30.06.2014 Views

Evaluating Vegetation Evapotranspiration - South Dakota ...

Evaluating Vegetation Evapotranspiration - South Dakota ...

Evaluating Vegetation Evapotranspiration - South Dakota ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Evaluating</strong> <strong>Vegetation</strong><br />

<strong>Evapotranspiration</strong> (VegET)<br />

Modeling Results in <strong>South</strong><br />

<strong>Dakota</strong><br />

Gabriel Senay 1 and Geoffrey Henebry 2<br />

1 SAIC, contractor to the U.S. Geological Survey (USGS) Center for Earth Resources<br />

Observation and Science (EROS); <strong>South</strong> <strong>Dakota</strong> State University (SDSU)<br />

Work performed under USGS contract 03CRCN0001<br />

senay@usgs.gov<br />

2 Geographic Information Science Center of Excellence (GIScCE),<br />

<strong>South</strong> <strong>Dakota</strong> State University<br />

Geoffrey.Henebry@sdstate.edu<br />

U.S. Department of the Interior<br />

U.S. Geological Survey


Outline<br />

• Summary of results<br />

• VegET modeling background and objective<br />

• VegET model outputs<br />

• VegET evaluation<br />

• Soil Moisture (NRCS: SCAN)<br />

• Crop Yield (NASS County)<br />

• Flux Data (AmeriFlux)<br />

• <strong>Vegetation</strong> Water content (AMSR-E VWC )<br />

• NDVI<br />

• Conclusion


Summary<br />

• VegET is a water balance model that produces landscape ET<br />

(water use) on a pixel-by-pixel basis on rainfed systems.<br />

• Correlated well with AmeriFlux latent heat flux (ET) and SCAN<br />

soil moisture data.<br />

• Promising results with crop yield data.<br />

• Show interesting relationship with AMSR-E <strong>Vegetation</strong> Water<br />

Content.<br />

• Operational setup of VegET is possible for crop and grassland<br />

monitoring.


VegET Modeling:<br />

Background and Objective<br />

• VegET is a new modeling approach that integrates Land Surface Phenology<br />

(LSP) and commonly used water balance modeling algorithms to estimate<br />

actual vegetation ET (water use) in primarily non-irrigated crop and grassland<br />

environments for agro-hydrological applications.<br />

• Key inputs to the model:<br />

• 1) Daily rainfall data at 5-km resolution from NOAA/NWS (a new product<br />

since 2005, a blend of NEXRAD and station data)<br />

• 2) Daily reference ET calculated at EROS for global applications from the<br />

Global Data Assimilation (GDAS) climate parameters<br />

• 100 km, downscaled to 10 km<br />

• 3) “Climatological” remotely sensed NDVI time series to define “optimum”<br />

water- use patterns of landscapes throughout the year; 1-km resolution<br />

• 4) Soil water holding capacity from STATSGO (in case of US)<br />

• from 1:250,000 scale soils map<br />

• Objective:<br />

• Produce daily ETa and soil moisture to monitor crop and grassland<br />

performance for early assessment of yield and biomass production.


PRECIPITATION<br />

Reference ETo<br />

VegET<br />

ETa = Ks * Kp * ETo<br />

SOILS<br />

PPT i<br />

Soil Stress Coefficient<br />

Water Balance<br />

ETa i<br />

LSP Water-Use Coefficient<br />

0.8<br />

"Climatological" NDVI Pattern:Nebraska<br />

-97.8, 41.4<br />

0.7<br />

Water<br />

Balance<br />

Model<br />

WHC<br />

Surplus<br />

Runoff<br />

SW i<br />

ETa = ETp ETa = Kp * ETo<br />

ETa < ETp<br />

ETa = Ks * Kp * ETo<br />

Drainage<br />

SW i<br />

= SW i-1<br />

+ PPT i<br />

– ETa i<br />

– RF i<br />

-DD i<br />

NDVI<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35<br />

dekad ( 1-36)<br />

Series1<br />

Series2<br />

Series3<br />

Series4<br />

Series5<br />

Series6<br />

Land Surface Phenology<br />

(LSP)


