28.06.2014 Views

T - Scientific Bulletin

T - Scientific Bulletin

T - Scientific Bulletin

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

U.P.B. Sci. Bull., Series D, Vol. 68, No. 1, 2006<br />

THE REDUCTION OF NITROGEN MONOXIDE<br />

CONCENTRATION TO THE COALS HAVING A HIGH<br />

CONTENT OF ASH<br />

I. PÎŞĂ, C. NEAGA ∗<br />

În lucrare autorii şi-au propus studierea formării de NO X la cărbunii cu<br />

conţinut ridicat de cenuşă. În primul rând s-a determinat timpul de uscare funcţie de<br />

masa minerală externă şi de diametrul iniţial al particulei de cărbune. În al doilea<br />

rând a fost cuantificată influenţa masei minerale asupra concentraţiei de oxizi de<br />

azot.<br />

In this paper, the authors analyse the generation of NOx in the coals having<br />

a high content of ash. On the one hand, the drying time has been determined,<br />

depending of the external mineral mass and the initial diameter of the coal particle.<br />

On the other hand, the influence of the mineral mass over the concentration of<br />

nitrogen oxides has been quantified.<br />

Keywords: steam generators, combustion, nitrogen oxides, ballast.<br />

Introduction<br />

The authors study the burning of the coals having a high content of ash which<br />

derives from the mineral mass. The mineral mass of the coal consists of:<br />

• the internal mineral mass which derives from the mineral mass of the genetic<br />

material (the combustion of the particles leads to the appearance of the<br />

internal ash which is carried from the particles surface and included in the<br />

corresponding gas phase.)<br />

• the external mineral mass which derives from the sterile drawn in the coal<br />

extraction (after the combustion it transforms into the external ash and it<br />

represents about 90% from the total mineral mass.)<br />

The methods of approaching the elementary analysis of a test carried from the<br />

raw coal bunker do not make evident the existence of such fully inert particles.<br />

The mineral mass of the initial particle having the diameter δ oc is composed of the<br />

internal mineral mass and of the external mineral mass. The extraction technology<br />

of lignite (by uncovering) leads to the idea that the external mineral mass consists<br />

of separate mineral particles (after grinding). These accompany the rest of the<br />

particle which is burning and which contains only the internal mineral mass. This<br />

∗<br />

Reader; Prof., Dept. of Classical and Nuclear Thermal Power Equipment, University<br />

POLITEHNICA of Bucharest, Romania


54<br />

I. Pîşă, C. Neaga<br />

is uniformly distributed and after burning it passed into the combustion gases. If<br />

the fraction corresponding to the external mineral mass is noted by x e (usually<br />

x e ≈ 0.90 [1]) and those mentioned above are taken into consideration, one can<br />

reach the conclusion that after the external mineral mass (the ash) is removed, the<br />

coal is enriched and will have the following elementary analysis:<br />

i 0<br />

i<br />

0<br />

i 0<br />

i<br />

0<br />

i<br />

0<br />

C = f 0 −iC<br />

,%; H = f 0 −i<br />

H , %; Sc<br />

= f0−iSc<br />

, %; N = f 0 −i<br />

N , %; O = f 0 −iO<br />

, %;<br />

i<br />

A = f0− i ( 1 − xe<br />

) A<br />

0<br />

i<br />

0<br />

, %; Wt<br />

= f0−iWt<br />

, %, (1)<br />

where the transformation factor f 0-I is given by the expression:<br />

100<br />

f0− i =<br />

(2)<br />

0<br />

100 − xe<br />

⋅ A<br />

Taking into account the transformation factor, the values of the imbibition<br />

and hygroscopic moistures (together form the total humidity) modify, as follows:<br />

i<br />

0<br />

i<br />

0<br />

Wi<br />

= f0−iWi<br />

, %; Wh<br />

= f0−iWh<br />

, % (3)<br />

The technical (immediate) analysis of the coal (the content of volatile and<br />

of fix coal) is also influenced by the transformation factor f 0-i :<br />

i 0<br />

0<br />

V = f 0 V , %; C = f C , %; (4)<br />

−i<br />

i<br />

f<br />

0−i<br />

f<br />

The removed mineral mass, after the combustion of the remaining<br />

combustible, leads to the formation of n a particles of ash. The jet of dust<br />

introduced into the furnace consists of plenty of such independent “units” (Fig. 1).<br />

A “unit” is formed by a particle which burns accompanied by the “cloud” of ash<br />

particles. If the combustion process includes the drying phase, the total burning<br />

time is divided into four areas (Fig. 2), compared with three zones [6], as follows:<br />

the drying area, the ignition area, the area of combustion of volatile substances<br />

and the zone of finishing the combustion.<br />

The drying area Z 0 corresponding to the interval 0


The reduction of nitrogen monoxide concentration to the coals having a high content of ash 55<br />

also present the burning of base of coke, a process carried on both in parallel with<br />

the combustion of the volatiles and after that. Z 1 and Z 2 zones unfold either<br />

simultaneous or they succeed one another.<br />

3<br />

Φ<br />

T g<br />

1<br />

2<br />

T fl<br />

Fig..1. Schematic representation of “one unit”.<br />

1 – coal particles; 2 – cloud of ash particles; 3 – diameter of gas cover of “one unit”, Ø<br />

