28.06.2014 Views

Microwave Assisted Knoevenagel Condensation - Scientific Journals

Microwave Assisted Knoevenagel Condensation - Scientific Journals

Microwave Assisted Knoevenagel Condensation - Scientific Journals

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

M.M.H. Bhuiyan et al / Chemistry Journal (2012), Vol. 02, Issue 01, pp. 30-36 ISSN 2049-954X<br />

Research Paper<br />

<strong>Microwave</strong> <strong>Assisted</strong> <strong>Knoevenagel</strong> <strong>Condensation</strong>:<br />

Synthesis and Antimicrobial Activities of Some<br />

Arylidene-malononitriles<br />

M.M.H. Bhuiyan*, M.I. Hossain, M. Ashraful Alam and M.M. Mahmud<br />

Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh<br />

* E-Mail: mosharef65@yahoo.com<br />

Abstract<br />

Eleven arylidene-malononitriles, viz. 2-(1-naphthylidene)-malononitrile (1), 2-(4-N,N-dimethylaminobenzylidene)-<br />

malononitrile (2), 2-(4-hydroxy-3-methoxybenzylidene)-malononitrile (3), 2-(3-methoxybenzylidene)-malononitrile (4), 2-<br />

(2-methylbenzylidene)-malononitrile(5), 2-(4-hydroxybenzylidene)-malononitrile (6), 2-(3-methylbenzylidene)-<br />

malononitrile (7), 2-(2,4-dimethoxybenzylidene)-malononitrile (8), 2-(3-nitrobenzylidene)-malononitrile (9), 2-(9-<br />

anthracenylidene)-malononitrile (10) and 2-[3-(4-dimethylaminophenyl)-allylidene]-malononitrile (11) were prepared by<br />

<strong>Knoevenagel</strong> condensation reaction of malononitrile with corresponding aromatic aldehydes in presence of ammonium<br />

acetate (NH 4 OAc), using microwave irradiation under solvent free condition. The reaction is clean with shorter reaction<br />

time, mild reaction condition, eco-friendly, excellent yields as compared to conventional methods and reduces the use of<br />

volatile organic compounds (VOCs). Variety of functional groups such as nitro, chloro, amino and ether survived under the<br />

reaction conditions. The structures of the arylidene-malononitriles have been established on the basis of their IR, NMR<br />

spectral data and elemental analyses. These compounds were screened for their antibacterial activities against five<br />

pathogenic organisms: Bacillus cereus (BTCC 19), Staphylococcus aureus (ATCC 6538), Vibrio choloriae, Shigella<br />

dysenteriae (AE 14396) and Salmonella typhi (AE 14612) (Table 1) and antifungal activities against two organisms:<br />

Aspargilllus flavus and Saccharomyces cerevisiae (Table 2) using disc diffusion method and poisoned-food technique<br />

respectively. Some of them were found to possess significant activity, when compared to standard drugs.<br />

Keywords: Arylidene-malononitriles, <strong>Microwave</strong> Irradiation, Antimicrobial Activity<br />

1. Introduction<br />

Organic reactions under solvent-free conditions (Tanaka et<br />

al, 2000 & Knochel, 1999) have increasingly attracted<br />

chemists’ interests, particularly from the viewpoint of<br />

green chemistry (Anastas et al, 1998). The <strong>Knoevenagel</strong><br />

condensation is one of the most important, useful and<br />

widely employed methods for the formation of carboncarbon<br />

bonds (Tietze et al, 1991). It has been used for the<br />

preparation of a range of substituted alkenes and bioactive<br />

molecules, and as a key step in natural product synthesis.<br />

The reagent malononitrile is a methylene active compound<br />

largely used in the <strong>Knoevenagel</strong> condensation. The<br />

arylidenemalononitriles thus obtained have found<br />

increasing applications in industry, agriculture, medicine,<br />

biological science and in the elegant<br />

synthesis of fine chemicals (Fatiadi, 1978 & Freeman,<br />

1980). They are important intermediates for the synthesis<br />

of various organic compounds, mainly by<br />

cyclization reactions (Campaigne et al, 1976). Moreover,<br />

benzylidenemalononitriles were reported to be effective<br />

anti-fouling agents, fungicides, insecticides and used as<br />

cytotoxic agents against tumours or as riot control agents<br />

(Jones, 1972).<br />

Available online at www.scientific-journals.co.uk 30


M.M.H. Bhuiyan et al / Chemistry Journal (2012), Vol. 02, Issue 01, pp. 30-36 ISSN 2049-954X<br />

In general, the <strong>Knoevenagel</strong> condensation is catalyzed<br />

by organic bases such as aliphatic amines, ethylenediamine<br />

and piperidine or their corresponding ammonium<br />

salts, Lewis bases and acids including ZnCl 2 , CdI 2 ,<br />

TiCl 4 , Al 2 O 3 , MgO, ZnO, AlPO 4 –Al 2 O 3 , KF–Al 2 O 3 ,<br />

natural hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) (Mallouk et al,<br />