Evaluation Datasets<br />

• Soil Moisture (vol/vol)<br />

• Soil Climate Analysis Network (SCAN): Soil moisture (hourly, July<br />

2005, point), EROS, <strong>South</strong> <strong>Dakota</strong><br />

• Crop Yield (Bu/ac)<br />

• National Agricultural Statistics Service (NASS): (yearly, 2005, 2006,<br />

county-average), <strong>South</strong> <strong>Dakota</strong>.<br />

• Latent Heat Flux (ET)<br />

• AmeriFlux (daily, 2005, Point) Brookings, <strong>South</strong> <strong>Dakota</strong>; also<br />

Arizona<br />

• <strong>Vegetation</strong> Water Content (kg/m 2 )<br />

• AMSR-E (daily, 2005: 25 Km), Faulkton, <strong>South</strong> <strong>Dakota</strong><br />

• NDVI<br />

• AVHRR: (weekly, 2005,2006; 1 km), Faulkton, SD


VegET Model Outputs<br />

Conterminous USA<br />

<strong>South</strong> <strong>Dakota</strong>


Illinois Flash Drought in 2005?


2006 drought in much of <strong>South</strong> <strong>Dakota</strong>, Nebraska, <strong>South</strong>eastern US?


Yearly total shows more water use in the western US.


Seasonal and annual ETa show similar spatial patterns.<br />

Seasonal patterns show more differences in magnitude between<br />

the two years.


VegET: May – Sep


VegET: May – Sep<br />

Major<br />

ETa reduction


VegET Evaluation<br />

Soil Moisture: SCAN Data


Hourly Soil Moisture: EROS SCAN<br />

Hourly Average SM data<br />

SCAN EROS<br />

34<br />

SM (v/V)<br />

32<br />

30<br />

28<br />

26<br />

24<br />

storm event<br />

Day 11<br />

Day 12<br />

22<br />

700<br />

1000<br />

1300<br />

1600<br />

1900<br />

2200<br />

100<br />

400<br />

700<br />

1000<br />

1300<br />

1600<br />

1900<br />

2200<br />

100<br />

400<br />

Hours<br />

hours<br />

on<br />

on<br />

July<br />

11 and<br />

1112, and<br />

July,<br />

12,<br />

2005<br />

2005


90<br />

VegET Soil Water vs SCAN soil moisture<br />

<strong>South</strong> <strong>Dakota</strong> Site, EROS SCAN Site<br />

34<br />

VegET SW (mm)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

VegET SW (mm)<br />

SCAN SM (V/V)<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31<br />

Days in July, 2005<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

SCAN Soil Moisture (v/V)<br />

SCAN: Avg of 2, 4, 8, 20 and 40 inch depth data<br />

VegET soil water level change captures the temporal variations in soil moisture<br />

as measured by the SCAN Site.<br />

Note: VegET (5 km), SCAN (Point)


SCAN Soil Moisture (6 am) vs VegET Soil Water Estimate<br />

<strong>South</strong> <strong>Dakota</strong>/EROS Site (SCAN ID 2072) (31 days in July 2005)<br />

VegET Soil Water (mm)<br />

90<br />

y = 7.5618x - 159.68<br />

80<br />

R 2 = 0.9063<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

20 22 24 26 28 30 32 34<br />

SCAN Soil Moisture (vol/Vol)<br />

Senay, 2007


Evaluation: Crop Yield<br />

USDA: NASS Data


2005 County Wheat Yield vs Seasonal Total ETa<br />

48 counties in <strong>South</strong> <strong>Dakota</strong><br />

County Wheat Yield vs ETa<br />

<strong>South</strong> <strong>Dakota</strong>: 2005; n = 48<br />

Wheat Yield (Bu/Ac)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

y = 0.0945x + 6.3324<br />

R2 = 0.41<br />

0 100 200 300 400 500 600<br />

VegET ETa (mm) (May – Sep)<br />

Some counties had ETa more than 400 mm


2006 County Wheat Yield vs ETa<br />

46 counties in <strong>South</strong> <strong>Dakota</strong><br />

Wheat Yield (Bu/ac)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

y = 0.2035x - 31.266<br />

R2 = 0.50<br />

County Wheat Yield vs ETa<br />

<strong>South</strong> <strong>Dakota</strong> 2006; n = 46<br />

0<br />

0 100 200 300 400 500 600<br />

VegET ETa (mm) (May – Sep)<br />

Almost all counties showed ETa less than 400 mm<br />

ETa is better correlated with yield when water is a limiting factor.


