29.06.2014 Views

Chemistry of High Energy Materials - The Scripps Research Institute

Chemistry of High Energy Materials - The Scripps Research Institute

Chemistry of High Energy Materials - The Scripps Research Institute

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

R.A. Rodriguez<br />

<strong>Chemistry</strong> <strong>of</strong> <strong>High</strong> <strong>Energy</strong> <strong>Materials</strong><br />

Baran GM<br />

2012-08-18<br />

<strong>High</strong> <strong>Energy</strong> <strong>Materials</strong><br />

History <strong>of</strong> Explosives<br />

7th century A.D.- "Greek Fire" petroleum distillate used by<br />

Byzantines <strong>of</strong> Constantinopole<br />

Explosives<br />

<strong>High</strong> Explosives<br />

[detonate]<br />

Non-explosive materials<br />

Low Explosives<br />

[deflagrate-burn rapidly]<br />

13th century - black powder (aka gunpowder) Chinese alchemists<br />

18th century - black powder composition became standardized:<br />

KNO 3 /charcoal/sulfur (75/15/10 w/w)<br />

19th century - NH 4 NO 3 replacement for KNO 3 in black powder<br />

1846 - Italian Chemist Ascanio Sobrero invented nitroglycerin (NG)<br />

1863 - German chemist Julius Wilbrand invented 2,4,6-trinitrotoluene (TNT)<br />

originally used as a yellow dye. Potential as an explosive not appreciated<br />

due to difficulty to detonate (insensative).<br />

1° Explosives 2° Explosives Propellants Pyrotechnics<br />

[detonate by ignition]<br />

- Lead azide<br />

- Tetrazene<br />

[need detonator]<br />

- TNT<br />

- RDX<br />

- Black powder<br />

- liquid/solid<br />

Organic <strong>Chemistry</strong> <strong>of</strong> Explosives by J.P. Agrawal and R.D. Hodgson<br />

- Fireworks<br />

- Color/flash/sound<br />

Pr<strong>of</strong>. Thomas Klapotke - Ludwig-Maximilians-Universität München - Germany<br />

Chair <strong>of</strong> inorganic chemistry<br />

Dr. Michael A. Hiskey - Los Alamos National Laboratory<br />

What makes an explosion?<br />

Exothermic chemical reaction comprised <strong>of</strong> an oxidant and fuel, which releases<br />

energy (gas and heat) in a given time interval.<br />

Whats the difference between explosive, propellants and pyrotechnics?<br />

Rate at which it burns (Flamming gummy bear vs. rocket booster vs. TNT)<br />

Speed <strong>of</strong> reaction will determine subsonic vs. supersonic blast pressure waves<br />

1866 - Mixing <strong>of</strong> NG with silica (PBX) to make malleable paste (dynamite)<br />

late 19th century - nitration chemistry on common materials (resins,cotton, etc.)<br />

1910 - military use <strong>of</strong> TNT for artillery shells and armour-piercing shells<br />

1939-1945 - World War II - <strong>Research</strong> on explosives intesified (nitration chemistry)<br />

Developlment <strong>of</strong> cyclotrimethylenetrinitramine (RDX) and<br />

cyclotetramethylenetetranitramine (HMX).<br />

Introduction to high energy materials terminology<br />

Brisance: Shattering capabiliy <strong>of</strong> explosive. Measure <strong>of</strong> rate an explosive<br />

develops its maximum pressure.<br />

Relative effectiveness factor (R.E. factor): Measurement <strong>of</strong> an explosive's<br />

power for military purposese. It is used to compare an explosive's<br />

effectiveness relative to TNT by weight (TNT equivalent/kg or TNTe/kg).<br />

Detonation velocity (VoD): <strong>The</strong> velocity at which the shock wave front travels<br />

through a detonated explosive. Difficult to measure in practice so use<br />

gas theory to make prediction.<br />

Specific impulse (I sp ): <strong>The</strong> force with respect to the amount <strong>of</strong> propellant used<br />

per unit time. Used to calculate propulsion performance.<br />

Oxygen balance (OB%): Expression used to indicate degree to which explosive<br />

can be oxidized. If explosive contains just enough oxygen to form carbon<br />

dioxide from carbon, water from hydrogen molecules and all metal oxides from<br />

metals with no excess, the explosive is said to have zero oxygen balance.


R.A. Rodriguez<br />

<strong>Chemistry</strong> <strong>of</strong> <strong>High</strong> <strong>Energy</strong> <strong>Materials</strong><br />

Baran GM<br />

2012-08-18<br />

Chemical types/class <strong>of</strong> organic explosives<br />

Aromatic C-nitro compounds<br />

Aliphatic C-nitro compounds<br />

NO<br />

NO 2 NO 2<br />

2<br />

R 2<br />

NO 2<br />

Me<br />

HO<br />

(NO<br />

acidic protons<br />

2 )x<br />

R NO 2 R 1 NO 2<br />

R NO 2 (condensation<br />

1° nitroalkane 2° nitroalkane Terminal<br />

chemistry) O 2 N NO<br />

O 2 N NO 2 O 2 N NO 2<br />

x ≥ 4<br />

2<br />

poor chemical<br />

gem-dinitroalkane<br />

TNT 1,3,5-trinitrobenzene 2,4,6-trinitrophenol<br />

stability<br />

(TNB)<br />

(picric acid)<br />

R 2 NO 2<br />

R 3<br />

R 2<br />

R 2<br />

NO 2<br />

high explosive with Aliphatic O-nitro compounds Aliphatic N-nitro compounds<br />

