσ i ˆσ j<br />

Requires parcellation of the brain into<br />

regions OR selection of a subset of regions.<br />

May miss important associations due to this<br />

selection process<br />

May select finer or coarser map of regions<br />

depending on objectives<br />

Finer map may prompt the assessment of<br />

whole brain topological properties (graph<br />

methods)<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 36 / 77


Experiments Models Connectivity Prediction Summary<br />

Functional Connectivity<br />

Partitioning Approaches: Independent Components <strong>An</strong>alysis (ICA)<br />

Y = × . +<br />

Goal: Decompose observed fMRI data into a linear combination of<br />

spatio-temporal source signals.<br />

Y(T × V ): observed fMRI measurements<br />

A(T × q): mixing matrix (columns contain latent time series for ICs)<br />

S(q × V ): statistically independent spatial signals (in rows)<br />

E(T × V ): noise or variability not explained by the ICs, e v ∼MVN<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 37 / 77


Experiments Models Connectivity Prediction Summary<br />

Functional Connectivity<br />

Partitioning Approaches: ICA<br />

Goal: Decompose observed fMRI data into a linear combination of<br />

spatio-temporal source signals.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 38 / 77


Experiments Models Connectivity Prediction Summary<br />

Functional Connectivity<br />

Partitioning Approaches: ICA<br />

A Zen meditation study<br />

Zen meditation involves disciplined regulation of attention <strong>and</strong> bodily<br />

posture<br />

24 subjects: Zen meditation group (n=12) <strong>and</strong> control group (n=12).<br />

fMRI scans acquired at 520 time points.<br />

There was a meditative condition interspersed with a lexical decision<br />

task<br />

Mediative condition: Subjects were instructed to focus on breathing<br />

<strong>and</strong> to refocus attention to breathing when distracted by a lexical task.<br />

Lexical task: Subjects were r<strong>and</strong>omly shown word or nonword letter<br />

strings <strong>and</strong> instructed to press a button indicating whether a word<br />

appeared, ”yes” (index finger) or ”no“” (middle finger).<br />

Objective: whether training in Zen meditation modifies the neural<br />

activity underlying attentional control <strong>and</strong> behavior switching.<br />

Pagnoni et al., 2008, PLoS ONE<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 39 / 77


Experiments Models Connectivity Prediction Summary<br />

Functional Connectivity<br />

Partitioning Approaches: ICA<br />

A Zen meditation study<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 40 / 77


Experiments Models Connectivity Prediction Summary<br />

Functional Connectivity<br />

Partitioning Approaches: Cluster <strong>An</strong>alysis<br />

Goal is to partition the brain into<br />

clusters of regions, which exhibit<br />

similar patterns of brain function<br />

within.<br />

Each region begins as a single cluster<br />

Calculate functional distances between<br />

all brain regions, e.g. d ij = 1 − ρ ij<br />

Iteratively join most similar regions<br />

(clusters) until a single cluster remains<br />

Examine each stage of clustering tree<br />

to determine the optimal number of<br />

clusters, e.g. assess within <strong>and</strong><br />

between cluster variability<br />

Motor<br />

Visual:<br />

Auditory<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 41 / 77


Experiments Models Connectivity Prediction Summary<br />

Multimodal Connectivity<br />

<strong>An</strong>atomically-weighted Functional Connectivity (awFC)<br />

[Bowman et al., 2012, NeuroImage]<br />

Functional connectivity relies on signaling along structural white<br />

matter pathways.<br />

Our main objective is to reliably detect networks of functionally<br />

connected regions<br />

We leverage supplementary information from the SC strength between<br />

brain regions<br />

SC does not imply FC<br />

Absence of SC does not preclude FC<br />

Indirect SC (e.g. via a remote third brain region)<br />

Potential Advantages:<br />

Help determine FC in the presence of fMRI noise<br />

Defaults to st<strong>and</strong>ard clustering techniques when no structural<br />

weighting is considered<br />

Provides additional information about connectivity relationships<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 42 / 77


Experiments Models Connectivity Prediction Summary<br />

Subregion Selections <strong>and</strong> Summaries<br />

Whole-brain analysis with subregions<br />

for each AAL region<br />

For fMRI,<br />

Resting-state subregions selected in<br />

GM to be representative of larger<br />

regions<br />

Task-based subregions selected<br />

according to other criterion, e.g.<br />

centered on maximally activated<br />

voxel in region (across all tasks)<br />

Generate summary temporal signal<br />

for each subregion<br />

For DTI,<br />

Subregions centered in WM proximal<br />

to GM regions<br />

Probabilistic tractography used to<br />

summarize region-to-region SC<br />

fMRI<br />

DTI<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 43 / 77


Experiments Models Connectivity Prediction Summary<br />

Determining Functional Networks<br />

Functional Clustering with DTI-based <strong>An</strong>atomical Weighting:<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 44 / 77