2010) and ammonium acetate (NH 4 OAc)-basic alumina<br />

(Balalaie et al, 2000). However, this employs hazardous<br />

benzene and requires prolonged heating with continuous<br />

water removal. The use of such bases/acids and solvents<br />

has led to environmental problems, i.e. the necessity to<br />

dispose huge amount of organic waste due to the formation<br />

of undesirable side products. Electrochemical, microwave<br />

and ultrasound activation methods have also been reported<br />

(Wang et al, 2002; Li et al, 2004; Feroci et al, 2007).<br />

Recently microwave radiation a non-conventional energy<br />

source for the activation of reactions has gained the<br />

attention of chemists due to its unique advantages, such as<br />

shorter reaction times, cleaner reaction products, higher<br />

yields and better selectivities (Kappe, 2004; Kappe et al,<br />

2009 & Bougrin et al, 2006). Moreover, the combination<br />

of MW activation and solvent-free conditions lead to<br />

enhanced conversion rates, higher yields, easier work-up<br />

and in general, cleaner reactions confirming therefore the<br />

real advantages of this approach in the framework of green<br />

chemistry.<br />

In continuation of our earlier studies directed at the<br />

development of practical and efficient chemical processes<br />

(Basu et al, 2003; Bhuiyan et al, 2011 & 2012), we report<br />

herein a sustainable <strong>Knoevenagel</strong> condensation protocol<br />

using microwave irradiation (MWI) and ammonium<br />

acetate (NH 4 OAc) catalysis under solvent-free conditions.<br />

2. Experimental<br />

2.1. Physical Measurements<br />

Melting points were recorded with electro thermal melting<br />

point apparatus and were uncorrected. Thin layer<br />

chromatography was performed on Kieselgel GF 254 and<br />

visualization was accomplished by iodine vapour or UV<br />

Flame. The infrared (IR) spectra were recorded by FTIR<br />

spectrophotometer (Model-8900, Shimadzu, Japan) using<br />

KBr matrix in the range 4000-200 cm -1 . 1 H-NMR (400<br />

MHz and 500 MHz) and 13 C-NMR (100 MHz and 125<br />

MHz) spectra were recorded on JEOL GS×400, GEOL<br />

JNM-AL 400 (400 MHz) and JEOL GS×400, GEOL JNM-<br />

AL 400 (100 MHz) spectrometer in CDCl 3 , CD 3 OD and<br />

DMSO-d 6 at solvent. Chemical shifts were reported in δ<br />

unit (ppm) with reference to TMS as an internal standard<br />

and J values were given in Hz. The carbon, hydrogen and<br />

nitrogen percentages in synthesized products were<br />

analyzed according to the approved method ASTM D-<br />

5291 by employing Leco-CHNS-932 analyzer. All<br />

reactions were carried out in a commercially available LG<br />

microwave oven (MB – 3947C) having a maximum power<br />

output of 800 W operating at 2450 MHz.<br />

2.2. General Procedure for the Synthesis of Arylidenemalononitriles<br />