R 1 R 1 NO 2<br />

R 1 NO high thermal and<br />

2<br />

NO 2<br />

NO 2 Internal chemical stability<br />

O 2 N<br />

NO<br />

3° nitroalkane Trinitromethyl O 2 NO<br />

ONO 2<br />

NO 2<br />

2<br />

gem-dinitroalkane<br />

N N<br />

ONO 2<br />

N<br />

NO 2 Nitroglycerin (VOD=7750 m/s)<br />

heterocycles<br />

O 2 NN NNO 2<br />

N N<br />

N N<br />

NO 2<br />

ONO 2<br />

O 2 N NO 2 O 2 N<br />

NO<br />

O 2<br />

2 NO<br />

RDX (VOD=8440 m/s) HMX (VOD=9110 m/s)<br />

O 2 N NO O 2 2 NN NNO O<br />

2<br />

ONO 2<br />

NO 2<br />

N<br />

O 2 NO<br />

O 2 N<br />

NO 2<br />

N<br />

H<br />

S O<br />

N N<br />

Pentaerythritol tetranitrate<br />

H H<br />

H<br />

(PETN) (VOD=8310 m/s)<br />

2 N NH<br />

Nitro derivatives <strong>of</strong> pyrroles, thiopenes, and furans are not practical explosives:<br />

N,N'-dinitrourea<br />

2<br />

1. heat <strong>of</strong> formation <strong>of</strong>fers no benefits over standard arylene hydrocarbons<br />

(DNU)<br />

nitroguanadine<br />

2. during nitration, these heterocycles are much more prone to oxidation and<br />

NO<br />

O 2 NO 2<br />

ONO 2<br />

acid cat. ring opening compared to arenes<br />

O 2 N NO 2<br />

O 2 N<br />

NO<br />

O ONO N N 2<br />

H-bonding<br />

O 2 NO<br />

H NO 2<br />

2 N NO 2 N<br />

O<br />

2<br />

2<br />

O 2 NN<br />

O NO<br />

NNO 2 N<br />

reduction in<br />

2<br />

N N 2<br />

N NH<br />

N<br />

novel energetic nitrate eseter<br />

sensativity<br />

N<br />

O ONO<br />

N N<br />

2 N<br />

N<br />

O<br />

2<br />

F 2 N NF 2<br />

O 2 N<br />

H<br />

O NO 2 NO<br />

2<br />

NO 2<br />

N<br />

4-amino-3,5-dinitropyrazole 2,4-dinitroimidazole furazans/benz<strong>of</strong>urazans<br />

Si<br />

3,3-bis(difluoroamino)<br />

Hexanitrohexaazaisowurtzitane<br />

(LLM-116)<br />

(2,4-DNI) furoxans/benz<strong>of</strong>uroxans<br />

ONO<br />

octahydro-1,5,7,7-<br />

2<br />

O 2 NO<br />

tetranitro-1,5-diazocine<br />

(HNIW or CL-20)<br />

NH O<br />

2 NH 2<br />

(TNFX)<br />

O 2 N<br />

N<br />

Si-PETN<br />

(VOD=9380 m/s)<br />

O 2 N<br />

NO 2 O 2 N N NO 2<br />

O<br />

N N<br />

N<br />

H H 2 N<br />

H<br />

2 N<br />

N N<br />

N<br />

N<br />

N<br />

N<br />

O 2 N<br />

O<br />

N N<br />

H 2 N N NH 2 H 2 N N NH 2 O<br />

NO<br />

Ar<br />

N<br />

Ar<br />

Ar<br />

2<br />

N N<br />

N<br />

NO<br />

O<br />

N NH<br />

NH N<br />

2<br />

O<br />

2<br />

O<br />

benzotriazoles H<br />

H<br />

1,3,4-oxadiazoles 3-nitro-1,2,4-triazol-5-one<br />

pyridine N-oxide pyrazine N-oxide tetrazine N-oxide<br />

tetrazoles 1,2,4 triazoles<br />

(NTO)


R.A. Rodriguez<br />

<strong>Chemistry</strong> <strong>of</strong> <strong>High</strong> <strong>Energy</strong> <strong>Materials</strong><br />

Baran GM<br />

2012-08-18<br />

Nitration chemistry<br />

<strong>The</strong> nitro gorup whether attached to aromatic or aliphatic carbon, is probably<br />

the most widely studied <strong>of</strong> the functional groups and this is in part attributed<br />

to its use as an 'explosophore' in many energetic materials.<br />

Borgardt et al. Chem Rev 1964. 64, 19 (polynitro functionality)<br />

Routes to C-Nitro functionality<br />

Direct nitration <strong>of</strong> aliphatic and alicyclic hydrocarbons possible in the vapor<br />

phase using HNO 3 or NO 2 (toxic redish-brown gas) at elevated temperatures.<br />