Experiments Models Connectivity Prediction Summary<br />

<strong>An</strong>atomically Weighted Functional Distance<br />

(<br />

d ij =<br />

1 − π ij<br />

λ<br />

)<br />

f ij<br />

f ij is a measure of functional dissimilarity between regions i <strong>and</strong> j<br />

E.g. 1 − ρ ij<br />

We allow lag-u associations, u ∈ [−2, 2]<br />

π ij is the probability of structural connectivity<br />

π ij ∈ [0, 1)<br />

We consider second-order connections<br />

Adjust for physical distances between regions<br />

λ is a parameter used to potentially attenuate the impact of<br />

anatomical weighting<br />

λ determined empirically<br />

λ ∈ [1, ∞)<br />

d ij → f ij , as λ → ∞<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 45 / 77


Experiments Models Connectivity Prediction Summary<br />

awFC<br />

<strong>An</strong>atomically weighted Functional Connectivity (awFC):<br />

Perform subject-specific clustering using average linkage method<br />

applied to distances d ij<br />

Empirically optimize λ using objective function based solely on the<br />

functional data<br />

h(λ, G) = log<br />

(<br />

FCwi<br />

FC tot<br />

)<br />

Generate group cluster solution from subject-specific networks<br />

Conduct hypothesis testing to determine the statistical significance of<br />

the correlation between each pair of regions within the identified<br />

networks<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 46 / 77


Experiments Models Connectivity Prediction Summary<br />

awFC<br />

(a)<br />

(b)<br />

6<br />

0.16<br />

0.14<br />

G=9<br />

0.12<br />

5.5<br />

λ=7.5<br />

0.1<br />

Σ i<br />

∆ i<br />

(λ)<br />

5<br />

∆(G)<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

4.5<br />

10 20 30 40 50 60 70 80 90 100<br />

λ<br />

0<br />

0 5 10 15 20 25 30 35<br />

G (lag 1)<br />

(a) Empirical optimization of the attenuation parameter λ<br />

(b) Determination of the number of cluster, G, for subject 1<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 47 / 77


Experiments Models Connectivity Prediction Summary<br />

Data Example<br />

Auditory Task Study<br />

N=17 healthy female subjects<br />

3 fMRI runs (483 scans total for each subject)<br />

fMRI Auditory Task<br />

Cue: Hear an auditory tone (2000 Hz) in one ear.<br />

Target: Subsequently hear a target tone (1000 Hz) in either ear.<br />

Instructed to click a button with right (a) index finger if the target is<br />

from the left earphone OR (b) middle finger if from right earphone.<br />

50% of the trials have the cue <strong>and</strong> target tones in the same ear.<br />

Subjects fixated at a cross throughout the entire scanning session.<br />

DTI data also collected<br />

Objective: Study had a broad set of objectives (Mayer et al., 2009).<br />

We consider an analysis that identifies different functional networks.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 48 / 77


Experiments Models Connectivity Prediction Summary<br />

awFC: <strong>An</strong>alysis of Task Data<br />

Motor Motor Visual<br />

Visual<br />

Auditory<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 49 / 77


Experiments Models Connectivity Prediction Summary<br />

awFC Results: Auditory Data<br />

(a)<br />

(b)<br />

1<br />

0.9<br />

Network Correlations median<br />

In−network<br />

Cross−network<br />

1<br />

0.9<br />

Network SC Proportion<br />

In−network<br />

Cross−network<br />

0.8<br />

0.8<br />

0.7<br />

0.7<br />

Median Correlation<br />

0.6<br />

0.5<br />

0.4<br />

Proportion Connected<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.3<br />

0.2<br />

0.2<br />

0.1<br />

0.1<br />

0<br />

0 5 10 15 20<br />

subject<br />

0<br />

0 5 10 15 20<br />

subject<br />

(a) Median correlations within-networks <strong>and</strong> between-networks<br />

(b) Proportion of region pairs exhibiting SC, i.e. Pr(SC) > 0.5,<br />

within-networks <strong>and</strong> between-networks<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 50 / 77


Experiments Models Connectivity Prediction Summary<br />

awFC Results: Auditory Data<br />

Regional Time-series from 90 Brain Regions (Subject 2)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