The finishing zone of the combustion corresponding to the interval<br />

τ 3 < τ < τ a . This area noted Z 3 is the area when the combustion process is finished.<br />

The combustion air has been completely introduced. The particle burns fully up to<br />

the ash particle which, practically, derives from the internal mineral mass.<br />

1. The mathematical model for Z 0<br />

The equations characterizing the area Z 0 are:<br />

• for the drying dynamics:<br />

dW<br />

p<br />

dτ<br />

4<br />

[ a σ ( T − T ) + α ( T − T )]<br />

6 4<br />

kgapa<br />

= −<br />

cb o fl<br />

gc g ,<br />

rδ<br />

ρ<br />

kg ⋅ s<br />

0<br />

ap<br />

where W p is the current humidity of the coal dust, [kg humidity /kg coal ]; r – the latent<br />

vaporizing heat, r = 2258 kJ/kg; ρ ap – the apparent density, ρ ap = 900 kg/m³;<br />

δ 0 – the diameter of the burning particle, m (constant in this area); a cb – the<br />

energetic coefficient of coal emission (it can be imposed a cb = 0.8); α gc – the gas<br />

convection coefficient – particle, kW/(m²·K); the convection coefficient α gc is<br />

calculated by using the relationship [2]:<br />

2 −7<br />

5<br />

α ( 0.8805 10 0.124 10<br />

−<br />

gc<br />

= ⋅ Tg<br />

− ⋅ )<br />

(6)<br />

δ<br />

0<br />

At the initial moment,<br />

0<br />

i 0.01W<br />

h<br />

τ = 0. Wp = Wp = W<br />

0 h<br />

= , (7)<br />

0<br />

A<br />

1−<br />

xe<br />

100<br />

After τ = τ 1 (τ 1 is the drying time) W p = 0.<br />

(5)


56<br />

I. Pîşă, C. Neaga<br />

λ s<br />

r evs<br />

second. air<br />

dust, H 2O<br />

Z 0<br />

Z 1 Z 2 Z 3<br />

λ p ; r evp<br />

0<br />

τ 1 τ 2 τ 3<br />

λ second. air<br />

s<br />

r evs<br />

τ a<br />

Fig.2. The structure of the pulverized jet coal<br />

• for the variation of the temperature of the gas phase:<br />

0<br />

dTg<br />

⎧⎪<br />

⎡<br />

V dWp<br />

⎤<br />

aum<br />

= ⎨− ⎢ri ( ξ + λi − 1) + 1.242 ⋅ ⎥( Tg<br />

−273)<br />

−<br />

dτ ⎪⎩<br />

⎣<br />

τa<br />

dτ<br />

⎦<br />

''<br />

0<br />

6α<br />

gc i dWp Vaum<br />

− ( Tg −T) − ⋅ ++ ri ( ξ + λi −1) ⋅( Tfl<br />

δρ<br />

0 apcg cg dτ τa<br />

−273)<br />

− (8)<br />

2 2<br />

naαgaδa Φ σ0a<br />

⎫<br />

g 4 4 ⎪<br />

−6 ⋅ ( T ) 6<br />

3 g<br />

− Ta + ⋅<br />

3 ( Tfl −Tg ) ⎬ / VgZ0<br />

δ0ρapcg δ0ρapcg<br />

⎪ ⎭<br />

where VgZ 0<br />

is the gas volume with reference to one kilogram of drying coal ; it is<br />

calculated with the relation :<br />

0<br />

i<br />

VgZ = λ 1.242 ( 1) ( 1)<br />

0 pVaum + Wi + ⎡<br />

⎣<br />

rf ξ + λf − + revp ξ + λev<br />

− +<br />

3<br />

τ ⎤<br />

0<br />

mN<br />

+ ri ( ξ + λi − 1)<br />

⎥Vaum + 1.242 Wp<br />

,<br />

τ<br />

a ⎦<br />

kg<br />

(9)<br />

where λ p is the excess coefficient of primary air; λ i – the coefficient of air excess<br />

in the furnace at the level of burners; λλ ev – the coefficient of air excess at the<br />

evacuation; r i ,r f – the recirculating degree from the burning inlet and from<br />

furnace end-part, respectively; W i i – the imbibition humidity (it is calculated with<br />

the relation 3); V 0 aum – the theoretical volume of wet air that is corrected with the


The reduction of nitrogen monoxide concentration to the coals having a high content of ash 57<br />

transformation factor, f 0-i ; τ 0 – the total time of combustion, initially admitted<br />

between 0.5÷1.5 seconds, lately its value being checked up; c g – the heat specific<br />