[2+2]<br />

TMS AcONO2 NO 2<br />

TMS<br />

O<br />

N<br />

O<br />

_<br />

OAc<br />

NO 2<br />

+<br />

NO 2<br />

O<br />

N<br />

O<br />

_<br />

OAc<br />

NO 2<br />

NO 2<br />

ONO 2<br />

AcONO 2<br />

Nef<br />

NO 2<br />

O<br />

N<br />

O OAc<br />

O<br />

ONO 2<br />

H<br />

Me<br />

Me<br />

Me<br />

NO 2<br />

Me<br />

Me<br />

Me<br />

O<br />

O<br />

Radical methods<br />

Ph<br />

HNO 3<br />

25%<br />

N 2 O 4<br />

N<br />

N<br />

O<br />

O<br />

- colorless liquid<br />

1 atm NO<br />

DCE/ rt<br />

O 2 N<br />

H<br />

Me<br />

O 2 N<br />

Me<br />

Me<br />

dinitro<br />

Ph<br />

NO 2<br />

NO 2<br />

Me<br />

NO 2<br />

Me<br />

Me<br />

Mukaiyama et al. Chem Lett 1995. 505<br />

H<br />

R<br />

H<br />

R<br />

H<br />

R<br />

NO 2<br />

H<br />

R<br />

NaNO 3 xs,<br />

CAN 2eq<br />

AcOH/CHCl 3<br />

80 - 90%<br />

H<br />

R<br />

H<br />

R<br />

+<br />

Nitration with HNO 3 is difficult<br />

O 2 N<br />

Me<br />

Me<br />

ONO<br />

Me<br />

Me<br />

nitro-nitrite<br />

NO 2<br />

+<br />

Ph<br />

+<br />

O 2 N<br />

Me<br />

Me<br />

ONO 2<br />

Me<br />

Me<br />

nitro-nitrate<br />

OH<br />

76% 23%<br />

Al 2 O 3<br />

NO 2<br />

R<br />

NO 2<br />

H<br />

R<br />

Hwu et al. J Chem Soc Chem Commun 1994. 1425<br />

Taniguchi et al. JOC 2010. 75, 8126<br />

Ph<br />

R<br />

R<br />

Ph<br />

92%<br />

NO 2<br />

Fe(NO 3 ) 3 9H 2 O<br />

FeCl 3<br />

MeCN, reflx<br />

NO 2 BF 4<br />

MeCN<br />

Ph<br />

R<br />

NO 2<br />

Cl<br />

R NO 2<br />

80 - 90%<br />

NHAc<br />

84%<br />

NO 2<br />

alkaline nitration<br />

O 2 N<br />

O 2 N<br />

Br<br />

NO 2<br />

NO 2<br />

O 2 N<br />

2. N 2 O 4<br />

1. NaHMDS<br />

NO 2 74%<br />

1. nBuLi<br />

N<br />

N<br />

CO 2 R<br />

O 2 N<br />

NO 2<br />

2. N 2 O 4 -78 °C<br />

S<br />

S<br />

77%<br />

O 2 N<br />

NItration selectivity on arene/heteroarene<br />

Kakiuchi, et al. Synlett 1999. 901<br />

F 3 C<br />

O<br />

O<br />

O<br />

CF 3<br />

TBAN<br />

F 3 C<br />

O<br />

O<br />

Cl<br />

NO 2<br />

NO 2<br />

O 2 N<br />

NO O 2 N<br />

2<br />

KNO 3<br />

H 2 SO 4<br />

traditional<br />

[NO + 2 ]<br />

44%<br />

TBAN<br />

TFAA<br />

76%<br />

N<br />

N<br />

NO 2<br />

O 2 N NO 2<br />

NO<br />

O 2 N<br />

2 NO 2<br />

N<br />

CO 2 R<br />

N<br />

CO 2 R<br />

Cl<br />

Cl<br />

NO 2<br />

* No rxn in<br />

presence <strong>of</strong><br />

TEMPO


R.A. Rodriguez<br />

<strong>Chemistry</strong> <strong>of</strong> <strong>High</strong> <strong>Energy</strong> <strong>Materials</strong><br />

Baran GM<br />

2012-08-18<br />

1° and 2° nitro compounds<br />

Victor Meyer rxn<br />

- alkyl chlorides too slow<br />

- only good for 1° (2° alkyl halide gives nitrate ester)<br />

- nitrate ester arises from desproportionation <strong>of</strong> silver nitrate acc. by heat/light<br />

R<br />

modified VM (alkali metal nitrites e.g. NaNO 2 ) time and solubility is VIMP<br />