0 10 20 30 40 50 60 70 80 90<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 51 / 77


Experiments Models Connectivity Prediction Summary<br />

awFC Results: Auditory Data<br />

Time-series for awFC Networks (Subject 2)<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 52 / 77


Experiments Models Connectivity Prediction Summary<br />

awFC: <strong>An</strong>alysis of Resting-state Data<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 53 / 77


Experiments Models Connectivity Prediction Summary<br />

awFC Results: Resting-state Data<br />

(a)<br />

(b)<br />

1<br />

0.9<br />

Network Correlations<br />

In−network<br />

Cross−network<br />

1<br />

0.9<br />

Network SC<br />

In−network<br />

Cross−network<br />

0.8<br />

0.8<br />

0.7<br />

0.7<br />

Median Correlation<br />

0.6<br />

0.5<br />

0.4<br />

Proportion Connected<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.3<br />

0.2<br />

0.2<br />

0.1<br />

0.1<br />

0<br />

1 2 3 4 5 6<br />

subject<br />

0<br />

1 2 3 4 5 6<br />

subject<br />

(a) Median correlations within-networks <strong>and</strong> between-networks<br />

(b) Proportion of region pairs exhibiting SC, i.e. Pr(SC) > 0.5,<br />

within-networks <strong>and</strong> between-networks<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 54 / 77


Experiments Models Connectivity Prediction Summary<br />

Comparative <strong>An</strong>alysis<br />

Simulation Results: awFC versus St<strong>and</strong>ard (Unweighted) Clustering<br />

Table: Percent accuracies <strong>and</strong> st<strong>and</strong>ard errors (in parentheses). G=13 clusters<br />

used for all results, <strong>and</strong> σ 2 set using the experimental data.<br />

Noise-level Accuracy awFC Unweighted<br />

σ 2 Overall 97.35 (1.02) 94.61 (1.59)<br />

In-network 89.74 (4.61) 76.82 (7.78)<br />

Cross-network 98.70 (0.58) 97.78 (0.72)<br />

1.25σ 2 Overall 96.72 (1.15) 93.28 (1.73)<br />

In-network 87.01 (5.46) 70.60 (8.48)<br />

Cross-network 98.46 (0.61) 97.32 (0.80)<br />

1.50σ 2 Overall 96.13 (1.29) 92.33 (1.77)<br />

In-network 84.38 (6.01) 66.28 (8.52)<br />

Cross-network 98.23 (0.67) 96.97 (0.84)<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 55 / 77


Experiments Models Connectivity Prediction Summary<br />

Other Connectivity Methods<br />

Model-based methods (Bayesian):<br />

Chen et al., 2013, submitted.<br />

Xue <strong>and</strong> Bowman, 2013, submitted.<br />

Patel et al., 2006a, Human Brain Mapping.<br />

Patel et al., 2006b, Human Brain Mapping.<br />

Whole-brain complex networks (graph theoretic methods)<br />

Simpson et al., 2013, Statistics Surveys.<br />

Effective Connectivity<br />

Granger causality<br />

Structural equation modeling<br />

Dynamic causal modeling<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 56 / 77


Experiments Models Connectivity Prediction Summary<br />

Prediction Studies<br />

Emerging direction in neuroimaging<br />

Increase clinical applicability<br />

Use imaging data to predict clinical outcomes (e.g. to distinguish<br />

treatment responders <strong>and</strong> non-responders)<br />

We address intermediate objective of predicting neural responses<br />

Forecast neural representations of disease progression<br />

Predict neural responses to various treatments<br />

We develop a spatial modeling framework within this prediction<br />

context<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 57 / 77


Experiments Models Connectivity Prediction Summary<br />

Motivating Data Example<br />

From the Alzheimer’s Disease Neuroimaging Initiative (ADNI)<br />

database http://www.loni.ucla.edu/ADNI/.<br />

Goal of ADNI: to develop biomarkers of AD in elderly subjects.<br />

Study participants receive PET scans at: baseline, 6 months, 12<br />

months <strong>and</strong> 24 months.<br />

In our analysis, we used<br />

Baseline <strong>and</strong> month 6 scans.<br />

Subjects classified as: AD patients or healthy controls (HC).<br />

Training data set: 40 AD <strong>and</strong> 40 HC subjects; Testing data set: 33 AD<br />

<strong>and</strong> 33 HC subjects.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 58 / 77