3<br />

to the burning gases (it is admitted constant, c g =, =1.35 kJ /( mN ⋅ K)<br />

); i”- the<br />

enthalpy of the saturated steam, i”=2676 kJ/kg; α ga -the convection coefficient<br />

from gases to the ash particles; α ga =2λ g /δ a , where δ a =20·10 -6 m (the diameter of the<br />

ash particle); T a – the temperature of the ash, K; a g – the energetic coefficient of<br />

the gas emission inside the cover, at the temperature T g , a g = 0.3÷0.4 [5]; T – the<br />

temperature of the particle (373 K); Ф – the diameter of the cover [3], m; this<br />

diameter is calculated by the relation:<br />

1/ 3<br />

⎛ Tg<br />

0 0 ⎟ ⎞<br />

⎜ ρ ap VgZ<br />

⋅<br />

T0<br />

⎠<br />

Φ = δ , (10)<br />

⎝<br />

where T 0 is the reference temperature, T 0 =273 K and the number of ash particles,<br />

n a is calculated by the relation:<br />

0<br />

3<br />

ρc<br />

⋅ xe<br />

⋅ A ⎛ δ 0<br />

100 ⎟ ⎞<br />

= ⋅<br />

⎜<br />

c<br />

na<br />

, (11)<br />

⋅ ρa<br />

⎝ δ a ⎠<br />

where ρ a is the ash density, ρ a = 1500 kg/m 3 .<br />

• for the variation of the temperature of the ash particles:<br />

dTa<br />

6 4 4<br />

6δ<br />

0σ<br />

0acaϕ<br />

can 4 4<br />

= [ σ 0aa<br />

( T fl − Ta<br />

) + α ga ( Tg<br />

− Ta<br />

)] +<br />

( T − T ),[<br />

K / s]<br />

d c<br />

3<br />

a (12)<br />

τ ρ δ<br />

n δ ρ c<br />

a<br />

a<br />

a<br />

c a is the specific heat of ash, kJ/(kg·K); it is admitted the constant, c a = 1<br />

kJ/(kg·K); a a – the energetic emission coefficient of ash, a a =0.7; a ca the blackness<br />

coefficient of the system particle-ash [4], a ca ≈0.7; φ can – the mutual radiation<br />

coefficient between the particle and the ash, φ can = 0.2 [5].<br />

a<br />

a<br />

a<br />

a<br />

2. The mathematical model for Z 1<br />

The equations characterizing this area are:<br />

• for the dynamics of volatiles emission:<br />

−<br />

i<br />

( V −V<br />

) ⋅ e<br />

T<br />

8900<br />

dV<br />

= 150000 ⋅<br />

dτ<br />

• for the dynamics of volatile substances combustion:<br />

4650<br />

,[kg/(kg.s)]; (13)<br />

−<br />

dW<br />

T dV<br />

g<br />

W gZ1<br />

= 690 ⋅ ( V −W<br />

) ⋅CZ<br />

⋅ e + ⋅ ,[kg/(kg⋅s)], (14)<br />

1<br />

dτ VgZ<br />

dτ<br />

1<br />

where the gases volume of this zone is given by the relation:


58<br />

I. Pîşă, C. Neaga<br />

0 i<br />

⎡<br />

τ<br />

0<br />

VgZ = λ ( ) ( ) ( ) ( )<br />

1 p<br />

⋅ Vaum + 1.242Wt + ⎢rf ξ+ λf − 1 + ri ξ+ λi − 1 + revp ξ+ λev − 1 ⎤Vaum V W vv<br />

τ<br />

⎦ + − +<br />

⎣<br />

a<br />

(15)<br />

3 3<br />

⎛ δ ⎞ ⎡<br />

0 0 i<br />

⎛ δ ⎞ ⎤<br />

3<br />

+ ⎜1 − ( V 1.242 ) 1<br />

3⎟ g<br />

−Vaum− Wt −⎢⎜ − V W<br />

3⎟<br />

− ⎥( 5.6Hv + 0.8Nv + 0.7 Ov)<br />

, [ mN<br />

/ kg]<br />

⎝ δ0 ⎠ ⎢⎣⎝ δ0<br />

⎠ ⎥⎦<br />

3<br />

where v v is the specific volume of the volatiles, v v =1.307 m N<br />

/ kg [6].<br />

For the volatiles with medium composition (H v , N v , O v – mass fractions of<br />

hydrogen, nitrogen and oxygen from volatiles), the factor 5.6H v + 0.8N v + 0.7O v<br />