F NO 2<br />

R<br />

R<br />

R N O<br />

R NO R<br />

NaNO 2<br />

X<br />

NO 2 + O<br />

NO 2<br />

fast<br />

slow<br />

R<br />

R<br />

R nitrite ester<br />

R<br />

R<br />

OH<br />

OH<br />

O<br />

H + O N<br />

R<br />

OR<br />

NO 2<br />

HO OH<br />

R<br />

phloroglucinol<br />

O O<br />

Fluorotrinitromethane<br />

NO 2<br />

NO 2 (or)<br />

NO 2<br />

NO 2<br />

NO 2<br />

O 2 N NO 2 F NO 2<br />

NO 2<br />

gem-dinitros from acids<br />

R<br />

R<br />

HNO NO 3<br />

2<br />

NO<br />

HNO 2<br />

CO 2 H<br />

3<br />

R<br />

20 - 30%<br />

MeO 2 C CO 2 H<br />

R NO 2<br />

60 % MeO 2 C NO 2<br />

oxidation <strong>of</strong> amines<br />

NH + 3 Cl -<br />

NO 2<br />

DMDO<br />

C+H 3 N<br />

Acetone<br />

O 2 N<br />

NH 3 +C 91%<br />

NO 2<br />

C+H 3 N<br />

O 2 N<br />

oxidation <strong>of</strong> isocyanates<br />

NCO<br />

NO 2 via amine thus<br />

DMDO<br />

H 2 O essential<br />

Eaton et al. JOC 1988. 5353<br />

OCN<br />

X<br />

+<br />

NaNO 2<br />

DMSO<br />

N<br />

O<br />

OAg<br />

ether<br />

Acetone/H 2 O<br />

85%<br />

+ AgX<br />

R NO 2 R O NO<br />

O 2 N<br />

Kornblum et al. JACS 1956. 78, 1497<br />

O<br />

O<br />

NO 2 H<br />

NOH<br />

1.KOtBu<br />

1. NBS<br />

amyl nitrate<br />

2. H + 2. [O]<br />

3. [H]<br />

NO 2<br />

CF 3 CO 3 H<br />

O<br />

N<br />

OH<br />

S 2 O 8 2-<br />

NO 2<br />

only useful<br />

oxidant<br />

O 2 N NO 2<br />

H +<br />

NO<br />

+ 2 O 2 N NO 2<br />

Kaplan<br />

Shechter Rxn<br />

NO<br />

Synthesis <strong>of</strong> an energetic nitrate ester O 2 NO 2<br />

ONO 2<br />

Chavez, D.E. et al. Angew. 2008, 47, 8307 O 2 NO<br />

ONO<br />

NO 2<br />

2<br />

R 1 R 2<br />

Me<br />

Me<br />

O<br />

Me<br />

NO 2<br />

N<br />

R 1 R 2<br />

N<br />

O<br />

Me<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O Na<br />

O<br />

O O<br />

NaOH N 1. NaNO 2<br />

NO 2<br />

N<br />

O<br />

NH<br />

N<br />

NH<br />

N<br />

Original Target/Route via modified Kaplan Shechter Rxn<br />

N<br />

NH<br />

N<br />

Me<br />

Me<br />

O<br />

O<br />

O<br />

N<br />

N<br />

O<br />

O<br />

O<br />

O 2 N<br />

NO 2<br />

Ag 0<br />

2. AgNO<br />

R 1 R 3 R1 2<br />

R 2<br />

Ag +<br />

nitronate<br />

Ag + Ag<br />

O O<br />

O O<br />

-Ag 0 O O<br />

O N N O<br />

O N N<br />

O N N O<br />

O<br />

R 1 R 2<br />

R<br />

R 1 R 1 R 2<br />

2<br />

N<br />

activation<br />

NH<br />

N<br />

O 2 N<br />

NO 2<br />

+<br />

NO 2<br />

(low yields)<br />

Me<br />

Me<br />

O<br />

O<br />

O<br />

N<br />

Fe<br />

O<br />

NH<br />

N<br />

N<br />

retro<br />

aldol<br />

-CH 2 O<br />

N<br />

NH<br />

[O]<br />

Me<br />

Me<br />

R<br />

R<br />

O<br />

O<br />

O<br />

N<br />

O<br />

NH<br />

N<br />

NO 2<br />

OH<br />

N<br />

NH<br />

N


R.A. Rodriguez<br />

<strong>Chemistry</strong> <strong>of</strong> <strong>High</strong> <strong>Energy</strong> <strong>Materials</strong><br />

Baran GM<br />

2012-08-18<br />

Initial Results: homocoupled product<br />

1.cat. K 3 [Fe(CN) 6 ]<br />

Na 2 S 2 O 8<br />

Routes to O-Nitro functionality<br />

1. 2 - methoxypropene<br />

HO NO 2 cat. H +<br />

Me O O<br />

- Use <strong>of</strong> mixed acids (esterification) and nitrogen oxides described for C-Nitraion<br />

Me<br />

N<br />

2. NaOH<br />

H<br />

Key points:<br />

HO OH<br />

O O<br />

N<br />

N<br />

1. fuming (anhydrous) HNO<br />

X<br />

3 prep: dry air bubbled through anhydrous HNO 3 to<br />

H 2 N<br />

remove any oxides <strong>of</strong> nitrogen present, followed by addition <strong>of</strong> trace urea<br />

NO<br />

Me O<br />

N<br />

N 2<br />

N<br />

O<br />

to remove any nitrous acid present. AKA "white nitric acid"<br />

N N<br />

2. Urea destruction <strong>of</strong> nitrous acid important to avoid violent fume-<strong>of</strong>f<br />

O O O O Me<br />

Me<br />

NO<br />

Me O 2 NH 3. O-nitrations with mixed acids <strong>of</strong> "white nitric acid" above ambient temperatures<br />