Experiments Models Connectivity Prediction Summary<br />

Bayesian spatial hierarchical model<br />

[Derado et al., 2012, Statistical Methods in Medical Research].<br />

Notation<br />

We developed a Bayesian spatial hierarchical model for predicting<br />

follow-up neural activity based on baseline functional neuroimaging<br />

data <strong>and</strong> other patient characteristics.<br />

Model borrows strength from spatial correlations present in the data.<br />

Let i = 1, . . . , n denote subjects, v = 1, . . . , V voxels, g = 1, . . . , G<br />

regions.<br />

Let Y (v) denote the regional cerebral blood flow (rCBF) (a proxy for<br />

brain activity) at voxel v.<br />

(<br />

) T<br />

Let Y ig (v) = Y ig (v) (1) , Y ig (v) (2) , (1)=baseline, (2)=follow-up.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 59 / 77


Experiments Models Connectivity Prediction Summary<br />

Spatial dependence: 3D neighborhood<br />

For each voxel in the analysis, we define a 3D neighborhood as the 26<br />

immediate neighboring voxels.<br />

Borrow strength locally.<br />

We consider only within-region neighbors.<br />

This information is saved in a connectivity matrix W.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 60 / 77


Experiments Models Connectivity Prediction Summary<br />

Model<br />

Y ig (v)|β g , φ g , α ig , γ gv , Ω g ∼ N(β g (v) + φ g (v) + α ig + X ig γ g , Ω g )<br />

φ g (v)|φ g (v ′ ), v ≠ v ′ , ρ, Σ ∼ N ( ρ ∑ w vv ′<br />

w v+<br />

φ g (v ′ 1<br />

),<br />

w v+<br />

Σ ) ( MCAR(ρ, Σ) )<br />

β gj (v)|λ 2 gj ∼ N(β 0gj , λ 2 gj) (λ vgj = λ gj , ∀v ∈ region g)<br />

Ω −1<br />

g ∼ Wishart ( (c 1 Z 1 ) −1 )<br />

, c 1<br />

Σ −1 ∼ Wishart ( (c 2 Z 2 ) −1 , c 2<br />

)<br />

α ij |Γ j ∼ N(0, Γ j )<br />

(α ij = α (j)<br />

i<br />

Γ −1<br />

j<br />

∼ Wishart((h j H j ) −1 , h j ) j = 1, 2<br />

λ −2<br />

gj<br />

∼ Gamma(a j , b j )<br />

γ gjq |τ 2 gjq ∼ N(0, τ 2 gjq)<br />

τ −2<br />

gjq ∼ Gamma(e 0, f 0 )<br />

= (α (j)<br />

i1 , . . . , α(j) iG )′ )<br />

q = 1, . . . , Q (covariates)<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 61 / 77


Experiments Models Connectivity Prediction Summary<br />

Estimation <strong>and</strong> Prediction<br />

Estimation is performed using MCMC methods (Gibbs)<br />

Prediction:<br />

For region g, we can write<br />

Y g = (Y T g,1 , YT g,2 )T ∼ N ( (µ T g,1 , µT g,2 )T , Ψ g<br />

)<br />

, where Ψg = Σ g ⊗ I Vg .<br />

Then E(Y i ∗ g,2|Y i ∗ g,1) = b i ∗ g , where<br />

b i ∗ g = µ i ∗ g,2 + Ψ T g,12Ψ −1<br />

g,11 (Y i ∗ g,1 − µ i ∗ g,1)<br />

<strong>and</strong> µ i ∗ g = β g + φ g + 1 Vg ⊗ α i ∗ g + 1 Vg ⊗ X i ∗ gv γ gv .<br />

Estimated conditional mean ˆb i ∗ g obtained from inputting the posterior<br />

means of the corresponding parameters<br />

The follow-up brain activity Y i ∗ g,2 is predicted using the estimated<br />

conditional mean ˆb i ∗ g .<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 62 / 77


Experiments Models Connectivity Prediction Summary<br />

Figure: Individualized observed <strong>and</strong> predicted 6 month follow-up rCBF<br />

measurements for a test subject in the AD group (axial slice 40).<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 63 / 77<br />

Results: Prediction for PET study of AD<br />

Subject 1: observed Y (2) Subject 1: predicted Y (2)


Experiments Models Connectivity Prediction Summary<br />

Figure: Individualized observed <strong>and</strong> predicted 6 month follow-up rCBF<br />

measurements for a test subject in the AD group (axial slice 40).<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 64 / 77<br />

Results cont.<br />

Subject 19: observed Y (2) Subject 19: predicted Y (2)