= 0.86 – represents the volume growth of the combustion gases at the volatiles<br />

burning [3]. The value of derivate dVgZ 1<br />

/ dτ<br />

is given by the following relation:<br />

dV<br />

2<br />

gZ<br />

1<br />

1<br />

( ) 0 ⎛dV dW ⎞ 3δ ( 0 0<br />

i dδ<br />

= ri ζ + λi −1 ⋅ Vaum + ⎜ − ⎟⋅vv − ⋅ V 1.242<br />

3 g<br />

−Vaum − Wt<br />

) −<br />

dτ τa<br />

⎝ dτ dτ ⎠ δ<br />

0<br />

dτ<br />

,(16)<br />

2 3<br />

3<br />

⎡ 3δ dδ ⎛ δ ⎞dV dW ⎤ mN<br />

−0.86 ⎢− V + 1 ,<br />

3 ⎜ −<br />

3 ⎟ − ⎥<br />

⎢⎣<br />

δ0 d τ ⎝ δ0<br />

⎠ d τ d τ ⎥⎦<br />

kg ⋅ s<br />

and the concentration of oxygen in this zone is :<br />

⎧⎪<br />

⎛ ⎞<br />

CZ = ⎨λ 1 p<br />

+ rg λf − + revp λevp − + ri λi<br />

− −⎜ − ⎟+<br />

⎪⎩<br />

⎝ ⎠<br />

3<br />

τ δ<br />

( 1) ( 1) ( 1)<br />

1<br />

3<br />

τ<br />

a<br />

δ<br />

0<br />

⎤ M<br />

O<br />

⎫ M<br />

2v<br />

⎪ O kgO<br />

2<br />

2<br />

V W M V m<br />

⎡<br />

3<br />

⎛ δ ⎞ ⎡ ⎤<br />

+ ⎢⎜1 − ,<br />

3 ⎟ − ⎥ ⎬ ⋅ ⎢ 3 ⎥<br />

⎣⎢⎝ δ<br />

0 ⎠ ⎦⎥ O2 ⎭⎪<br />

gZ1<br />

⎣ N ⎦<br />

where the mass of oxygen for burning one kilo of ennobled coal, M O2<br />

mass of oxygen for burning the volatiles,<br />

M O 2 V<br />

transformation factor f 0-i.<br />

dT<br />

dV 3 i<br />

= { ⎡cv ( T 273)<br />

Qv {( V V) cv ( T 273)<br />

Qv<br />

dτ ⎣ − + ⎤⎦ − − ⎡<br />

dτ δ ⎣ − + ⎤⎦+<br />

i<br />

i dδ<br />

6<br />

+ C ⎡<br />

f<br />

cc ( T − 273) + Q ⎤ ( 273)}<br />

f<br />

c<br />

+ c<br />

f aA T − + ⋅<br />

⎣ ⎦ dτ ρ ⋅δ<br />

(17)<br />

and the<br />

will be corrected with the<br />

• for the variation of the temperature of the coal particle:<br />

4 4 T0<br />

44<br />

⎤<br />

⋅{ σ0ac ( Tfl − T ) + αgc ( Tg − T)<br />

+ k⋅C ⋅⎡cO ( T 273) ( 273)<br />

2 g<br />

cO<br />

T<br />

2<br />

pZ1<br />

T ⎣<br />

− − −<br />

g<br />

32<br />

⎥ −<br />

⎦<br />

i<br />

⎡c ( )<br />

4 4<br />

v<br />

V − V + ⎤<br />

⎡K<br />

⎤<br />

−σ0<br />

acaϕcan ( T −Ta<br />

)}} / ⎢<br />

⎥,<br />

i i<br />

⎢<br />

⎢<br />

c s ⎥<br />

+<br />

c<br />

C<br />

f f<br />

+ caA<br />

⎥ ⎣ ⎦<br />

⎣<br />

⎦<br />

ap<br />

(18)


The reduction of nitrogen monoxide concentration to the coals having a high content of ash 59<br />

where k is the constant of the kinetic coal combustion speed and the concentration<br />

of oxygen on the surface of coke particle which burn in Z 1 is:<br />

CZ<br />

1<br />

CpZ<br />

=<br />

, (19)<br />

1 2<br />

kδ<br />

kδ<br />

1+ −0.75<br />

D D⋅ Φ<br />

where D is the diffusion coefficient, [m 2 /s]; the diameter of the cover Ф in this<br />

area results from the relation 10, in which VgZ<br />

is replaced with V<br />

0<br />

gZ .<br />

1<br />

• for the variation of the temperature of the gas phase:<br />

2<br />

dTg<br />

⎧⎪ dVgZ<br />

1 ⎛dV dW ⎞ 6δαgc<br />

= ⎨−cg ( Tg −273) −⎜ − ⎟Qv −<br />

3 ( Tg<br />

−T)<br />

−<br />

dτ ⎪⎩<br />

dτ ⎝ dτ dτ ⎠ δ0<br />

ρap<br />

2 3 3 i<br />

6δα<br />

⎡<br />

2<br />

a ga ( δ0 − δ ) ρap<br />

A ⎤<br />

6δ<br />

T0<br />

− ⎢n 3 a<br />

+ ⎥<br />

3 ( Tg −Ta)<br />

− kC<br />

3 pZ<br />

⋅<br />

1<br />

δ0ρap ⎢ δa ρa ⎥ δ0ρap<br />

T (20)<br />

g<br />

⎣<br />

⎦<br />

0<br />

⎡<br />

44<br />

⎤<br />

Vaum<br />

⋅<br />

⎢<br />

cO ( T 273) ( 273) ( 1)( 273)<br />

2 g<br />

− − cO T − + rc<br />

2<br />

i g<br />

ξ + λi − Tfl<br />

− +<br />

⎣<br />

32<br />

⎥<br />

⎦<br />

τ<br />

a<br />

2<br />

6Φ<br />

4 4<br />

⎫⎪<br />

+ a<br />

3 gσ<br />

o ( Tf<br />

l<br />

− Tg ) ⎬ /( cgVgZ<br />

),[ K / s]<br />

1<br />

δ0<br />

ρap<br />

⎪ ⎭<br />

• for the variation of the temperature of external ash particles (around the<br />