N N<br />

O<br />

O Me<br />

NO 2<br />

Me<br />

NH is dangerous and has increase risk <strong>of</strong> explosion<br />

12%<br />

4. anhydrous HNO<br />

O<br />

3 /Ac 2 O- Acetyl nitrate is generally a weak nitrating agent but<br />

in the presence <strong>of</strong> a strong acid like HNO 3 , ionization to nitronium ion occurs<br />

O O O O<br />

NO 2<br />

NO 2<br />

NO 2<br />

Me Me<br />

Me Me<br />

O O<br />

O<br />

O O<br />

2 NO<br />

ONO 2<br />

anh HNO 3 HO<br />

OH 90% HNO<br />

N<br />

3 HO<br />

ONO 2<br />

N<br />

Me O<br />

O<br />

Ac 2 O<br />

Ac<br />

Me O<br />

O<br />

2 O<br />

activation<br />

Me<br />

Me<br />

Me<br />

Me<br />

O 2 NO<br />

ONO 2 90% HO<br />

OH 70% O 2 NO<br />

OH<br />

O<br />

O Me<br />

- CN - O<br />

O Me<br />

N<br />

N<br />

NO 2 NO<br />

O O<br />

2<br />

NO 2<br />

O O<br />

shock sensative<br />

NC CN<br />

NaO 3 S<br />

NC CN<br />

Fe<br />

NC Fe CN +CN -<br />

Transfer nitration (neutral conditions - good for acid sensative alcohols)<br />

O O<br />

NC Fe OSO 3 Na<br />

Me<br />

-NaSO<br />

-<br />

NC CN<br />

SO 3 Na<br />

4<br />

NC CN<br />

BF<br />

- 4<br />

Me<br />

NO<br />

O<br />

NO<br />

Me O 2<br />

2 NO 2<br />

ONO<br />

Me N Me<br />

Olah G.A. et al JOC, 1965. 30, 3373<br />

m.p. 86 °C<br />

2 1.HCl, MeOH<br />

O<br />

OH<br />

ONO<br />

NO 2<br />

Me<br />

Me<br />

2 eq 2<br />

Det.Temp<br />

+<br />

BF<br />

- 4<br />

O 2 NO<br />

ONO 2<br />

2. Ac 2 O/HNO<br />

works for 1°, 2°, 3° alcohols<br />

140 °C<br />

NO 3 O<br />

O Me<br />

MeCN<br />

Me N Me<br />

2<br />

NO 2<br />

OH quant yield ONO 2<br />

72% (2 steps)<br />

H<br />

65% optimized<br />

in situ halide displacement with AgNO 3<br />

ONO 2<br />

Low yields for 2°<br />

O 2 NO<br />

PPh 3 , I 2 AgNO 3 HgNO 3 can be used for 2° and<br />

R OH<br />

R I<br />

R ONO 2 3° alkyl halide displacements<br />

ONO 2<br />

O 2 NO<br />

decomposition <strong>of</strong> nitrocarbonates (very mild, rt or reflux MeCN)<br />

20,164 MPH!!<br />

comparable<br />

stability to PETN<br />

O 2 N<br />

N<br />

NO 2<br />

N<br />

RO<br />

O<br />

Cl<br />

AgNO 3<br />

Py<br />

RO<br />

O<br />

ONO 2<br />

-AgCl<br />

-CO 2<br />

ring opening <strong>of</strong> strained oxygen heterocycles<br />

R ONO 2<br />

80%<br />

H 2 O<br />

N N<br />

N 2 O 4<br />

O 2 N NO 2<br />

ONO<br />

O (or)<br />

CH 2 Cl<br />

ONO 2<br />

CHEETAH calculates<br />

2<br />

[O]<br />

as powerful as HMX<br />

O<br />

N 2 O 5<br />

HO<br />

O 2 NO<br />

ONO 2<br />

ONO 2


R.A. Rodriguez<br />

<strong>Chemistry</strong> <strong>of</strong> <strong>High</strong> <strong>Energy</strong> <strong>Materials</strong><br />

Baran GM<br />

2012-08-18<br />

selective O-nitrations<br />

HO<br />

OH<br />

nitrodesilylation<br />

OH<br />

1 eq SOCl(NO 3 )<br />

2 eq SOCl(NO 3 )<br />

70%<br />

N 2 O 5<br />

RO SiR 3<br />

CH 2 Cl 2<br />

RO ONO 2 + O 2 NO SiR 3<br />

Routes to N-Nitro functionality<br />

65%<br />

O 2 NO<br />

3 eq SOCl(NO 3 ) O 2 NO<br />

100%<br />

ONO 2<br />

ONO 2<br />

deamination<br />

NO 2 F<br />

R NH 2<br />

MeCN<br />

R ONO 2<br />

- Compounds resulting from nitration <strong>of</strong> nitrogen are <strong>of</strong> far less use for<br />