2005/2006 County Wheat Yield vs ETa<br />

Counties in <strong>South</strong> <strong>Dakota</strong><br />

Yield (Bu/ac)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

y = 0.1433x - 12.481<br />

R2 = 0.50<br />

County Wheat Yield vs ETa<br />

<strong>South</strong> <strong>Dakota</strong>: 2005 & 2006; n = 94<br />

0 100 200 300 400 500 600<br />

VegET ETa (mm) (May – Sep)<br />

ETa is reliable spatially and temporally


Comparing Yield and ETa Differences<br />

(between 2005 and 2006, county level)<br />

Yield Difference<br />

(Bu/Ac) [2006 - 2005]<br />

Wheat Yield Difference vs ETa difference: 2006 minus 2005<br />

(<strong>South</strong> <strong>Dakota</strong> County Average, n = 36)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-200 -150 -100 -50 -10 0 50 100 150 200<br />

-20<br />

-30<br />

-40<br />

ETa Difference (mm) [2006 - 2005]<br />

Most counties showed a large drop both in Yield and ETa from 2005 to 2006


Wheat Planted Area Distribution


2005


2006


Possible Sources of Error<br />

• Spatial mismatch<br />

• ETa = county-wide average<br />

• Yield = sub-county aggregate, not all of the counties<br />

produces wheat<br />

• Proposed Solution: use crop layers to redefine ETa average<br />

• Temporal mismatch<br />

• ETa = May – Sep<br />

• Yield = (all seasons total: winter wheat, spring wheat)<br />

• Solution: analyze spring and winter wheat data separately<br />

• Management differences in yield that is not reflected<br />

in ETa (water-base)<br />

• Solution: develop temporal relationship using more years of<br />

historical data and work with yield anomalies.


Evaluation: Latent Heat Flux (ET)<br />

AmeriFlux Data


Latent heat flux (ET) from AmeriFlux tower and VegET ETa<br />

<strong>South</strong> <strong>Dakota</strong>, Brookings<br />

VegETa vs Flux LE: <strong>South</strong> <strong>Dakota</strong> 2005<br />

Cover: crop/grassland<br />

12<br />

0<br />

10<br />

10<br />

20<br />

ETo/ETa (mm)<br />

8<br />

6<br />

4<br />

Flux LE (ETa)<br />

GDAS ETo<br />

VegETa-5k<br />

Flux Rain<br />

30<br />

40<br />

50<br />

60<br />

70<br />

Rainfalll (mm)<br />

2<br />

80<br />

90<br />

0<br />

100<br />

1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286 305 324 343 362<br />

Days (2005)<br />

VegETa captured both the magnitude and temporal variations of measured flux<br />

at the tower site, including gross primary production (data not shown)


Latent heat flux (ET) from AmeriFlux tower and VegET ETa<br />

Arizona, 2005<br />

VegETa vs Flux LE: Arizona 2005<br />

cover: grassland<br />

12<br />

0<br />

10<br />

ETo/ETa (mm)<br />

10<br />

8<br />

6<br />

4<br />

Flux LE (ETa)<br />

GDAS ETo<br />

VegETa-5k<br />

Flux Rain<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

Rainfalll (mm)<br />

2<br />

80<br />

90<br />

0<br />

100<br />

1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286 305 324 343 362<br />

Days (2005)<br />

A stronger correspondence between VegETa and tower latent heat flux.