burning particle):<br />

2<br />

dTg<br />

⎧⎪ dVgZ<br />

1 ⎛dV dW ⎞ 6δαgc<br />

= ⎨−cg ( Tg −273) −⎜ − ⎟Qv −<br />

3 ( Tg<br />

−T)<br />

−<br />

dτ ⎪⎩<br />

dτ ⎝ dτ dτ ⎠ δ0<br />

ρap<br />

3 3<br />

( − )<br />

2 i<br />

6δα<br />

⎡ δ 2<br />

0<br />

δ ρap<br />

A ⎤<br />

a ga<br />

6δ<br />

T0<br />

− ⎢n 3 a<br />

+ ⎥<br />

3 ( Tg −Ta)<br />

− kC<br />

3 pZ<br />

⋅<br />

1<br />

δ0ρap ⎢ δa ρa ⎥ δ0ρap<br />

T<br />

g<br />

⎣<br />

⎦<br />

0<br />

⎡<br />

44<br />

⎤<br />

Vaum<br />

⋅<br />

⎢<br />

cO ( T 273) ( 273) ( 1)( 273)<br />

2 g<br />

− − cO T − + rc<br />

2<br />

i g<br />

ξ + λi − Tfl<br />

− +<br />

⎣<br />

32<br />

⎥<br />

⎦<br />

τ<br />

6Φ<br />

⎫⎪<br />

T ⎬ / c V ,[ K / s]<br />

⎪ ⎭<br />

2<br />

4 4<br />

+ a<br />

3 gσ<br />

o ( Tf<br />

l<br />

−<br />

g ) ( g gZ )<br />

1<br />

δ0<br />

ρap<br />

a<br />

(21)<br />

• for the variation of the diameter of the coal particle:<br />

dδ<br />

⎡δ<br />

dV 2 T ⎛<br />

⎞⎤<br />

0<br />

⎢<br />

kC ⎜<br />

1<br />

= −<br />

⎟<br />

pZ<br />

⎥ /<br />

1<br />

dτ<br />

⎢ 3 dτ<br />

ρap<br />

T ⎜<br />

g M O vM ⎟<br />

⎣<br />

⎝<br />

− O ⎥<br />

2<br />

2v<br />

⎠⎦<br />

i i<br />

( C + V −V<br />

+ A )<br />

i<br />

f<br />

,[m/s], (22)


60<br />

I. Pîşă, C. Neaga<br />

3. The mathematical model for Z 2<br />

This area is characterized by the introduction only of the secondary air or<br />

the secondary air together with the recirculated gases from the end-part of the<br />

steam generator (r evs ). This zone corresponds to the interval τ 2 ≤ τ ≤ τ 3 . The<br />

secondary air introduction period is Δ τ ( τ<br />

Δ = τ 3 - τ 2 ).<br />

The dynamics of emission of volatiles, the dynamics of combustion of<br />

volatiles and the variation of the temperature of coal particle have the same<br />

expression as relations 13, 14, respectively 18. The values of the gas volume, of<br />

the oxygen concentration in the gas stage and of the oxygen concentration on the<br />

surface of the coke particle have the following calculation formulae:<br />

- for the volume of the gas phase in Z 2 :<br />

[ λ − λ + r ( ξ + λ −1)<br />

]<br />

0 τ −τ1<br />

V gZ = V +<br />

2 gZ1<br />

i p evs ev Vaum<br />

;<br />

Δτ<br />

(23)<br />

- for the average concentration of oxygen in the gas cover:<br />

⎪⎧<br />

τ −τ1<br />

⎫ 1<br />

CZ<br />

= ⎨C<br />

+ [ − + ( − )]<br />

2 Z V<br />

1<br />

1 gZ λ<br />

1 i λp<br />

revs<br />

λev<br />

MO2<br />

⎬<br />

⎪⎩<br />

τ 2 −τ1<br />

⎭VgZ<br />

2<br />

; (24)<br />

- for the diameter of the cover Ф (which enters into the relation of calculation<br />