To an equimolar mixture of aromatic aldehyde and<br />

malononitrile catalytic amount of ammonium acetate was<br />

added and the reaction mixture irradiated under microwave<br />

condition at 160 watt for 20-60 sec. After complete<br />

conversion of the reaction (TLC; ethyl acetate: n-hexane;<br />

1:5, v/v), the obtained solid mass was recrystallized from<br />

ethyl acetate and n-hexane solvent mixture.<br />

2.2.1. Spectral Data<br />

2-(1-naphthylidene)-malononitrile (1): yellow crystals,<br />

IR (KBr) υ max (cm -1 ): 3028.03 (=C-H), 2223.77 (C≡N),<br />

1564.16 (s, C=C), 1506.3 (s, C=C, Ar). 1 H-NMR (400<br />

MHz, CDCl 3 ): δ H (ppm): 8.67 (s, 1H, =CH), 8.29 (d, 1H,<br />

H-8, J = 7.32 Hz), 8.12 (d, 1H, H-5, J = 8.72 Hz), 7.96 (d,<br />

2H, H-2, H-4, J = 8.72 Hz), 7.66 (m, 3H, H-3, H-6, H-7).<br />

13 C-NMR (100.40 MHz, CDCl 3 ): δ C (ppm): 157.70,<br />

134.91, 133.49, 131.02, 129.40, 128.55, 128.49, 127.46,<br />

127.27, 125.36, 122.26, 113.69, 112.48, 85.10. DEPT – 90<br />

(100.40 MHz, CDCl 3 ): δ C (ppm): 157.71, 134.92, 129.41,<br />

128.56, 128.50, 127.28, 125.37, 122.26. DEPT – 135<br />

(100.40 MHz, CDCl 3 ): δ C (ppm): 157.71, 134.92, 129.41,<br />

128.56, 128.50, 127.28, 125.37, 122.26. Analysis<br />

calculated for C 14 H 8 N 2 (204.23): C, 82.34%; H, 3.95%; N,<br />

13.72%; Found: C, 81.44%; H, 4.55%; N, 14.52%.<br />

2-(4-N,N-dimethylaminobenzylidene)-malononitrile (2):<br />

orange red crystals, IR (KBr) υ max (cm -1 ): 2925.81 (C-H),<br />

2206.41 (s, C≡N), 1612.36 (s, C=C), 1566.09 (s, C=C, Ph).<br />

1 H-NMR (400 MHz, CDCl 3 ): δ H (ppm): 7.82 (d, 2H, H-2,<br />

H-6 J = 9.16 Hz,), 7.47 (s, 1H, =CH), 6.69 (d, 2H, H-3, H-<br />

5, J =9.16 Hz), 3.14 (s, 6H, 2×CH 3 ). 13 C-NMR (100.40<br />

MHz, CDCl 3 ): δ C (ppm): 158.05, 154.17, 133.76, 119.20,<br />

115.98, 114.90, 111.54, 40.08. DEPT – 90 (100.40 MHz,<br />

CDCl 3 ): δ C (ppm): 158.05, 133.77, 111.54. DEPT – 135<br />

(100.40 MHz, CDCl 3 ): δ C (ppm): 158.05, 133.77, 111.54,<br />

40.08 (CH 3 ). Analysis calculated for C 12 H 11 N 3 (197.24): C,<br />

73.07%; H, 5.62%; N, 21.30%; Found : C, 72.57%; H,<br />

6.12%; N, 20.91%.<br />

2-(4-hydroxy-3-methoxybenzylidene)-malononitrile (3):<br />

reddish yellow crystals, IR (KBr) υ max (cm -1 ): 3309.62 (b,<br />

OH), 3024.16 (C-H), 2231.40 (s, C≡N), 1604.66 (s, C=C),<br />

1564.16 (s, C=C, Ph), 1191.93 (s, C-O str, ether). 1 H-NMR<br />

(400 MHz, CD 3 OD): δ H (ppm): 7.95 (d, 1H, J = 9.12 Hz),<br />

7.70 (s, 1H, =CH), 7.44 (s, 1H,), 6.91 (d, 1H, J = 8.68 Hz),<br />

3.89 (s, 3H, OCH 3 ). 13 C-NMR (100.40 MHz, CD 3 OD): δ C<br />

(ppm): 161.09, 154.99, 149.30, 129.42, 124.85, 116.89,<br />

115.92, 115.10, 113.05, 77.09, 56.32. DEPT – 90 (100.40<br />

Available online at www.scientific-journals.co.uk 31


M.M.H. Bhuiyan et al / Chemistry Journal (2012), Vol. 02, Issue 01, pp. 30-36 ISSN 2049-954X<br />