Experiments Models Connectivity Prediction Summary<br />

Prediction Error<br />

We evaluate the prediction error using a scale-free (squared error) loss<br />

function, which adjusts for local magnitude of brain activity<br />

√<br />

1<br />

∑<br />

(2) ) N<br />

(v)}, {Ŷ i (v)} =<br />

N i=1 [Ŷ (2) (2)<br />

i (v) − Y<br />

stPMSE ( {Y (2)<br />

i<br />

1<br />

N<br />

∑ N<br />

i=1 Y (2)<br />

i<br />

(v)<br />

i<br />

(v)] 2<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 65 / 77


Experiments Models Connectivity Prediction Summary<br />

Comparative <strong>An</strong>alyses<br />

Model BSPM BSMac GLM<br />

Aver. error 0.083 0.154 (85.5% increase) 0.157 (89.2% increase)<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 66 / 77


Experiments Models Connectivity Prediction Summary<br />

Simulation Study<br />

We simulated 100 data sets for 15 subjects.<br />

Selected 5 AAL regions with sizes ranging from 234 to 4,655 voxels.<br />

Specified the true values for β g , φ g , α i , <strong>and</strong> γ g .<br />

The rest of the (hyper)parameters drawn from their prior distributions.<br />

Param.<br />

Region<br />

1 2 3 4 5<br />

True Est. True Est. True Est. True Est. True Est.<br />

Ω g,11 323.26 321.09 160.61 159.99 11.46 11.46 3.44 3.44 3.57 3.57<br />

Ω g,22 120.75 120.46 45.30 45.11 37.24 37.19 10.45 10.45 3.38 3.38<br />

Ω g,12 -41.95 -41.25 -33.70 -33.40 16.32 16.30 4.08 4.08 2.40 2.40<br />

Table: Summary of the simulation results for the parameters in the covariance<br />

matrix Ω g .<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 67 / 77


Experiments Models Connectivity Prediction Summary<br />

NIH Parkinson’s Disease Biomarker Program<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 68 / 77


Experiments Models Connectivity Prediction Summary<br />

Parkinson’s Disease<br />

PD is a chronic, progressive movement disorder affecting at least one<br />

half million patients in the U.S.<br />

No diagnostic test to validate PD determination<br />

Diagnosis: medical history, neurological exam, <strong>and</strong> treatment response<br />

Brain scans <strong>and</strong> lab tests possibly used to rule out other diseases<br />

Symptoms<br />

Tremor, rigidity, bradykinesia (slowness of movement), <strong>and</strong> impaired<br />

balance <strong>and</strong> coordination<br />

With progression, patients may have difficulty walking, talking, or<br />

completing other simple tasks<br />

Non-motor symptoms: cognition, mood, sleep, <strong>and</strong> autonomic function<br />

PD usually affects people over 50 years of age<br />

Drug (e.g. levodopa combined with carbidopa) <strong>and</strong> surgical (DBS)<br />

treatments available, but none halt progression<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 69 / 77


Experiments Models Connectivity Prediction Summary<br />

Parkinson’s Disease Biomarkers<br />

Motivation<br />

The optimal window for<br />

neuroprotecion in PD is during<br />

the premotor period before<br />

most neuronal death occurs.<br />

Neurology 2009;72(Suppl 2):S21-S26.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 70 / 77


Experiments Models Connectivity Prediction Summary<br />

Multimodal PD biomarker detection<br />

Suggested links between PD <strong>and</strong> single<br />

genetic, imaging, <strong>and</strong> biologic factors.<br />

Many of these are non-specific or<br />

insensitive.<br />

Single modality biomarkers may not fully<br />

address the complexity of PD.<br />

We regard PD as a complex, systems-level,<br />

multi-dimensional disorder with discrete, but<br />

functionally integrated manifestations.<br />

We are developing methods to define<br />

multimodal PD biomarkers from a massive<br />

number of hypothesis driven <strong>and</strong> exploratory<br />

c<strong>and</strong>idate markers.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 71 / 77


Experiments Models Connectivity Prediction Summary<br />

Data<br />

Multimodal Parkinson’s Disease Imaging Studies<br />

The data will include 81 subjects<br />

across three studies<br />

38 Parkinson’s disease patients<br />

32 Healthy control subjects<br />

11 Alzheimers disease patients<br />

Potential Biomarkers<br />

Imaging (MRI, fMRI, DTI,<br />

NM-MRI, CSI)<br />

Genetic<br />

Neurocognitive Testing<br />

Questionnaire-Derived Scores<br />

Clinical<br />

CSF Neuroinflammation<br />

CSF Catecholamine Metabolites<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 72 / 77