C ):<br />

of pZ 2<br />

πΦ<br />

3<br />

πδ<br />

=<br />

3<br />

0<br />

ρ ap<br />

V<br />

gZ<br />

T<br />

2<br />

6 6 T<br />

Other relations characterizing this area are:<br />

• for the variation of the temperature of the gas phase:<br />

g<br />

0<br />

. (25)<br />

2<br />

dTg<br />

⎧⎪ dVgZ2<br />

⎛dV dW ⎞ 6δαgc<br />

= ⎨−cg ( Tg −273) −⎜ − ⎟Qv −<br />

3 ( Tg<br />

−T)<br />

−<br />

dτ ⎪⎩<br />

dτ ⎝ dτ dτ ⎠ δ0<br />

ρap<br />

3 3<br />

( − )<br />

2 i<br />

6δα<br />

⎡ δ 2<br />

0<br />

δ ρap<br />

A ⎤<br />

a ga<br />

6δ<br />

T0<br />

− ⎢n 3 a<br />

+ ⎥<br />

3 ( Tg −Ta)<br />

− kC<br />

3 pZ<br />

⋅<br />

2<br />

δ0ρap ⎢ δa ρa ⎥ δ0ρap<br />

T<br />

g<br />

⎣<br />

⎦<br />

0<br />

⎡<br />

44<br />

⎤<br />

Vaum<br />

⋅<br />

⎢<br />

cO ( T 273) ( 273) ( 1)( 273)<br />

2 g<br />

− − cO T − r<br />

2<br />

i<br />

ξ λi Tfl cg<br />

32<br />

⎥<br />

+ + − − +<br />

⎣<br />

⎦<br />

τ<br />

a<br />

''<br />

0 τ −τ<br />

+ ⎡<br />

1<br />

( λi − λp)<br />

caumtp<br />

+ revs ( ξ λev 1)<br />

ct ⎤<br />

⎣<br />

+ −<br />

g ev ⎦<br />

Vaum<br />

+<br />

τ −τ<br />

6Φ<br />

a σ<br />

2<br />

+<br />

g o<br />

3<br />

δ0<br />

ρap<br />

− ⎬<br />

⎪ ⎭<br />

⎫<br />

T T / c V ,[ K / s]<br />

4 4 ⎪<br />

( fl g ) ( g gZ )<br />

3<br />

2 1<br />

(26)


The reduction of nitrogen monoxide concentration to the coals having a high content of ash 61<br />

dV dV<br />

0<br />

V<br />

2 aum<br />

evs ev ⋅<br />

(27)<br />

dτ<br />

dτ<br />

Δτ<br />

• for the variation of the temperature of the external ash the relation 21;<br />

• for the variation of the diameter of the particle which burns the relation 22,<br />

with the remark that C pZ is replaced with C<br />

1<br />

pZ and in the equation of the<br />

2<br />

kinetic of nitrogen volatilization is introduced V gZ . The rest of the<br />

2<br />

equations of the mathematical model remain unchanged.<br />

gZ gZ1<br />

where = + [ r ( ξ + λ −1)<br />

]<br />

4. The mathematical model for Z 3<br />

This area is a zone where the finishing of combustion takes place At the<br />

moment of start, the entire quantity of air for combustion has been introduced and<br />

all the volatiles have been released and burnt. Under these circumstances, the<br />

relations are much simplified in this area comparison with the previous zone,<br />

because:<br />

dV<br />

= 0<br />

dτ<br />

; dW<br />

=<br />

dτ<br />

0 τ −τ<br />

; 1 = 1; V = W = V i (28)<br />

τ −τ<br />

2<br />

1<br />

The volume of the gas stage of area Z 3 , the concentration of oxygen in this zone<br />

and the concentration of oxygen on the surface of the coke particle are given by<br />