MHz, CD 3 OD): δ C (ppm): 161.10, 129.42, 116.89, 113.07.<br />

DEPT – 135 (100.40 MHz, CDCl 3 ): δ C (ppm): 161.10,<br />

129.42, 116.89, 113.07, 56.32 (OCH 3 ). Analysis calculated<br />

for C 11 H 8 N 2 O 2 (200.20): C, 66.00%; H, 4.03%; N,<br />

13.99%; Found: C, 65.34%; H, 3.84%; N, 14.26%.<br />

2-(3-methoxybenzylidene)-malononitrile (4): deep<br />

yellow crystals, IR (KBr) υ max (cm -1 ): 3089.75-2941.24 (C-<br />

H), 2227.63 (s, C≡N), 1595.02 (s, C=C), 1569.95 (s, C=C,<br />

Ph), 1161.07 (s, C-O str, ether). 1 H-NMR (400 MHz,<br />

CD 3 OD): δ H (ppm): 8.17 (s, 1H, =CH), 7.55 (s, 1H, H-2),<br />

7.50 (t, 1H, H-5, J = 7.32 Hz), 7.46 (d, 1H, H-6, J = 6.84<br />

Hz), 7.22 (d, 1H, H-4, J = 8.24 Hz), 3.85 (s, 3H, OCH 3 ).<br />

13 C-NMR (100.40 MHz, CDCl 3 ): δ C (ppm): 161.92,<br />

161.57, 133.96, 131.59, 124.58, 121.73, 115.67, 115.01,<br />

114.09, 83.53, 56.01. DEPT – 135 (125 MHz, CD 3 OD): δ C<br />

(ppm): 161.92, 131.59, 124.58, 121.74, 115.67, 56.01<br />

(OCH 3 ). Analysis calculated for C 11 H 8 N 2 O (184.20): C,<br />

71.73%; H, 4.38%; N, 15.21%; Found: C, 72.24%; H,<br />

5.36%; N, 15.71%.<br />

2-(2-methylbenzylidene)-malononitrile (5): gray crystals<br />

IR (KBr) υ max (cm -1 ): 3045.39-22927.74 (C-H), 2221.84 (s,<br />

C≡N), 1573.81 (s, C=C). 1 H-NMR (400 MHz, CD 3 OD): δ H<br />

(ppm): 8.47 (s, 1H, =CH), 8.00 (d, 1H, H-6 J = 7.76 Hz),<br />

7.49 (d, 1H, H-3, J = 7.92 Hz), 7.36 (t, 2H, H-4, H-5, J =<br />

7.32 Hz), 2.44 (s, 3H, CH 3 ). 13 C-NMR (100.40 MHz,<br />

CD 3 OD): δ C (ppm): 160.73, 141.30, 134.77, 132.32,<br />

131.83, 129.23, 127.66, 114.93, 113.88, 85.22, 19.65.<br />

DEPT – 90 (100.40 MHz, CDCl 3 ): δ C (ppm): 160.72,<br />

134.77, 132.31, 129.23, 127.66. DEPT – 135 (100.40<br />

MHz, CDCl 3 ): δ C (ppm): 160.73, 134.77, 132.32, 129.23,<br />

127.66, 19.66 (CH 3 ). Analysis calculated for C 11 H 8 N 2<br />

(168.20): C, 78.55%; H, 4.79%; N, 16.65%; Found: C,<br />

79.25%; H, 5.04%; N, 16.37%.<br />

2-(4-hydroxybenzylidene)-malononitrile (6): gray<br />

crystalline solid, IR (KBr) υ max (cm -1 ): 3350.12 (b, OH),<br />

3026.10 (C-H), 2223.77 (s, C≡N), 1569.95 (s, C=C),<br />

1511.16 (s, C=C, Ph). 1 H-NMR (400 MHz, CD 3 OD): δ H<br />

(ppm): 7.97(s, 1H, =CH), 7.89 (s, 2H), 6.91 (d, 2H, J = 6.4<br />

Hz). 13 C-NMR (100.40 MHz, CD 3 OD): δ C (ppm): 165.34,<br />

160.98, 134.99, 124.51, 117.46, 115.90, 114.95, 77.31.<br />

DEPT–90 (100.40 MHz, CD 3 OD): δ C (ppm): 160.99,<br />

134.99, 117.46. DEPT – 135 (100.40 MHz, CD 3 OD): δ C<br />

(ppm): 160.99, 134.98, 117.46. Analysis calculated for<br />

C 10 H 6 N 2 O (170.17): C, 70.58%; H, 3.55%; N, 16.46%;<br />

Found: C, 71.16%; H, 3.3%; N, 15.86%.<br />

2-(3-methylbenzylidene)-malononitrile (7): light gray<br />

crystalline solid, IR (KBr) υ max (cm -1 ): 3093.39-2925.81<br />

(C-H), 2225.70 (s, C≡N), 1596.95 (s, C=C).<br />

1 H-NMR<br />

(400 MHz, CDCl 3 ): δ H (ppm): 7.73 (d, 2H, J = 5.52 Hz),<br />

7.69 (s, 1H, =CH), 7.44 (s, 1H), 7.42 (t, 1H, J = 7.80 Hz),<br />

2.43 (s, 3H, CH 3 ). 13 C-NMR (100.40 MHz, CDCl 3 ): δ C<br />

(ppm): 160.17, 139.59, 135.55, 131.26, 130.89, 129.47,<br />