Experiments Models Connectivity Prediction Summary<br />

Methods<br />

High-dimensional Data Methods<br />

Develop statistical models, which pool predictive strength across<br />

multiple data modalities<br />

Proposed statistical techniques<br />

Penalized likelihood approaches:<br />

l p (β, λ) = −l(β) + ∑ k λ kP k (β k )<br />

l(β) = ∑ i [y ilogπ i + (1 − y i )log(1 − π i ]<br />

Variable selection or shrinkage<br />

Novel joint multimodal probability models<br />

Model development, training, testing, <strong>and</strong> validation<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 73 / 77


Experiments Models Connectivity Prediction Summary<br />

Bayesian Spatial Prediction Model<br />

We blindly classify subjects as either PD or HC<br />

from multimodal imaging data (<strong>and</strong> other patient<br />

information)<br />

Two-level parcellation: AAL Regions → Subregions<br />

Spatial correlations:<br />

Between AAL regions: Unstructured covariance<br />

matrix<br />

Borrow strength between subregions within each<br />

AAL region: CAR model<br />

Between voxels within each subregion:<br />

Exchangeable structure<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 74 / 77


Experiments Models Connectivity Prediction Summary<br />

Bayesian Spatial Prediction Model<br />

Example of modelling framework using ALFF <strong>and</strong> VBM data<br />

Let D i ∈ {0, 1} represent disease status (e.g. 1=PD, 0=HC)<br />

Let X ilg (v) <strong>and</strong> Z ilg (v) respectively denote the ALFF <strong>and</strong> VBM for<br />

subject i at voxel v in subregion l (in region g), <strong>and</strong><br />

B i = [X ilg (v), Z ilg (v)]<br />

Construct a Bayesian joint (multimodal) probability model<br />

f (X ilg (v), Z ilg (v)|D i ) ∝ f 1 (X ilg (v)|Zilg(v), D i ) × f 2 (Z ilg (v)|D i )<br />

Generate predictions for a new subject n + 1 based on<br />

Pr(D n+1 = k|B n+1 , {B i , D i } n i=1 )<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 75 / 77


Experiments Models Connectivity Prediction Summary<br />

Summary<br />

Statistical methods play important roles in the analysis of<br />

neuroimaging data<br />

identify biomarkers of disease <strong>and</strong> treatment response.<br />

detect disease- or treatment-related alterations in brain function<br />

determine brain networks<br />

Multimodal analyses may yield more accurate <strong>and</strong> robust results than<br />

single genetic, imaging, biological, or clinical markers.<br />

Leveraging available information in the data (e.g. borrowing strength<br />

across brain areas) may yield more precise estimates.<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 76 / 77


Experiments Models Connectivity Prediction Summary<br />

Acknowledgements<br />

Research Team<br />

Lijun Zhang, PhD, Emory, Biostatistics <strong>and</strong> Bioinformatics<br />

Jian Kang, PhD, Emory, Biostatistics <strong>and</strong> Bioinformatics<br />

Ying Guo, PhD, Emory, Biostatistics <strong>and</strong> Bioinformatics<br />

Gordana Derado, PhD, CDC<br />

Shuo Chen, PhD, Univ. of Maryl<strong>and</strong>, Epidemiology <strong>and</strong> Biostatistics<br />

Daniel Huddleston, MD, Kaiser Permanente Georgia<br />

Xiaoping Hu, PhD, Emory/GA Tech, Biomedical Engineering<br />

Helen Mayberg, MD, Emory, Psychiatry <strong>and</strong> Behavioral Sciences<br />

Doctoral Students:<br />

Wenqiong Xue, MS, Emory, Biostatistics <strong>and</strong> Bioinformatics<br />

<strong>An</strong>thony Pileggi, Emory, Biostatistics <strong>and</strong> Bioinformatics<br />

Phebe L. Brenne, Emory, Biostatistics <strong>and</strong> Bioinformatics<br />

Qing He, Emory, Biostatistics <strong>and</strong> Bioinformatics<br />

Yize Zhao, Emory, Biostatistics <strong>and</strong> Bioinformatics<br />

NINDS U18 NS082143-01 (Bowman) <strong>and</strong> the PDBP<br />

NIMH R01-MH079251 (Bowman)<br />

F. D. Bowman (Emory University) <strong>SAMSI</strong>: NDA RTP, NC 77 / 77

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!