mainstream organic synthesis. However the N-NO 2 group is an important<br />

'explosophore' and is present in many enrgetic materials<br />

HN<br />

N<br />

O<br />

O<br />

OH<br />

H +<br />

N R OH + N 2 O<br />

HO<br />

OH<br />

OH<br />

ONO 2<br />

ONO 2<br />

- Direct nitration <strong>of</strong> a 1° amine to a nitramine using HNO 3 /mixed acids is not<br />

possible due to instability <strong>of</strong> the tautomeric isonitramine in strongly acidic<br />

conditions. 2° amines are more stable and can undergo electrophilic nitration<br />

using HNO 3 /Ac 2 O<br />

2° w/ HNO 3 /Ac 2 O<br />

R<br />

NC<br />

NO 2<br />

N<br />

NO 2<br />

N<br />

CN<br />

NO 2<br />

Me N Me<br />

93% 22% 6%<br />

analines - must contain one or more nitro groups on the aromatic ring<br />

How to get around this problem??<br />

- synthesis via condensation chemistry (Mannich, 1,4 addition, etc)<br />

What about if need more direct method??<br />

-non-acidic nitrating reagents (nucleophilic nitration)<br />

R NH 2<br />

R<br />

nBuLi<br />

N<br />

O<br />

-78 °C R NHLi Et ONO 2<br />

R N N<br />

OLi<br />

1. Na<br />

-<br />

O<br />

Ar NH<br />

Ar NH 2 2 Na +<br />

Ar N N<br />

2. EtONO 2<br />

EtONO 2<br />

O<br />

H +<br />

ONa<br />

R NH<br />

NO 2<br />

H + NO 2<br />

Ar NH<br />

-chloride ion catalysis<br />

anhydrous ZnCl 2 , hydrochloride salt <strong>of</strong> amine, or dissolved HCl(g) can serve<br />

as a source <strong>of</strong> electropositive chloride under the oxidizing conditions <strong>of</strong> nitration<br />

NC<br />

2 HCl + 2HNO 3 + 3Ac 2 O 2AcOCl + N 2 O 3 + 4AcOH<br />

AcOCl + R 2 NH R 2 NCl + AcOH<br />

R 2 NCl + HNO 3 + Ac 2 O R 2 NNO 2 + AcOCl + AcOH<br />

NO 2<br />

N<br />

CN<br />

93%<br />

HNO 3 /Ac 2 O<br />

(w/o chloride)<br />

R NH 2<br />

2 HOCl<br />

NC<br />

- Nitrolysis <strong>of</strong> fully substituted nitrogen<br />

R<br />

N<br />

CN<br />

Wright et al. Can. J. Res. 1948. 26B, 294<br />

HNO 3 /Ac 2 O<br />

R = Cl - (N + )<br />

HNO 3 /Ac 2 O<br />

R = H<br />

Ease <strong>of</strong> alkyl nitrolysis depends on stability <strong>of</strong> the resulting cation:<br />

benzyl, tertiary (t-Bu), etc...<br />

X<br />

NC<br />

NO<br />

HNO<br />

R NCl 3 /Ac 2 O 2 NaHSO 3 (aq)<br />

2 R N<br />

rupture <strong>of</strong> C−N bond leading to formation on N−NO 2<br />

R 1<br />

A<br />

O<br />

N<br />

R 2<br />

Path A<br />

O 2 N<br />

N R 2<br />

R 2<br />

+<br />

Cl<br />

R 1<br />

CO 2 H<br />

R 2 Path B<br />

NO 2<br />

B<br />

R 1 N + R 2 OH<br />

R 2<br />

Nitramine formation via nitrolysis possible from:<br />

R 1<br />

R 1<br />

NO<br />

+ 2<br />

N<br />

Ph<br />

R 1<br />

R 1<br />

NO 2<br />

N<br />

Ph<br />

O<br />

R 2 N NR 2<br />

R 2 N SiR 3<br />

R 1 N<br />

R 2 N NO<br />

O<br />

R 2<br />

NO 2<br />

N<br />

70%<br />

R NHNO 2<br />

R 2<br />

CN<br />

- carbamate<br />

- urea<br />

- formamide<br />

- acetamide<br />

- sulfonamide


R.A. Rodriguez<br />

<strong>Chemistry</strong> <strong>of</strong> <strong>High</strong> <strong>Energy</strong> <strong>Materials</strong><br />

Baran GM<br />

2012-08-18<br />

Synthesis <strong>of</strong> Hexanitrohexaazaisowurtzitane (HNIW)<br />

- Many nitramines are more powerful than aromatic C-nitro compounds and have<br />

high brisance and high chemical stability and low sensativity to impact and<br />

friction compared to nitrate ester explosives. This is why they are <strong>of</strong> interest to<br />