127.88, 113.81, 112.62, 82.31, 21.24. DEPT – 90 (100.40<br />

MHz, CDCl 3 ): δ C (ppm): 160.16, 135.56, 131.26, 129.47,<br />

127.88. DEPT – 135 (100.40 MHz, CDCl 3 ): δ C (ppm):<br />

160.16, 135.56, 131.25, 129.47, 127.87 , 21.24 (CH 3 ).<br />

Analysis calculated for C 11 H 8 N 2 (168.20): C, 78.55%; H,<br />

4.79%; N, 16.65%; Found: C, 78.30%; H, 4.05%; N,<br />

17.82%.<br />

2-(2,4-dimethoxybenzylidene)-malononitrile (8): yellow<br />

crystals, IR (KBr) υ max (cm -1 ): 3122-2975 (C-H), 2219.91<br />

(s, C≡N), 1610.45 (s, C=C), 1562.23(s, C=C, Ph), 1120.56<br />

(s, C-O str, ether). 1 H-NMR (400 MHz, CDCl 3 ): δ H (ppm):<br />

8.28 (d, 1H, J = 7.32 Hz, H-6’), 8.19 (s, 1H, =CH), 6.61<br />

(d, 1H, J = 7.32, H-5’), 6.44 (s, 1H, H-3’), 3.91 (s, 3H,<br />

OCH 3 ), 3.90 (s, 3H, OCH 3 ). 13 C-NMR (100.40 MHz,<br />

CDCl 3 ): δ C (ppm): 167.18, 161.50, 153.22, 130.96,<br />

115.47, 114.29, 114.06, 107.04, 98.24, 77.64, 56.26, 56.16.<br />

DEPT – 90 (100.40 MHz, CDCl 3 ): δ C (ppm): 153.21,<br />

130.97, 107.04, 98.24. DEPT – 135 (100.40 MHz, CDCl 3 ):<br />

δ C (ppm): 153.21, 130.97, 107.04, 98.24, 56.26 (OCH 3 ),<br />

56.15 (OCH 3 ). Analysis calculated for C 12 H 10 N 2 O 2<br />

(214.23): C, 67.28%; H, 4.71%; N, 13.08%; Found: C,<br />

66.17%; H, 5.11%; N, 12.74%.<br />

2-(3-nitrobenzylidene)-malononitrile (9): off-white<br />

crystals, IR (KBr) υ max (cm -1 ): 3107-1945 (C-H), 2225.70<br />

(s, C≡N), 1610.45 (s, C=C), 1595.02 (s, C=C), 1529.45<br />

(NO 2 , sym. str.), 1479.30 (NO 2 , asym. str.). 1 H-NMR (400<br />

MHz, CD 3 OD): δ H (ppm): 8.31 (s, 1H, =CH), 8.45-8.33<br />

(m, 3H, H-4, H-5, H-6), 7.86 (s, 1H, H-2). 13 C-NMR<br />

(100.40 MHz, CD 3 OD): δ C (ppm): 159.74, 149.81,<br />

136.96, 133.99, 132.00, 128.89, 125.99, 114.53, 113.52,<br />

86.78. DEPT – 90 (100.40 MHz, CD 3 OD): δ C (ppm):<br />

159.74, 136.96, 132.00, 128.90, 126.00. DEPT – 135<br />

(100.40 MHz, CD 3 OD): δ C (ppm): 159.74, 136.96, 132.00,<br />

128.90, 126.00. Analysis calculated for C 10 H 5 N 3 O 2<br />

(199.17): C, 60.31%; H, 2.53%; N, 21.10%; Found: C,<br />

60.17%; H, 2.69%; N, 20.75%.<br />

2-(9-anthracenylidene)-malononitrile (10): orange<br />

crystals, IR (KBr) υ max (cm -1 ): 3053-3018 (C-H), 2227.63<br />

(s, C≡N), 1573.81 (C=C), 1550.66 (s, C=C). 1 H-NMR<br />

(500 MHz, CDCl 3 ): δ H (ppm): 8.97 (s, 1H, H-10), 8.67 (s,<br />

1H, =CH), 8.11 (d, 2H, J = 8.60 Hz), 7.94 (d, 2H, J = 9.15<br />

Hz), 7.69 (t, 2H, J = 6.85 Hz), 7.59 (t, 2H, J = 7.45 Hz).<br />

13 C-NMR (125 MHz, CDCl 3 ): δ C (ppm): 161.93, 133.83,<br />

132.19, 130.84, 130.38, 129.66, 127.36, 125.17, 124.66,<br />

114.31, 112.69, 93.59. DEPT – 90 (125 MHz, CDCl 3 ): δ C<br />

(ppm): 161.93, 133.83, 130.85, 129.66, 127.36, 125.17.<br />

DEPT – 135 (125 MHz, CDCl 3 ): δ C (ppm): 161.93,<br />

133.83, 130.85, 129.66, 127.36, 125.17. Analysis<br />

calculated for C 18 H 10 N 2 (254.29): C, 85.02%; H, 3.96%; N,<br />

11.02%; Found: C, 84.81%; H, 4.66%; N, 10.13%.<br />

2-[3-(4-dimethylaminophenyl)-allylidene]-malononitrile<br />

Available online at www.scientific-journals.co.uk 32


M.M.H. Bhuiyan et al / Chemistry Journal (2012), Vol. 02, Issue 01, pp. 30-36 ISSN 2049-954X<br />