Evaluation <strong>Vegetation</strong> Water Content (AMSR-E)<br />

The Advanced Microwave Scanning Radiometer - EOS (AMSR-E)<br />

=>passive microwave data (brightness temperature) converted<br />

into <strong>Vegetation</strong> Water Content (VWC)<br />

=>acquired twice daily: pre-dawn and early afternoon<br />

=> 25-km resolution


VegET ETa vs AMSR-E VWC<br />

Faulkton, <strong>South</strong> <strong>Dakota</strong>, 2005<br />

AMSR-E VWC vs VegET ETa<br />

Faulkton, SD 2005<br />

8<br />

0<br />

ETa (mm), VWC<br />

(kg/m2)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Rainfall<br />

ETa<br />

ddVWC<br />

dVWC<br />

aVWC<br />

5<br />

10<br />

15<br />

20<br />

rainfall (mm)<br />

0<br />

-1<br />

-2<br />

10-Jan<br />

10-Feb<br />

10-Mar<br />

10-Apr<br />

10-May<br />

10-Jun<br />

10-Jul<br />

10-Aug<br />

Days (7-day Interval)<br />

10-Sep<br />

10-Oct<br />

10-Nov<br />

10-Dec<br />

25<br />

30<br />

ddVWC = dVWC - aVWC<br />

Large negative difference between dVWC and aVWC<br />

seems to occur during optimum water supply and high ET


VegET ETa vs AMSR-E VWC, NDVI<br />

Faulkton, <strong>South</strong> <strong>Dakota</strong>, 2005<br />

VegET ETa vs AMSR-E VWC, NDVI<br />

Faulkton, SD 2005<br />

8<br />

0<br />

ETa (mm), NDVI (x10),<br />

ddVW (kg/m2)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

10-Jan<br />

10-Feb<br />

Rainfall<br />

ETa<br />

NDVI<br />

ddVWC<br />

10-Mar<br />

10-Apr<br />

10-May<br />

10-Jun<br />

10-Jul<br />

Low ETa<br />

10-Aug<br />

10-Sep<br />

10-Oct<br />

Days (7-day interval based on weekly NDVI)<br />

10-Nov<br />

10-Dec<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

rainfall (mm)<br />

ddVWC = dVWC - aVWC<br />

-Both ETa and ddVWC show immediate stress to low rainfall<br />

-NDVI show similar stress at a lesser degree with a lag time


VegET ETa vs AMSR-E ddVWC<br />

Faulkton, <strong>South</strong> <strong>Dakota</strong>, July 2005<br />

Faulkton: VegET daily ETa vs ddVWC (kg/m2)<br />

2005, July (31 days)<br />

7<br />

ETa (mm), VegET<br />

6<br />

5<br />

4<br />

3<br />

2<br />

y = -2.1925x + 2.6246<br />

R 2 = 0.8465<br />

Physical significance<br />

of this relationship<br />

needs to be<br />

investigated.<br />

1<br />

0<br />

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50<br />

ddVWC (kg/m2)


Evaluation: NDVI<br />

ETa vs NDVI<br />

Faulkotn, SD (2005 & 2006)<br />

Faulkton, SD (2005 & 2006)<br />

ETa (mm)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

ETa2005<br />

ETa2006<br />

NDVI2005<br />

NDVI2006<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

NDVI (-)<br />

3-Jan<br />

3-Feb<br />

3-Mar<br />

3-Apr<br />

3-May<br />

3-Jun<br />

3-Jul<br />

3-Aug<br />

Days (7-day interval)<br />

3-Sep<br />

3-Oct<br />

3-Nov<br />

3-Dec<br />

-Both ETa and NDVI show a reduction in 2006<br />

-The relative reduction of ETa is much higher and immediate<br />

than the reduction in NDVI.


Relative Reduction of ETa and NDVI<br />

w.r.t to Crop Yield<br />

NDVI (x 1000) / ETa (mm)<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

NDVI (avg) vs ETa (sum)<br />

Faulkton, SD (2005 & 2006)<br />

78% of<br />

2005<br />

2005 2006<br />

Year<br />

95% of<br />

2005<br />

ETa<br />

NDVI<br />

Faulk County: Wheat yield reduction from 2005 to 2006 = 61%<br />

ETa more sensitive to wheat (crop) yield reduction than NDVI


Conclusion<br />

• VegET ETa showed encouraging performance with respect to:<br />

• SCAN soil moisture<br />

• AmerifFlux Latent Heat Flux from Brookings and Arizona<br />

• Non-irrigated county wheat yield<br />

• Interesting relationships between VegET and AMSR-E VWC was observed. The diel<br />

difference VWC (ddVWC) showed a strong negative relationship with ETa. Further<br />

research is required to understand the physical relationship between ddVWC and<br />

ETa<br />

• VegET ETa was shown to be more sensitive than NDVI in detecting yield reduction<br />

from 2005 to 2006.<br />

• Use of historical crop yield data will improve the yield prediction capability of<br />

VegET.<br />

• VegET can be setup to provide daily estimates of sub-county soil moisture, ETa<br />

and crop yield performance and general plant biomass production.<br />

• Caution should be taken in applying VegET on irrigated areas and forested<br />

landscapes that draw water from ground sources or transported surface water.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!