military applications.<br />

Bn<br />

Bn<br />

Bn Bn<br />

O<br />

Bn<br />

NH 2<br />

MeCN/H<br />

H<br />

2 O N N N<br />

N N<br />

Bn<br />

Bn<br />

N N<br />

+ H<br />

Ph<br />

cat. H +<br />

N<br />

O<br />

N N<br />

N N<br />

2 eq.<br />

Bn<br />

Bn<br />

Bn Bn<br />

Bn<br />

H<br />

Ph O<br />

2 ,<br />

NO<br />

+<br />

[O] Ph<br />

Me [Pd] X 2<br />

O Ac 2 O<br />

X<br />

N<br />

N<br />

N<br />

decomp. messy. Nitration<br />

<strong>of</strong> aromatic rings<br />

Ph O<br />

CrO3 Ph<br />

N<br />

N<br />

Ac<br />

O NO 2 N<br />

2<br />

1. N<br />

N 2 O 4<br />

N N<br />

Ac 2. HNO O 2 N<br />

N<br />

3 /H 2 SO 4<br />

N N<br />

NO 2<br />

via nitroso<br />

N 93%<br />

N N<br />

Bn<br />

O 2 N NO<br />

DANGER!<br />

2<br />

99% HNO 3<br />

Bn<br />

Bn<br />

Ac<br />

N N<br />

N<br />

Bn<br />

Bn<br />

N N H 2 , Pd(OAc) Ac 2 N<br />

Ac<br />

N N 2 O, PhBr cat.<br />

N<br />

Bn<br />

Bn 65% Bn<br />

H 2 ,<br />

O NO 2 N<br />

2<br />

[Pd]<br />

N N<br />

O 2 N<br />

Ac<br />

Ac<br />

N N NO 2<br />

Ac<br />

N N 1. HCO<br />

Ac<br />

2 H<br />

Ac<br />

Ac<br />

N N<br />

N N<br />

O 2 N NO 2. Ph, Δ<br />

2<br />

HN NH -H 2 O OHCN<br />

HNIW aka CL-20<br />

- explosive/propellant (low smoke-emission)<br />

- most powerful to date (better oxidizer-to-fuel than RDX/HMX)<br />

- first prep by Nielsen 1987 Naval Air Warefare<br />

- pilot plant in 1990 for 200 kg in China Lake facility<br />

- unmatched performance in specific impulse,<br />

burn rate, detonation velocity (9.38 km/s = 21,000 MPH!!)<br />

- highest density than any other explosive (d = 2.044 g/cm 3 )<br />

- thermally stable (250 -260 °C) but sensative to mechanical stress<br />

still greater stability than nitrocellulose, PETN and others.<br />

- 4 different polymprphs with different densities/properties<br />

N<br />

N<br />

Ac<br />

N<br />

Ac<br />

N<br />

NCHO<br />

Syntheses <strong>of</strong> some nitramine explosives<br />

NNs<br />

HO<br />

O 2 N<br />

90%<br />

NH 2 NH 2 NsCl, NNs NNs<br />

K 2 CO 3 (aq)<br />

O<br />

OH<br />

NH 2<br />

NO 2<br />

NNs<br />

F 2 NSO 3 H,<br />

HNF 2 , H 2 SO 4 ,<br />

CFCl 3<br />

OH<br />

O 2 N<br />

OH<br />

NO 2<br />

N<br />

NO 2<br />

TNAZ<br />

Ns<br />

95%<br />

1. HNO 3 /NH 4 NO 3<br />

urea, 33%<br />

2. H 2 SO 4<br />

92%<br />

O 2 N<br />

HBr-AcOH<br />

160 °C<br />

72%<br />

NO 2<br />

NNs<br />

N N Ns<br />

F 2 N NF 2<br />

Br<br />

OH<br />

O<br />

1. NaHCO 3 , NaI<br />

DMSO, 100 °C<br />

NH 3 + Br -<br />

Br<br />

NOH<br />

Br<br />

2. NaNO 2 , NaOH<br />

K 3 Fe(CN) 6 , K 2 S 2 O 8<br />

29% (2 steps)<br />

O<br />

O 2 N<br />

1. CrO 3 , AcOH<br />

2. HOCH 2 CH 2 OH<br />

TsOH<br />

NNs<br />

HNO 3 /SbF 6<br />

CF 3 SO 3 H<br />

82% (2 steps)<br />

1. O 3 , CH 2 Cl 2<br />

2. DMS<br />

3. NH 2 OH/NaOAc<br />

86% (3 steps)<br />

O 2 N<br />

O 2 N<br />

O<br />

NNs<br />

NO 2<br />

O<br />

N N NO 2<br />

F 2 N NF 2<br />

O<br />

O<br />

NNs<br />

TNFX<br />

(3,3 bis(difluoroamino)octahydro<br />

1,5,7,7 tetranitro 1,5 diazocine)<br />

NaOH, 80 °C<br />

60 mmHg<br />

CH 2 Br<br />

N<br />

NO 2<br />

N<br />

Br<br />

HNO 3 /TFAA<br />

81%<br />

NNs<br />

1. NaNO 2 (aq)<br />

2. HCl (aq)<br />

10%<br />

O 2 N<br />

N<br />

NO<br />

NNs<br />

Br Br 76%<br />

K 2 CO 3<br />

CH 2 Br


R.A. Rodriguez<br />

<strong>Chemistry</strong> <strong>of</strong> <strong>High</strong> <strong>Energy</strong> <strong>Materials</strong><br />