(11): deep violet crystals, IR (KBr) υ max (cm -1 ): 3087-2815<br />

(C-H), 2208.34 (s, C≡N), 1585.38 (s, C=C), 1544.88 (s,<br />

C=C, Ph). 1 H-NMR (500 MHz, DMSO-d 6 ): δ H (ppm): 8.06<br />

(d, 1H, J = 11.85 Hz), 7.58 (d, 2H, H-2, H-6, J = 8.60 Hz),<br />

7.47 (d, 1H, J = 14.9 Hz), 6.94 (dd, 1H, J = 12.05 Hz, 2.85<br />

Hz), 6.75 (d, 2H, H-3, H-5, J = 6.80 Hz), 3.04 (s, 6H,<br />

2×CH 3 ). 13 C-NMR (125 MHz, CDCl 3 ): δ C (ppm): 162.03,<br />

153.02, 131.94, 121.38, 116.64, 115.49, 113.51, 112.02,<br />

73.13, 39.67, 39.65. DEPT – 135 (125 MHz, DMSO-d 6 ):<br />

δ C (ppm): 162.03, 153.02, 131.94, 116.65, 112.02, 39.67<br />

(CH 3 ), 39.65 (CH 3 ). Analysis calculated for C 14 H 13 N 3<br />

(223.28): C, 75.31%; H, 5.87%; N, 18.82%; Found: C,<br />

74.71%; H, 6.27%; N, 19.31%.<br />

2.3. Antimicrobial Screening<br />

The synthesized compounds (1-11) were screened for<br />

antibacterial activity against five pathogenic organisms:<br />

Bacillus cereus (BTCC 19), Staphylococcus aureus<br />

(ATCC 6538), Vibrio choloriae, Shigella dysenteriae (AE<br />

14396) and Salmonella typhi (AE 14612 (Table 1) and<br />

antifungal activity against two organisms: Aspargilllus<br />

flavus and Saccharomyces cerevisiae (Table 2). The disc<br />

diffusion method (Bauer et al, 1966) and poisoned-food<br />

technique (Grover et al, 1962) were used for antibacterial<br />

and antifungal activities, respectively.<br />

eleven ylidene-malononitrile derivatives from several<br />

aromatic aldehydes and active methylene compound<br />

malononitrile in the presence of catalytic amount of<br />

NH 4 OAc by modified <strong>Knoevenagel</strong> reaction using<br />

microwave irradiation, as indicated in Scheme 1 and Table<br />

3. The corresponding reactions proceeded smoothly and in<br />

excellent yields (85-99%).<br />

An important feature of this procedure is the survival of<br />

variety of functional groups such as nitro, chloro, amino<br />

and ether under the reaction conditions. The structures of<br />

the products were established from their IR, 1 H NMR, 13 C<br />

NMR and elemental analyses. For example, the IR<br />

spectrum of compound 11 displayed a band absorption<br />

2208.34 cm -1 for C≡N group. The absorption bands at<br />

1585.38 cm -1 and 1544.88 cm -1 were due to C=C and<br />

aromatic ring. The 1 H NMR spectrum of 11 exhibited two<br />

doublet signals resonated at δ 7.58 ppm and at δ 6.75 ppm<br />

with J values 8.60 Hz and 6.80 Hz were designated to four<br />

aromatic protons of H-2’, H-6’, H-3’ and H-5’. A doublet<br />

signal at a lower field, δ 8.06 ppm (J= 11.85 Hz) was<br />

attributed to H-3 of allylidene which was coupled with H-4<br />

in a trans-relationship. Another doublet at δ 7.47 ppm (J =<br />

14.9 Hz) attributed to H-5 of the conjugated system which<br />

was coupled with H-4 in a trans-relationship. H-4 of the<br />

conjugated system appeared as a doublet of doublet<br />

Ar<br />

H<br />

O<br />

+<br />

CN<br />

CN<br />

NH 4<br />

OAc<br />

MWI<br />

Ar<br />

H<br />

(1-11)<br />

CN<br />

CN<br />

Scheme 1<br />

Scheme 1<br />

The tested compounds were dissolved in N,Ndimethylformamide<br />

(DMF) to get a solution of 1 mg ml –1 .<br />

The inhibition zones were measured in millimeters at the<br />

end of an incubation period of 48 hours at (35±2) °C. DMF<br />

alone showed no inhibition. Nutrient agar (NA) and potato<br />

dextrose agar (PDA) were used as basal media to test the<br />

bacteria and fungi, respectively. Commercial antibacterial<br />

Ampicillin and antifungal Nystatin were also tested under<br />

similar conditions for comparison.<br />

3. Results and Discussion<br />

As already mentioned in the introduction various methods<br />

for the synthesis of ylidene-malononitrile have been<br />

developed and employed successfully on the light of green<br />

chemistry aspects. In the present work, we synthesized<br />

centered at δ 6.94 ppm (J = 12.05 Hz, 2.85 Hz) coupled<br />

with H-3 and H-5. A six-proton singlet displayed at δ 3.04<br />

ppm attributed to –N(CH 3 ) 2 group. The 13 C NMR spectrum<br />

of compound 11 showed the presence of eleven signals<br />

attributed to fourteen carbons corresponding molecular<br />

formula C 14 H 13 N 3 . The spectrum displayed a downfield<br />

peak at δ 162.03 ppm was assigned for C-3 of the<br />

allylidene group (=CH). CN and =C< appeared at δ 113.51<br />

and 73.13 ppm. Two methyl (CH 3 ) carbons appeared at δ<br />

39.67 ppm and 39.65 ppm slightly downfield due to<br />

electron withdrawing nitrogen atom. The peaks at δ (ppm)<br />

153.02, 131.94, 121.38, 116.64, 115.49, 112.02 were for<br />

the remaining carbons. The DEPT–135 spectrum of<br />

compound 11 showed peaks at δ (ppm) 162.03, 153.02,<br />

131.94, 116.65, 112.02 attributed to seven methine carbons<br />

(CH). The microanalytical data of the compound 11 is also<br />

Available online at www.scientific-journals.co.uk 33


M.M.H. Bhuiyan et al / Chemistry Journal (2012), Vol. 02, Issue 01, pp. 30-36 ISSN 2049-954X<br />