the relations:<br />

⎡<br />

τ<br />

⎤<br />

VgZ = ( 1) ( 1) ( )( 1)<br />

3 ⎢λi + rg ξ + λf − + ri ξ + λf − + revp + revs ξ + λev<br />

− ⎥⋅<br />

⎣<br />

τ<br />

a<br />

⎦<br />

⎛ δ ⎞<br />

⋅ V + 1.242W + V − W v + 1− V −V −1.242W<br />

−<br />

3<br />

t<br />

( ) ⎜ ⎟( )<br />

0 i<br />

0 0<br />

aum t v 3 g aum i<br />

⎝ δ<br />

0 ⎠<br />

⎡<br />

3<br />

⎛ δ ⎞ ⎤<br />

3<br />

0.86 ⎢⎜1 V W , [ m / ]<br />

3 ⎟ ⎥ N<br />

kg<br />

δ<br />

0<br />

; (29)<br />

− − −<br />

⎢⎣⎝<br />

⎠ ⎥⎦<br />

3<br />

⎪⎧ τ ⎛ δ ⎞<br />

CZ = ⎨λ ( 1) ( ) ( 1) ( 1)<br />

1<br />

3 i<br />

+ rf λf − + revp + revs ⋅ λev − + ri λi<br />

− −⎜ −<br />

3 ⎟+<br />

⎪⎩<br />

τ<br />

a ⎝ δ<br />

0 ⎠<br />

; (30)<br />

⎡<br />

3<br />

⎛δ<br />

⎞ ⎤⎫⎪<br />

M<br />

O ⎡kgO<br />

⎤<br />

2<br />

2<br />

+ ⎢1 −⎜ V W ,<br />

3 ⎟ − ⎥⎬ ⋅ ⎢ 3 ⎥<br />

⎢⎣<br />

⎝δ<br />

0 ⎠ ⎥⎦⎭<br />

⎪ VgZ<br />

m<br />

3 ⎣ N ⎦


62<br />

I. Pîşă, C. Neaga<br />

C<br />

C<br />

Z3<br />

pZ<br />

=<br />

3 2<br />

kδ<br />

k⋅δ<br />

1+ −0.75<br />

D D⋅ Φ<br />

, (31)<br />

where the diameter of the gas cover in this area is calculated by the expression:<br />

Φ =<br />

T<br />

g<br />

δ 0<br />

3 ρapVgZ<br />

⋅<br />

(32)<br />

3<br />

T 0<br />

In these circumstances the equations of the mathematical model are:<br />

• for the variation of the temperature of the gas phase:<br />

2 2<br />

dTg ⎧⎪<br />

dVgZ<br />

6δα<br />

3<br />

gc<br />

6δα<br />

a ga<br />

= ⎨−cg ( Tg −273) −<br />

3 ( Tg<br />

−T)<br />

− ⋅<br />

3<br />

dτ ⎪⎩<br />

dτ δ0ρap<br />

δ0ρap<br />

3 3 i<br />

⎡<br />

2<br />

( δ0 − δ ) ρap<br />

A ⎤<br />

6δ<br />

T0<br />

⋅ ⎢na + ⎥<br />

3 ( Tg −Ta)<br />

− kC<br />

3 pZ<br />

⋅<br />

3<br />

⎢ δaρa ⎥ δ0<br />

ρap<br />

T<br />

g<br />

⎣<br />

⎦<br />

⎡<br />

⋅<br />

⎢<br />

c<br />

⎣<br />

+<br />

O2<br />

44<br />

⎤<br />

( T − 273) − c ( T − 273) + r ( ξ + λ −1)( T − 273)<br />

g<br />

32<br />

O2<br />

0<br />

aum<br />

2<br />

''<br />

0<br />

6Φ<br />

agσ<br />

o 4 4 ⎪⎫<br />

[ λ c t + r ( ξ + λ −1)<br />

c t ] V + ( T − T ) /( c V )<br />

s aum p<br />

evs<br />

ev<br />

g ev<br />

⎥<br />

⎦<br />

i<br />

aum<br />

i<br />

3<br />

0 ρap<br />

δ<br />

fl<br />

fl<br />

g<br />

V<br />

cg<br />

τ<br />

⎬<br />

⎪⎭<br />

a<br />

+<br />

g gZ 3<br />

[K/s ] (33)<br />

• for the variation of the temperature of the external ash, the relation 21;<br />

• for the variation of the diameter of the coal particle which burns, the<br />

relation 22 ( C pZ is replaced by C<br />

1<br />

pZ 3<br />

and in the equation of the kinetic of nitrogen<br />

volatilization is introduced V<br />

gZ<br />

).<br />

3<br />

We remark that for the values of the gas volume, for the oxygen concentration in<br />

the gas stage and for the oxygen concentration on the surface of the coke particle<br />

the relations 29, 30 and 31 are used.<br />

The mathematical model is completed by the equations of generation of<br />

NO (thermal and from combustible) as follows:<br />

• the equation of the kinetic of nitrogen volatilization:<br />

v<br />

i<br />

dN ⎛ N ⎞<br />

4500<br />

−<br />

v<br />

1500 ⎜<br />

N ⎟ ⋅ e<br />

T<br />

3<br />

= ⋅ γ − ,[kg/( m<br />

dτ<br />

⎜ 100 × V ⎟<br />

N<br />

⋅ s )] (34)<br />

⎝<br />

gz<br />

⎠<br />

• the dynamics of generation of molecular nitrogen:


The reduction of nitrogen monoxide concentration to the coals having a high content of ash 63<br />