Baran GM<br />

2012-08-18<br />

N 2 O 5<br />

No single nitrating agent is as diverse and versatile<br />

It is considered as the future for energetic materials synthesis<br />

non-acidic nitrating reagents (neutral)<br />

1° amines/nitramines leads to deamination and formation <strong>of</strong> nitrate ester<br />

by-product but analines are successful.<br />

O O nitronium nitrate salt<br />

N 2 O 5<br />

O<br />

N<br />

O N<br />

[NO + 2 ][NO - 3 ]<br />

O<br />

sublime slightly above rt<br />

condition: chlorinated solvents<br />

- clean and selective<br />

- non-oxidizing &n non-acidic<br />

polar<br />

- adopts two structures<br />

depending on condition<br />

condition: anhyd. HNO 3<br />

- powerful but acidic and non-selective<br />

- 1st prepared over 150 years ago but due to difficult prep and low thermal<br />

stability (require -60 °C long term storage) received little attention.<br />

- Environmental restrictions and push for green chemistry sparked interest<br />

Advantage: Rxns are very clean<br />

- faster and less exothermic (due to absence <strong>of</strong> oxidation byproducts)<br />

- high yields<br />

- simple isolation<br />

- non-acidic conditions possible with this reagent (compared to mixed acids)<br />

rt<br />

N 2 O Stable for 2 weeks at -20 °C<br />

5 2 N 2 O 4 + O 2<br />

Stable for up to 1 yr at -60 °C<br />

synthesis <strong>of</strong> TNT under mild conditions<br />

Me<br />

Me<br />

NO 2<br />

N 2 O 5 /HNO 3<br />

32 °C,<br />

quant yield<br />

NO 2<br />

N-nitrations <strong>of</strong> ureas<br />

H H<br />

N N<br />

HNO 3<br />

O<br />

O<br />

H<br />

N N<br />

2 SO 4<br />

H H<br />

O-nitrations <strong>of</strong> polyols<br />

HO<br />

OH<br />

OH<br />

OH<br />

OH<br />

O 2 N<br />

O<br />

O 2 N<br />

NO 2<br />

N<br />

N<br />

H<br />

OH N 2O 5 , CCl 4<br />

0 °C<br />

quant yield<br />

NO 2<br />

H<br />

N<br />

N<br />

NO 2<br />

O 2 NO<br />

O<br />

No explosion hazard<br />

HNO 3<br />

P 2 O 5<br />

O<br />

O 2 N<br />

O 2 N<br />

N<br />

N<br />

ONO 2 ONO 2<br />

ONO 2<br />

ONO 2 ONO 2<br />

N<br />

N<br />

NO 2<br />

NO 2<br />

O<br />

Preparation <strong>of</strong> N 2 O 5 [Deville 1849]<br />

O<br />

AgNO 3 + Cl 2 (g)<br />

O N +<br />

Cl<br />

AgNO 3 N 2 O 5<br />

Dehydration <strong>of</strong> nitric acid<br />

HNO 3 + P 2 O 5 N 2 O 5 + H 3 PO 4<br />

Δ<br />

N 2 O 4<br />

- isolation by sublimation and collection trap at -78 °C<br />

- stream <strong>of</strong> ozone needed to avoid collection on N 2 O 4<br />

- if don't care about acidity, can use HNO 3 /P 2 O 5 mixture directly (no ozone stream)<br />

O 3<br />

N 2 O 5<br />

Process chemist at Defense and Evaluation <strong>Research</strong> Agency (DERA) in the UK<br />

Development <strong>of</strong> a flow process: Using commercial ozonizer to generate 5 - 10%<br />

mix <strong>of</strong> ozone in oxygen and mixed in flow with N 2 O 4. N 2 O 5 is trapped in solid<br />

condenser tubes (cooled by dry ice/acetone).<br />

Explosives in JACS: Sila explosives<br />

O 2 NO<br />

O 2 NO ONO 2<br />

- Used in WW I<br />

PETN ONO 2<br />

- Det. Velocity 8,400 m/s<br />

- d= 1.7 g/cm 3<br />

Silicon analogue <strong>of</strong> PETN<br />

O 2 NO<br />

O 2 NO Si ONO 2<br />

VERY<br />

low e - dens<br />

ONO 2<br />

Klapotke T.M. JACS 2007. 129, 6908<br />

- One <strong>of</strong> most high energy explosives known<br />

- more shock sensative than TNT. used as booster mix<br />

- Europe marketed as lentonitrat (vasodilator) like NG<br />

"<strong>The</strong> crystalline compound exploded on every<br />

occasion upon contact with Teflon spatula...<br />

Solutions in diethyl ether exploded upon the slighest<br />

evaporation <strong>of</strong> the solvent."<br />

Si(CH 2 OAc) 4 Si(CH 2 Cl) 4<br />

Why does Si-PETN have drastically increased sensativity?<br />

<strong>The</strong>oretical: electrostatic potential:<br />

1. Surface electrostatic potential, in general, is related to the sensitivity <strong>of</strong> the bulk<br />

2. <strong>The</strong> more evenly distributed the electrostatic potential is over the surface <strong>of</strong> a<br />

molecule, the more stable it is to impact.<br />

O 2 NO<br />

O 2 NO<br />

O 2 NO<br />

VERY high e -<br />

dens<br />

Si<br />

O<br />

N<br />

O<br />

O

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!