Table 1. Antibacterial Activity of the Synthesized Compounds (1-11)<br />

Compound<br />

No.<br />

Diameter of zone of inhibition in mm(100 mg (dw)/ disc)<br />

B. cereus S. aureus V. choloriae S. dysenteriae S. typhi<br />

1 -- -- 7 -- --<br />

2 7 -- 7 -- --<br />

3 7 -- 6 -- 7<br />

4 8 6 9 6 7<br />

5 9 8 8.5 -- 8<br />

6 9 8 8.5 -- 8<br />

7 6.5 6.5 7 6.5 7<br />

8 7 6 -- -- 7<br />

9 -- 6.5 8 -- 6<br />

10 -- 6.5 6.5 -- --<br />

11 -- -- 7 -- --<br />

Ampicillin 20 12 17 30 24<br />

N.B :-‘(--)’ Means no inhibition; dw: Denotes dry weight<br />

Table 2.<br />

Compound<br />

No.<br />

Antifungal Activity of The Synthesized Compounds<br />

(1-11)<br />

% Inhibition of Mycelial Growth<br />

(100 µg(dw)/ml PDA)<br />

Aspargillus<br />

flavus<br />

Saccharromyces<br />

cerevisiae<br />

1 87* 87*<br />

2 85* 90*<br />

3 82* 75<br />

4 87* 87*<br />

5 69 67<br />

6 82* 87 *<br />

7 87* 62<br />

8 69 84<br />

9 75 92*<br />

10 78 87*<br />

11 75 85*<br />

Nystatin 90 80<br />

N.B :- ‘*’ Means good inhibition; dw: Denotes dry weight<br />

in good agreement with the assigned structure. Similarly<br />

the peaks in 1 H-NMR and 13 C-NMR spectra of rest of the<br />

compounds were accordance with assigned structures.<br />

Most of the compounds showed good to moderate<br />

antimicrobial activities and a few of them were unable to<br />

show inhibition for some pathogens. For the antifungal<br />

activity, all compounds showed excellent results against all<br />

fungi and are comparable to that of the standard antibiotic,<br />

Nystatin.<br />

4. Conclusion<br />

In this work, we have demonstrated the synthesis of<br />

ylidene-malononitrile by microwave irradiation using<br />

NH 4 OAc under and solvent free condition. The advantages<br />

of this method are high yields, relatively short reaction<br />

times, low cost, simple experimental and as isolation<br />

procedures, and finally, it is in agreement with the green<br />

chemistry protocols. The activity data obtained during the<br />

study will be certainly useful to go for further research for<br />

drug designing and synthesizing new ylidene-malononitrile<br />

derivatives.<br />

Available online at www.scientific-journals.co.uk 34


M.M.H. Bhuiyan et al / Chemistry Journal (2012), Vol. 02, Issue 01, pp. 30-36 ISSN 2049-954X<br />

Table 3. <strong>Microwave</strong> <strong>Assisted</strong> <strong>Knoevenagel</strong> Reaction Between Various Aldehydes and Malononitrile<br />

Comp. No. Substrate Product<br />

Watt/<br />

Time(sec)<br />

Yield<br />

(%)<br />

M. P. °C<br />

1<br />

C N<br />

160/30 96 167-168<br />

C H O<br />

H<br />

C N<br />

2<br />

C H 3<br />

CH 3<br />

N<br />

C H 3<br />

N<br />

H 3<br />

C<br />

C N 160/30 95 190-191<br />

3<br />

CHO<br />

H C N<br />

HO<br />

HO<br />

CN<br />

160/20 98 135-136<br />

H C O<br />

H 3<br />

C O CHO<br />

3<br />

H CN<br />

4<br />

C N<br />

160/50 99 107-108<br />

H C O<br />

H 3<br />

C O<br />

C H O<br />

3<br />

H C N<br />

5<br />

6<br />

HO<br />

CH 3<br />

CHO<br />

CHO<br />

HO<br />

C H 3<br />

C N<br />

160/50 97 106-107<br />

H C N<br />

CN<br />

160/40 85 185-186<br />

H CN<br />

C H 3<br />

7<br />

C H 3<br />

C N 160/40 94 74-75<br />

8<br />

C H 3<br />

O<br />

C H O<br />

O CH 3<br />

CHO<br />

H C N<br />

H 3<br />

C O<br />

O CH 3<br />

CN<br />

160/60 93 141-142<br />

H CN<br />

N O 2<br />

N O 2<br />

160/30 96 107-108<br />

9<br />

C N<br />

C H O<br />

H<br />

C N<br />

10<br />

C H O<br />

H<br />

C N<br />

C N<br />

160/30 94 204-206<br />

11<br />

C<br />

C H 3<br />

N<br />

C H 3<br />

CH 3<br />

N<br />

C N<br />

CN<br />

160/30 95 147-148<br />

H 3<br />

C H O H<br />

H<br />

Available online at www.scientific-journals.co.uk 35


M.M.H. Bhuiyan et al / Chemistry Journal (2012), Vol. 02, Issue 01, pp. 30-36 ISSN 2049-954X<br />