2<br />

1000<br />

−<br />

T g<br />

c<br />

c<br />

dN ⎛ N ⎞<br />

2 13<br />

1 10 ⎜ ⎟<br />

3<br />

= ⋅<br />

⋅ e [kg/( m<br />

dτ<br />

T<br />

N<br />

⋅ s )] (35)<br />

⎝ g ⎠<br />

• the formation speed of the nitrogen monoxide from the nitrogen from<br />

combustible:<br />

1,5<br />

3750<br />

−<br />

T g<br />

c<br />

dNO<br />

⎛<br />

c C ⎞<br />

11<br />

1 10 ⋅ N ⎜ ⎟<br />

3<br />

= ⋅<br />

⋅ e , [kg/( m<br />

dτ<br />

T<br />

N<br />

⋅ s )] (36)<br />

⎝ g ⎠<br />

• the generation of the nitrogen monoxide from the combustion air<br />

(according to Zeldovici):<br />

0,5<br />

64500<br />

−<br />

Tg<br />

a<br />

dNO<br />

⎛ C ⎞<br />

−<br />

13<br />

−11<br />

a 2<br />

0,5 Tg<br />

= 3.34 ⋅10<br />

N ⎜ ⎟<br />

2<br />

⋅ e −15.58<br />

⋅10<br />

( NO ) ( C ⋅Tg<br />

) ⋅ e<br />

dτ<br />

T<br />

⎝ g ⎠<br />

KgNO a 3<br />

/( m N<br />

⋅ s )] (37)<br />

The equations system formed by the four zones has been solved (in Turbo<br />

Pascal) by the Runge – Kutta method.<br />

Results and conclusions.<br />

Based on the model from the area Z 0 there have been made calculation in<br />

order to determine the drying time, obviously dependent on the initial diameter of<br />

the coal particle and on x e . For x e =0.9 and diameters of the coal particle between<br />

40÷160μm, the drying time alternates between 0.01÷0.030 seconds, according to<br />

Fig. 3.<br />

The dependence of NO c concentration on the main parameters is expressed<br />

by a relation of the form:<br />

NO c max = F(δ 0 , x e , λ p , Δτ , r evp , r evs ) , (38)<br />

where r evp , r evs – recirculating degree of the combustion gas from the steam<br />

generator end-part which are introduced with the primary air and with the<br />

secondary air, respectively.<br />

The system was solved using an inferior fuel (lignite) having the low<br />

heating value, Q i i = 7.100 kJ/kg and the concentration of the atomic nitrogen<br />

existing in fuel, N i = 0.9 %.<br />

In the Figs 4-6 the variation of the concentration of NO x is presented,<br />

depending on the initial diameter of the coal particle, on the coefficient of<br />

excessive primary air and on the time interval in which the secondary air is<br />

introduced (following the linear law of time presented in the paper) for the two<br />

cases analyzed: for x e = 1 and x e = 0.9. The other variables interfering in the<br />

mathematical model (for example, the degree of recirculating of the combustion<br />

gases) have been kept constant for all cases taken into consideration.<br />

43000


64<br />

I. Pîşă, C. Neaga<br />

Fig.3. The variation of the drying time as function of δ 0<br />

Fig.4. The variation of the concentration of NOx as function of δ 0<br />

Fig. 5. The variation of the concentration of NOx as function of λ p


The reduction of nitrogen monoxide concentration to the coals having a high content of ash 65<br />

Fig.6. The variation of the concentration of NOx as function of ∆ τ<br />

Conclusions<br />

• In the proposed physical model the secondary air linear introduction<br />

divides the combustion time into four areas: the drying area, the ignition<br />

area, the area of combustion of volatile substance and the fourth area when<br />

the combustion process is finished;<br />

• The secondary air introduction by an infinite number of air injections<br />

(continuous access) led to nitrogen monoxide from fuel concentration<br />

decreases up to 40-50% comparing to initial variant (air divided in two<br />

parts – primary and secondary air). If one takes into account the<br />

heterogeneous reduction of NO, in presence of residual coke (due to<br />

carbon monoxide reaction on coke basis surface) it is possible to obtain a<br />

total reduction of the nitrogen monoxide concentration greater than 60% -<br />

80%;<br />

• NO value diminishes when the fuel particle initial diameter increases<br />

while primary air excess coefficient decreases. It is underlined that this<br />

dynamics has a minimum NO concentration value obtained for a λ p value<br />

which is function of initial volatiles content from coal;<br />

• The results obtained demonstrated that the influence of the mineral mass<br />

over the nitrogen monoxide means, practically, a reducing of its total<br />

concentration, by an average, of 7-15 percents.


66<br />

I. Pîşă, C. Neaga<br />

REFERENCES<br />

1. Blum,I.,Barca,Fr., Chimia şi prepararea combustibililor solizi. E.D.P.,Bucureşti – 1966,<br />

pp 340;<br />

2. Bloh, A. G., Teploobmen v topcah parovâh cotlov, - L.;Energoatomiozdat. Leningrad otd-nie<br />

1984, 240 st.;<br />

3. Neaga, C., Infuenţa masei minerale interne asupra dinamicii arderii particulei de cocs.<br />

Energetica, 2/1996, pp. 52-59;<br />

4. Isachenko, V.P. and a., Heat Transfer ( Translated from the Russian ). Izd, Mir, 1977, 494 st.;<br />

5. Adzerikho, K. S. and a., Luminescence of two-phase inhomogeneous of cylindrical geometry.<br />

Int. J. Heat Mass Transfer, 1979, vol. 22, Nr.1, st. 131-136;<br />

6. Neaga, C., Pîşă, I., The influence of the recirculation of combustion gas over the dynamics of<br />

generation of nitrogen monoxide at the lignite burning with linear introduction of<br />

secondary air. The Energetic Review, no.1-2, pp. 27-35, Bucharest, ISSN 1220-5133,<br />

2002;

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!