Acknowledgments<br />

The authors wish to thank Dr. A. Rahman, Department of<br />

Biochemistry and Molecular Biology, University of<br />

Chittagong, Bangladesh, for his cooperation in<br />

determining the antimicrobial activity of the synthesized<br />

compounds. We also wish to thank Dr. M. Al-Amin, JSPS<br />

Postdoctoral Fellow, Department of Chemistry, Hokkaido<br />

University, Japan for recording the spectral data.<br />

References<br />

Anastas, P.T. and Warner, J.C. (1998) Green Chemistry:<br />

Theory and Practice. Oxford, Oxford University Press.<br />

Balalaie, S. and Nemati, N. (2000) Ammonium acetatebasic<br />

alumina catalyzed <strong>Knoevenagel</strong> condensation under<br />

microwave irradiation under solvent-free condition. Synth.<br />

Commun., 30(5), pp. 869-875.<br />

Basu, B., Das, P., Bhuiyan, M.M.H. and Jha, S. (2003)<br />

<strong>Microwave</strong>-assisted Suzuki coupling on a KF-alumina<br />

surface: synthesis of polyaryls. Tetrahedron Letters.,<br />

44(19), pp. 3817-3820.<br />

Bauer, A.W., Kirby, W.M.M., Sherris, J.C. and Turck, M.<br />

(1966) Antibiotic susceptibility testing by a standardized<br />

single disc method. Am. J. Clin. Path., 45, pp. 493-496.<br />

Bhuiyan, M.M.H., Hamidunnessa, and Mahmud M.M.<br />

(2012) Multicomponent reactions: <strong>Microwave</strong>-assisted<br />

efficient synthesis of dihydropyrimidinones (thiones) and<br />

quinazolinones under green chemistry protocol as probes<br />

for antimicrobial activities. J. Sci. Res., 4(1), pp. 143-153.<br />

Bhuiyan, M.M.H., Hossain, M.I., Mahmud M.M. and Al-<br />

Amin, M. (2011) <strong>Microwave</strong>-assisted efficient synthesis of<br />

chalcones as probes for antimicrobial activities.<br />

Chemistry Journal, 1(1), pp. 21-28.<br />

Bougrin, K., Soufiaoui, M. and Bashiardes, G. (2006)<br />

<strong>Microwave</strong>s in cycloadditions. In: Loupy, A. ed.<br />

<strong>Microwave</strong>s in Organic Synthesis. 2nd ed. Weinheim,<br />

Wiley-VCH, pp. 524-578.<br />

Campaigne, E. and Schneller, S.W. (1976) Cyclization of<br />

Ylidenemalonodinitriles. Synthesis, 11, pp. 705-716.<br />

Fatiadi, A.J. (1978) New Applications of Malononitrile in<br />

Organic Chemistry - Part I & II. Synthesis, 03, pp. 165-<br />

204 and 04, pp. 241-282.<br />

Chem., 9(4), pp. 323-325.<br />

Freeman, F. (1980) Properties and reactions of<br />

ylidenemalononitriles. Chem. Rev., 80(4), pp. 329-350.<br />

Grover, R.K. and Moore, J.D. (1962) Toximetric studies of<br />

fungicides against the brown rot organisms. Sclerotinia<br />

fructicola and S. laxa. Phytopathology, 52, pp. 876-880.<br />

Jones, G.R.N. (1972) CS and its Chemical Relatives.<br />

Nature, 235(5336), pp. 257-261.<br />

Kappe, C.O. (2004) Controlled microwave heating in<br />

modern organic synthesis. Angew. Chem. Int. Ed.,<br />

43(46), pp. 6250-6284.<br />

Kappe, C.O. and Dallinger, D. (2009) Controlled<br />

microwave heating in modern organic synthesis:<br />

Highlights from the 2004-2008 literature. Mol. Divers.,<br />

13(2), pp. 71-193.<br />

Knochel, P. (1999) Solvent-free reactions. In: Loupy, A.<br />

ed. Modern solvents in organic synthesis: Topics in<br />

Current Chemistry. Berlin, Springer-Verlag, vol. 206,<br />

pp. 153-207.<br />

Li, J.T., Xing, C.Y. and Li, T.S. (2004) An efficient and<br />

environmentally friendly method for synthesis of<br />

arylmethylenemalononitrile catalyzed by Montmorillonite<br />

K10-ZnCl 2 under ultrasound irradiation. J. Chem.<br />

Technol. Biotechnol., 79(11), pp. 1275-1278.<br />

Mallouk, S., Bougrin, K., Laghzizil, A., and Benhida, R.<br />

(2010) <strong>Microwave</strong>-<strong>Assisted</strong> and Efficient Solvent-free<br />

<strong>Knoevenagel</strong> <strong>Condensation</strong>. A Sustainable Protocol Using<br />

Porous Calcium Hydroxyapatite as Catalyst. Molecules,<br />

15(2), pp. 813-823 and references cited therein.<br />

Tanaka, K., and Toda, F. (2000) Solvent-free organic<br />

synthesis. Chem. Rev., 100(3), pp. 1025-1074.<br />

Tietze, L.F., and Beifuss, U. (1991) The <strong>Knoevenagel</strong><br />

reaction. In: Trost, B.M. ed. Comprehensive Organic<br />

Synthesis. 2nd ed. Oxford, Pergamon Press, pp. 341-394.<br />

Wang, S.X., Li, J.T., Yang, W.Z., and Li, T.S. (2002)<br />

Synthesis of ethyl α-cyanocinnamates catalyzed by KF-<br />

Al 2 O 3 under ultrasound irradiation. Ultrason. Sonochem.,<br />

9(3), pp. 159-161.<br />

Feroci, M., Orsini, M., Palombi, L. and Inesi, A. (2007)<br />

Electrochemically induced <strong>Knoevenagel</strong> condensation in<br />

solvent and supporting electrolyte-free conditions. Green<br />

Available online at www.scientific-journals.co.uk 36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!